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Abstract

Example based single image super resolution (SR) is a

fundamental task in computer vision. It is challenging, but

recently, there have been significant performance improve-

ments using deep learning approaches. In this article, we

propose efficient module based single image SR networks

(EMBSR) and tackle multiple SR problems in NTIRE 2018

SR challenge by recycling trained networks. Our proposed

EMBSR allowed us to reduce training time with effectively

deeper networks, to use modular ensemble for improved

performance, and to separate subproblems for better per-

formance. We also proposed EDSR-PP, an improved ver-

sion of previous ESDR by incorporating pyramid pooling

so that global as well as local context information can be

utilized. Lastly, we proposed a novel denoising / deblurring

residual convolutional network (DnResNet) using residual

block and batch normalization. Our proposed EMBSR with

DnResNet and EDSR-PP demonstrated that multiple SR

problems can be tackled efficiently and effectively by win-

ning the 2nd place for Track 2 (×4 SR with mild adverse

condition) and the 3rd place for Track 3 (×4 SR with diffi-

cult adverse condition). Our proposed method with EDSR-

PP also achieved the ninth place for Track 1 (×8 SR) with

the fastest run time among top nine teams.

1. Introduction

The goal of image super resolution (SR) problem is to

design an algorithm to map from low resolution (LR) im-

age(s) to a high resolution (HR) image. Conventional SR

was to yield a HR image from a multiple of LR images (e.g.,

video) considering a number of LR image degradation op-

erators such as blurring and noise. This type of SR has been

well studied [16] and fundamental performance limit for it

has been analyzed [17]. In medical imaging, generating a

high signal-to-noise ratio (SNR) image from a multiple of

low SNR images has also been well studied with similar

† Equal contribution

Figure 1: An example of given images for NTIRE 2018

challenge on super-resolution [18]. The goal of challenge

was to design algorithms to map from low resolution images

(Classic bicubic ×8, Mild adverse condition ×4 or Difficult

adverse condition ×4) to a high resolution image (HR).

model based approaches as conventional SR problems [3].

In contrast, a SR problem using a single LR image is

challenging since high frequency information in a HR im-

age is lost or degraded due to aliasing during sampling pro-

cess. Because there was no effective way to extrapolate high

frequency information, single image SR problem was usu-

ally considered as an interpolation problem [16]. An exam-

ple based SR method was proposed based on Bayesian be-

lief propagation [6] and a patch based SR method was pro-

posed by combining a conventional multiple image based

SR and an example based SR [7].

Deep neural network has applied to many image pro-

cessing and computer vision problems and has shown sig-

nificantly improved performance over conventional meth-

ods [12]. There have been several works on single image

SR problems and several deep neural networks were pro-

posed such as SRCNN [5], VDSR [10], SRResNet [13],

and EDSR [15]. EDSR achieved state-of-the-art perfor-

mance for ×4 SR problem in terms of peak SNR (PSNR)

and structural similarity index (SSIM) and won the NTIRE

2017 challenge [1] for SR problems. NTIRE 2017 SR con-
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sisted of two Tracks for known (bicubic) and unknown blurs

and for each Track, there were three different downsam-

pling rates (×2, ×3, ×4). EDSR outperformed other pre-

vious networks including SRResNet for all public dataset

including DIV2K, NTIRE 2017’s new dataset [15].

NTIRE 2018 SR challenge [18] is more challenging than

its previous challenge by having 4 Tracks: Track 1 with ×8

SR problem and with known blur (bicubic) and Tracks 2,

3, 4 with ×4 SR problems and with mild to severe noise

and/or unknown blur. Figure 1 shows examples of given

images for the ground truth and for Tracks 1, 2, 3 that our

(a)

(b)

Figure 2: (a) Module based approach for Track 1 SR prob-

lem. (b) Module based approach for Tracks 2, 3 SR prob-

lems. The solution for module problem (B) can be effi-

ciently recycled among different SR problems in all Tracks.

team participated in. Mild noise was observed in given ×4

downsampled images for Track 2 and similar level of noise

was observed in given ×4 downsampled images, but with

relatively severe unknown blur for Track 3.

In this article, we propose an efficient module based ap-

proach for tackling multiple SR problems in Tracks 1, 2, 3

of NTIRE 2018 SR challenge [18]. We decomposed the

original problems in Tracks 1, 2, 3 into subproblems as

shown in Figures 2a (Track 1) and 2b (Tracks 2, 3), identi-

fied state-of-the-art methods for subproblems as baselines,

and efficiently recycled trained deep neural networks for

subproblems among all problems in different Tracks. Uti-

lizing intermediate goals for ×8 SR is not new [11] and

solving multiple problems together for efficiency is not a

new concept [20]. This approach could also be sub-optimal

in terms of the overall cost function optimization. However,

our proposed method is different from previous works in

1) module based training scheme to save training time for

entire networks for Tracks 1, 2, 3 by recycling and to use

effectively deeper convolutional networks with more fea-

ture map channels in the midst of limited computation and

memory resource, in 2) ensemble output of each module for

each subproblem to improve the performance further with-

out increasing network complexity, and in 3) separating the

problem of SR (increasing the resolution) from the problem

of denoising and deblurring (Tracks 2, 3).

We also proposed new deep neural networks to improve

the performance for subproblems. For SR problems in mod-

ule problems (A) and (B) shown in Figures 2a and 2b,

EDSR [15] was chosen as our baseline network. In this

article, we proposed EDSR-PP by adding pyramid pooling

layers [22] to EDSR for further performance improvement

with DIV2K dataset. For denoising and deblurring prob-

lems in module problem (C, C′) as illustrated in Figure 2b,

we adopt DnCNN [21], one of the state-of-the-art methods

for denoising and deblurring problem, as our baseline net-

work. We proposed a novel denoising and deblurring net-

work called DnResNet based on residual block structure [8]

and showed significant performance improvement over the

baseline DnCNN.

Our models were trained using DIV2K training

dataset [1] and were evaluated with DVI2K validation

and test dataset. In NTIRE 2018 SR challenge, our pro-

posed methods won the 2nd place (out of 18 teams) for

Track 2 and the 3rd place (out of 18 teams) for Track

3 with EMBSR using EDSR-PP and DnResNet (team

name: BMIPL UNIST). This demonstrated that our pro-

posed module based approach can efficiently and effectively

solve multiple problems. Our EMBSR method with EDSR-

PP also achieved the ninth place (out of 24 teams) for Track

1 with the fastest run time among top nine teams. Here is

the summary of this article’s contributions:

• Modular approach for efficient training with effec-
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tively deeper network, improved performance with

modular ensemble, and novel problem decomposition.

• EDSR-PP: improved EDSR with pyramid pooling.

• DnResNet: novel architecture for denoising / deblur-

ring based on residual block.

2. Related Works

Deep learning based super resolution. Dong et al. used

convolutional neural network (CNN) for SR problem

(SRCNN) and achieved significant improvement in per-

formance over other conventional non-deep leaning based

methods [5]. An LR image is upscaled using bicubic

interpolation and then CNN was applied to restore HR

details. Soon after, Kim et al. proposed a deep neu-

ral network using residual learning (VDSR) and showed

improved PSNR performance over SRCNN [10]. In this

method, CNN was trained not to yield a HR image, but

a residual image for the difference between an interpo-

lated LR image and the ground truth HR image. VDSR

also used a deeper CNN network than SRCNN. Lai et

al. proposed a Laplacian pyramid super resolution net-

work (LapSRN) that combines multiple models and uses

progressive reconstruction from ×8 to ×4 to ×2 to HR

(×1) [11]. Legit et al. proposed SRResNet using residual

blocks [8] to significantly increase the size of the recep-

tive field and to include local context information so that

state-of-the-art performance for ×4 SR problem can be

obtained in terms of PSNR and SSIM [13]. SRGAN was

also proposed with the same network structure as SRRes-

Net, but with different training based on a discriminator

network. SRGAN yielded visually pleasing outputs while

PSNR of SRGAN was lower than that of SRResNet since

SRResNet yielded an average of many possible outputs

while SRGAN yielded one of many possible outputs.

Recently, Lim et al. won the NTIRE 2017 challenge [1]

for SR problems using so-called EDSR (Enhanced Deep

Super-Resolution network) that enhanced SRResNet by

eliminating batch normalization and by stacking deeper

layers (residual blocks from 16 to 32, filter channels from

64 to 256) [15]. EDSR also used L1 loss instead of L2

loss for better PSNR. NTIRE 2017 SR consisted of two

Tracks for known (bicubic) and unknown blurs and for

each Track, there were three different downsampling rates

(×2, ×3, ×4). EDSR won the 1st place for NTIRE 2017

by outperforming SRResNet for all public dataset includ-

ing DIV2K, NTIRE 2017’s new dataset [15].

Deep learning based denoising and deblurring. Patch

based denoising methods yielded superior denoising re-

sults compared to conventional denoising techniques [4],

but they are usually slow in computation and have so

called rare patch issue so that these are less effective for

unique patterns in an image. Recently, there have been

several attempts to outperform patch based denoisers

such as BM3D using deep learning based approaches.

Jain and Seung demonstrated that denoising is possible

using CNN [9]. Burger et al. proposed a multi layer per-

ceptron based denoiser and showed that it is challenging,

but possible to obtain good denoising performance over

conventional state-of-the-art methods such as BM3D [2].

Xie et al. proposed a deep network for denoising and

inpaing [19]. Recently, Lefkimmiatis investigated a

combined method of conventional non-local patch based

denoiser and deep learning based denoiser [14]. Zhang

et al. proposed a so-called DnCNN with multiple CNN

blocks (similar to VDSR) to yield a residual (Gaussian

noise) and to yield superior performance to other de-

noisers including BM3D [21]. In particular, DnCNN

has greatly improved the performance of denoising and

deblurring tasks with a simple deep convolution layer

and residual learning.

3. Method

3.1. Modular Approach

We decomposed the original problems in NTIRE 2018

SR Tracks 1, 2, 3 [18] into subproblems as illustrated in

Figures 2a (Track 1) and 2b (Tracks 2, 3) and efficiently

recycled trained deep neural networks for a number of sub-

problems. Figure 3 illustrates our detailed network archi-

tectures for all problems in Tracks 1, 2, 3, called efficient

module based super resolution (EMBSR) network. This

modular approach allows us to train networks module-by-

module and to efficiently recycle trained modules for mul-

Figure 3: Modular approach for multiple SR problems.

Among 9 modules, 5 modules required long training while

4 modules can be recycled with short fine tuning.
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tiple SR problems (see Figure 3 to see that among 9 mod-

ules, only 5 modules require long training, while 4 mod-

ules can recycle already trained networks with relatively

short fine tuning). This modular architecture also yielded

effectively deeper networks with more feature map chan-

nels when limited computation and memory resource are

available. Each module can generate ensemble output for

each subproblem to increase the PSNR performance with-

out increasing the complexity of networks. Lastly, modular

approach allowed us to separate SR subproblems from the

problem of denoising and deblurring for Tracks 2, 3. Due to

this separation, significant performance improvement was

achieved by utilizing optimal deep networks for different

problems (e.g., EDSR for SR problem and DnCNN for de-

noising/deblurring problem) and by aligning an input image

and an intermediate target image (×4 bicubic downsampled

image) for training denoiser/deblur networks.

Our EMBSR network for Track 1 (×8 bicubic) consists

of three EDSR-PP networks as illustrated in the top of Fig-

ure 3. For training each module network, we downsampled

ground truth images using bicubic downsampling to gener-

ate target images for each module (×2 bicubic downsam-

pled images, ×4 bicubic downsampled images). Then, all

EDSR-PP modules were trained with given input ×8 bicu-

bic downsampled images and generated ×4 bicubic down-

sampled images, input ×4 bicubic downsampled images

and generated ×2 bicubic downsampled images, and ×2

bicubic downsampled images and ground truth images. A

solution for Track 1 (×8 single image SR) was created by

concatenating three trained modules. Note that ensemble

output is possible by having 8 variants of an input image (4

rotations × 2 left-right flips) for each neural network mod-

ule. This procedure substantially improved performance.

Further fine tuning is also possible. Each module is trained

with perfect bicubic downsampled input images, but the en-

semble output of each module contains errors from them. In

EBMSR for Track 1, the second EDSR-PP module can be

re-trained using ensemble output images of the first EDSR-

PP module and then the third EDSR-PP module can be

re-trained using ensemble output images of the re-trained

second EDSR-PP module, sequentially. In our simulations,

training each EDSR-PP module took about 3 days for 300

epochs and re-training each module took about 1 day for

100 epochs.

Our EMBSR network for Tracks 2, 3 is similar to the

EMBSR network for Track 1, but with replacing the first

EDSR-PP module with DnResNet module, as illustrated in

the middle and bottom of Figure 3, respectively. The second

and third “trained” EDSR-PP modules for Track 1 can be

recycled in Tracks 2, 3 as shown in Figure 3 (green arrows).

The first DnResNet module for tackling Track 2 can be

trained using given input training data and target ×4 bicu-

bic downsampled images. Image registration between input

Figure 4: An illustration of our proposed EDSR-PP. Up-

sampling lay of the original EDSR [15] was replaced with

pyramid pooling structure.

and target images using a translation motion was critical to

significantly improve the performance of DnResNet as well

as baseline DnCNN. For Track 3, similar approach can be

applied. Then, solutions for Tracks 2, 3 can be obtained

by concatenating trained DnResNet and two other trained

EDSR-PP networks. Further improvement was achieved by

sequentially re-training the second EDSR-PP module using

ensemble output images of the first DnResNet module, and

then fine tuning the third EDSR-PP module using ensemble

output images of the re-trained second ESDR-PP module

for both Tracks 2 and 3.

3.2. SR Module: EDSR­PP (Pyramid Pooling)

We propose a new SR network, EDSR-PP, based on a

state-of-the-art SR network, EDSR [15]. EDSR-PP incor-

porates pyramidal pooling [22] into the upsampling layer of

the original EDSR as illustrated in Figure 4. The number

of residual blocks in EDSR-PP was 32 and the same net-

work architecture was used for all SR modules in Tracks 1,

2, and 3. Typically, the receptive field size of deep learn-

ing based image processing corresponds to how much con-

text information is included. The deeper the CNN network

is, the larger the receptive field size is. However, in CNN

based deep networks for image processing, this receptive

field size may not be large enough to receive global con-

text information. Pyramid pooling [22] is a recent method

to resolve this issue so that both local and global context in-

formation can be utilized for image segmentation problems.

We incorporated it into EDSR for SR problem. In contrast

to the up-sampling layer of EDSR, pyramid pooling firstly

executes average pooling and performs convolution for each

of the four pyramid scales. Then, these are concatenated in

the existing feature map. This process allows both local

and global context information to be utilized. Four pyra-

mid scales were used in our EDSR-PP with 1 × 1, 2 × 2,
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Figure 5: An illustration of our proposed DnResNet. Unlike

DnCNN that uses CNN layers [21], residual blocks (Res-

block) were used as a basic building block.

3× 3, and 4× 4 and our proposed EDSR-PP yielded better

performance than EDSR.

3.3. Denoising / Deblurring Module: DnResNet

We also propose a novel denoising / deblurring network,

DnResNet, based on one of the state-of-the-art methods,

DnCNN [21] for denoising / deblurring problem. DnCNN

uses residual learning (skip connection between input and

output) and multiple convolution blocks with convolution -

batch normalization - ReLU layers. Our DnResNet simply

replaces all convolution blocks with our residual blocks as

shown in Figure 5. Using residual blocks further increased

receptive fields efficiently without concatenating more deep

convolution layers. DnCNN used 64 feature map channels

while our DnResNet used 128 feature map channels.

Figure 6: Comparison of residual blocks for SRRes-

Net [13], EDSR [15], and our DnResNet.

For residual blocks, EDSR removed batch normalization

layers from and added 0.1 scaling to the residual block of

SRResNet as shown in Figure 6 for improved performance

and numerical stability of training in SR problem. How-

ever, we found that it is advantageous to keep batch nor-

malization layers for denoising and deblurring problems.

So, we modified the residual block of EDSR by adding two

batch normalization layers again. Note that our residual

block is equivalent to the original residual block of SRRes-

Net except for 0.1 residual scaling. Note also that our pro-

posed DnResNet utilized similar residual blocks as SRRes-

Net, but overall network architectures are quite different.

Our proposed DnResNet with residual blocks outperformed

DnCNN with convolution blocks for denoising and deblur-

ring problems.

4. Experiment

4.1. Dataset

The DIV2K dataset from the NTIRE 2018 challenge was

used in all simulations of this article. DIV2K is a high qual-

ity (2K resolution) image data set from the NTIRE 2017

challenge [1] . For the same ground truth HR images, ×8

bicubic downsampled images were provided for Track 1,

×4 downsampled images with unknown blur kernels and

mild noise were provided for Track 2, and ×4 downsampled

images with unknown, difficult blur kernels and noise were

provided for Track 3. For each track, 800 training images,

100 validation images, and 100 test images were given. In

this article, we only use 10 images (801 to 810).

4.2. Training and Alignment

Training procedures are described in Section 3.1. Mini

batch size was 16 and patch size was 48×48. For individual

module training, 300 epochs were run with learning rates of

10
−4 for 1 to 100 epochs and 10

−5 for 101 to 300 epochs.

It took about 3 days to run 300 epochs for each module

network. Re-training learning rate was set to 10
−5 for 100

epochs.

We found that given input images of Tracks 2 and 3 and

×4 bicubic downsampled ground truth images are not well

aligned. In principle, these misalignment should be taken

care of by deep neural networks during training. However,

aligning input and target images as much as possible helped

to achieve improved performance. Given input images of

Tracks 2 / 3 and ×4 bicubic downsampled ground truth im-

ages were aligned using image intensity based image regis-

tration tool in MATLAB with translation motion only. Bicu-

bic interpolation was used for sub-pixel accuracy.

4.3. DIV2K Validation Set Results

Table 1 shows performance results for DIV2K valida-

tion set, comparing various SR methods such as bicubic in-
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Table 1: PSNR (dB) results of different methods for DIV2K

validation data set: SRCNN [5], VDSR [10], EDSR [15],

and our proposed EMBSR.

Bicubic SRCNN VDSR EDSR EMBSR

×2 31.01 33.05 33.66 35.12 35.87

×4 26.66 27.70 28.17 29.38 29.89

×8 24.51 - - 26.00 26.22

Table 2: Performance comparison between architectures on

the DIV2K validation set (PSNR in dB).

DnCNN [21] DnResNet
DnCNN [21]

(aligned)

DnResNet

(aligned)

21.005 25.359 29.439 30.281

terpolation, SRCNN [5], VDSR [10], EDSR [15] and our

proposed EMBSR. Our EDSR-PP based EMBSR method

yielded improved PSNR results for SR problems with dif-

ferent scales (×2, ×4, and ×8) over other methods includ-

ing state-of-the-art EDSR method. Note that EMBSR is

equivalent to EDSR-PP for ×2. Thus, EDSR-PP outper-

formed EDSR by 0.75 dB for ×2 and this result demon-

strated that our proposed SR module, EDSR-PP, yielded

state-of-the-art SR performance.

Table 2 showed that our proposed DnResNet out-

performed current state-of-the-art denoising / deblurring

method, DnCNN [21], with both misaligned and aligned

data set. It seems that aligning given input and target im-

ages was critical to achieve high performance in denoising

and deblurring. Trained EDSR-PP modules and DnResNet

modules can be used to tackle multiple SR problems in the

multiple tracks of NTIRE 2018 SR challenge.

4.4. Results of NTIRE 2018 SR Challenge

We have submitted enhanced images of DIV2K test data

set to NTIRE 2018 SR challenge, Tracks 1, 2, and 3 [18].

Table 3 shows PSNR, SSIM and run time results for the

Table 3: Results of NTIRE 2018 SR challenge, Track 1, ×8

bicubic downsampling (PSNR in dB).

Method PSNR SSIM Run Time

1st method 25.455 0.7088 50

2nd method 25.433 0.7067 20

3rd method 25.428 0.7055 6.75

4th method 25.415 0.7068 11.65

5th method 25.360 0.7031 7.31

6th method 25.356 0.7037 6.99

7th method 25.347 0.7023 5.03

8th method 25.338 0.7037 14.52

Ours 25.331 0.7026 2.52

Table 4: Results of NTIRE 2018 SR challenge, Track 2, ×4

unknown downsampling with mild blur and noise (PSNR in

dB).

Method PSNR SSIM

1st method 24.238 0.6186

Ours 24.106 0.6124

3rd method 24.028 0.6108

Table 5: Results of NTIRE 2018 SR challenge, Track 3,

×4 unknown downsampling with difficult blur and noise

(PSNR in dB).

Method PSNR SSIM

1st method 22.887 0.5580

2nd method 22.690 0.5458

Ours 22.569 0.5420

top nine teams including our team (BMIPL UNIST) using

our proposed EMBSR method. Our team won the ninth

place out of 24 teams with PSNR 25.331, SSIM 0.7026,

and run time 2.52 sec. Note that PSNR difference between

the 1st place and ours was 0.124 dB and SSIM difference

was 0.0062, but we achieved these results with the fastest

run time among all top nine teams. Figure 7 shows quali-

tative results for bicubic interpolation, EDSR, and our EM-

BSR. Both EDSR and EMBSR yielded similarly good re-

sults, but EMBSR yielded higher PSNR than EDSR with

slightly sharper images for some examples (see 0820 × 8

from DIV2K results).

Our proposed EMBSR methods achieved excellent per-

formance in Tracks 2 and 3. Table 4 shows PSNR and

SSIM results for the top three teams including our team

(BMIPL UNIST) for Track 2, unknown ×4 downsampling

with image degradation due to mild blur and noise. Our

team won the 2nd place out of 18 teams with PSNR 24.106

and SSIM 0.6124 in Track 2. Figure 8 shows qualitative

results for bicubic interpolation, EDSR, and our EMBSR.

Our EMBSR yielded significantly better image quality than

EDSR quantitatively (Table 4) and qualitatively (Figure 8).

Table 5 shows PSNR and SSIM results for the top three

teams including our team (BMIPL UNIST) for Track 3, un-

known ×4 downsampling with image degradation due to

difficult blur and noise. Our team won the 3rd place out

of 18 teams with PSNR 22.569 and SSIM 0.5420 in Track

3. Figure 9 shows qualitative results for bicubic interpola-

tion, EDSR, and our EMBSR. EDSR does not seem to deal

with multiple problems (SR, denoising, deblurring) well

while our EMBSR efficiently tacked SR problem with mul-

tiple sources of image degradations. It seems that modular

approach allows to use appropriate networks for different

problems for improved performance.
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0812 ×8 from DIV2K

HR

(PSNR)

EDSR[15]

(24.32dB)

Bicubic

(20.81dB)

EMBSR

(24.65dB)

0820 ×8 from DIV2K

HR

(PSNR)

EDSR[15]

(20.68dB)

Bicubic

(12.46dB)

EMBSR

(21.14dB)

Figure 7: Results of Track 1 in NTIRE 2018 SR challenge (bicubic downsampling ×8). Our EMBSR yielded better PSNR

and slightly sharper images than EDSR.

0805×4m from DIV2K

HR

(PSNR)

EDSR[15]

(18.91dB)

Bicubic

(19.16dB)

EMBSR

(23.33dB)

0813×4m from DIV2K

HR

(PSNR)

EDSR[15]

(20.41dB)

Bicubic

(20.71dB)

EMBSR

(26.24dB)

0802×4m from DIV2K

HR

(PSNR)

EDSR[15]

(25.94dB)

Bicubic

(26.68dB)

EMBSR

(28.10dB)

0811×4m from DIV2K

HR

(PSNR)

EDSR[15]

(24.23dB)

Bicubic

(24.43dB)

EMBSR

(25.33dB)

Figure 8: Results of Track 2 in NTIRE 2018 SR challenge (unknown downsampling ×4 with mild blur and noise). Our

EMBSR yielded superior PSNR and image quality to EDSR and efficiently tacked SR problem with mild image degradation.
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0816×4d from DIV2K

HR

(PSNR)

EDSR[15]

(19.58dB)

Bicubic

(19.71dB)

EMBSR

(24.77dB)

0818×4d from DIV2K

HR

(PSNR)

EDSR[15]

(17.07dB)

Bicubic

(17.28dB)

EMBSR

(21.05dB)

0819×4d from DIV2K

HR

(PSNR)

EDSR[15]

(18.60dB)

Bicubic

(18.80dB)

EMBSR

(20.90dB)

0815×4d from DIV2K

HR

(PSNR)

EDSR[15]

(21.09dB)

Bicubic

(21.22dB)

EMBSR

(23.75dB)

Figure 9: Results of Track 3 in NTIRE 2018 SR challenge (unknown downsampling ×4 with mild blur and noise). Our

EMBSR yielded superior PSNR and image quality to EDSR. EDSR does not seem to deal with multiple problems (SR,

denoising, deblurring) well while our EMBSR efficiently tacked SR problem with multiple sources of image degradation.

5. Conclusion

We proposed EMBSR using modular approaches with

EDSR-PP for SR and DnResNet for denoising / deblur-

ring. Modular approach allowed us to train our networks

efficiently for multiple SR problems by recycling trained

networks, to use modular ensemble for improved perfor-

mance, and to deal with multiple sources of image degrada-

tion efficiently. We also proposed EDSR-PP, an improved

version of previous ESDR by incorporating pyramid pool-

ing so that global as well as local context information can

be utilized. Lastly, we proposed a novel denoising / de-

blurring residual convolutional network (DnResNet) using

our residual blocks based on DnCNN. The effectiveness of

our proposed methods for multiple SR problems with mixed

image degradation sources was demonstrated with NTIRE

2018 SR challenge by winning the 2nd place of Track 2, the

3rd place of Track 3, and the ninth place of Track 1 with the

fastest run time.
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