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Abstract

Hyperspectral recovery from a single RGB image has

seen a great improvement with the development of deep

convolutional neural networks (CNNs). In this paper, we

propose two advanced CNNs for the hyperspectral recon-

struction task, collectively called HSCNN+. We first de-

velop a deep residual network named HSCNN-R, which

comprises a number of residual blocks. The superior per-

formance of this model comes from the modern architec-

ture and optimization by removing the hand-crafted upsam-

pling in HSCNN. Based on the promising results of HSCNN-

R, we propose another distinct architecture that replaces

the residual block by the dense block with a novel fusion

scheme, leading to a new network named HSCNN-D. This

model substantially deepens the network structure for a

more accurate solution. Experimental results demonstrate

that our proposed models significantly advance the state-

of-the-art. In the NTIRE 2018 Spectral Reconstruction

Challenge, our entries rank the 1st (HSCNN-D) and 2nd

(HSCNN-R) places on both the “Clean” and “Real World”

tracks. (Codes are available at [clean-r], [realworld-r],

[clean-d], and [realworld-d].)

1. Introduction

Hyperspectral imaging aims to obtain the spectrum re-

flected or emitted from a scene or an object. The spectral

characteristic has been proven useful in many fields, rang-

ing from remote sensing to medical diagnosis and agricul-

ture [16, 17, 18]. In recent years, the hyperspectral im-

age begins to be applied to various computer vision tasks,

such as image segmentation, face recognition, and object

tracking [31, 28, 33]. Thus hyperspectral imaging has re-

ceived an increasing amount of research attention and ef-

forts [34, 35, 15, 38, 4, 39].

However, since conventional acquisition of high qual-

ity hyperspectral images need to capture three-dimensional

signals with a two-dimensional sensor, trade-offs between

spectral and spatial/temporal resolutions are inevitable [6,
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14], which severely limits the application scope of hyper-

spectral images. To overcome these difficulties and enable

hyperspectral image acquisition in dynamic conditions, a

number of solutions based on compressed sensing are pro-

posed by encoding the spectral information, which trans-

fer the cost from capture to computational reconstruction

[26, 34, 35, 36]. Still, the hardware systems and reconstruc-

tion algorithms are of high complexity. As an alternative

solution, it would be great if we can obtain the hyperspec-

tral image through a ubiquitous RGB camera. This is not

only convenient to implement but also affordable.

Hyperspectral recovery from RGB images is a severely

ill-posed problem, since much information is lost after in-

tegrating the hyperspectral radiance into RGB values. Ex-

isting methods can be roughly divided into two categories.

The first one is to design a specific system based on the ordi-

nary RGB cameras. In order to reduce the lost information

and better recover the hyperspectral image, the approaches

of exploiting time-multiplexed illumination source, multi-

ple color cameras, and a tube of faced reflectors are present

to complete the reconstruction [15, 38, 30]. Nevertheless,

such kind of methods rely on rigorous environment condi-

tions and/or extra equipments.

As there is a high correlation between RGB values and

their corresponding hyperspectral radiance [9], the second

category of methods manage to exploit this correlation from

a large number of training data and directly model the map-

ping between RGB and hyperspectral images. Since this

mapping is highly non-linear, learning-based methods are

generally used to model it [4, 1, 2]. Recently, with the suc-

cess of deep learning in many computer vision tasks, CNN-

based methods are also introduced to this task [13, 39, 3].

Among these methods, Xiong et al. [39] proposed a

unified deep learning framework, i.e., HSCNN, for hyper-

spectral recovery from both RGB and compressive mea-

surements, which achieved state-of-the-art results on the

ICVL dataset [4]. However, the upsampling operation in

HSCNN requires the knowledge of an explicit spectral re-

sponse function that corresponds to the integration of hy-

perspectral radiance to RGB values. It thus restricts the

applicability of HSCNN when the spectral response func-

tion is unknown or difficult to obtain in practice. What is
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more, HSCNN failed to achieve an improved performance

with the growth of the network depth, which is not satisfy-

ing when more accurate solutions are pursued.

To solve these problems, we first investigate the effect of

the hand-crafted upsampling in HSCNN and replace it by

a simple convolution layer, which thus relieves the require-

ment of the spectral response function in advance. More-

over, we replace the plain convolution layers in HSCNN by

modern residual blocks to further boost its performance, de-

riving the HSCNN-R model. Based on the promising results

of HSCNN-R, we propose another distinct architecture that

replaces the residual block by the dense block with a novel

fusion scheme, deriving the HSCNN-D model. Compared

with HSCNN-R, this new model substantially deepens the

network structure for a more accurate solution, at the cost

of moderately increased computational complexity.

Our contributions can be summarized as follows:

• We develop the HSCNN-R network, which optimizes

the architecture of HSCNN by removing the hand-

crafted upsampling and utilizing residual blocks.

• We further propose the HSCNN-D network based

on a densely-connected structure with a novel fusion

scheme, which deepens the network structure and pro-

vides a more accurate solution.

• State-of-the-art results on hyperspectral recovery from

RGB images, which rank the 1st and 2nd places

on both the “Clean” and “Real World” tracks in the

NTIRE 2018 Spectral Reconstruction Challenge [5].

2. Related Work

Hyperspectral image acquisition. Conventional imag-

ing spectrometers usually operate in the scanning manner,

which simply trades the temporal resolution for the spectral

resolution [7]. To overcome this trade-off and enable hy-

perspectral acquisition for dynamic scenes, three represen-

tative techniques relying on computational reconstruction

were proposed in the past decades. They are computed to-

mographic imaging spectrometry (CTIS) [11], prism-mask

spectral video imaging system (PMVIS) [8], and coded

aperture snapshot spectral imagers (CASSI) [34, 37]. Still,

these systems are of high complexity in terms of both hard-

ware implementation and reconstruction algorithm.

RGB to hyperspectral conversion is a relatively low cost

approach to acquire hyperspectral images. However, much

information is lost during the process of spectral integra-

tion, which makes the problem severely ill-posed. In this

context, Goel et al. [15] used a conventional RGB cam-

era to capture a scene illuminated by the time-multiplexed

light source, and the scene reflectance is estimated across

a number of wavelengths using a computational approach.

Instead of using active illumination, Oh et al. [38] proposed

a framework for reconstructing hyperspectral images by us-

ing multiple consumer-level digital cameras, where the hy-

perspectral image is reconstructed from different RGB mea-

surements generated by the cameras with different spec-

tral sensitivities. Takatani et al. [30] proposed a low cost

method by augmenting a conventional camera with a tube

of reflectors, yet it remains a trade-off between the spatial

and spectral resolution.

Compared with the above methods that require rigor-

ous environment conditions and/or extra equipments, hy-

perspectral recovery directly from a single RGB image is

more favorable. To this end, Arad et al. [4] leveraged the

hyperspectral prior from a large number of training images

to create a sparse dictionary, which facilitates the subse-

quent hyperspectral reconstruction. Later, Aeschbacher et

al. [1] introduced A+ [32] from super-resolution to further

improve Arad’s method. Alternatively, Akhtar and Mian [2]

replaced the dictionary learning with Gaussian processes

and utilized clustering in data processing. Leveraging the

powerful capability of deep neural networks, Galliani et al.

[13] and Xiong et al. [39] introduced CNNs from the se-

mantic segmentation and super-resolution to this task and

achieved promising results. On the other hand, Alvarez-

Gila et al. [3] exploited GAN to learn a generative model

of the joint spectral-spatial distribution of the natural hy-

perspectral image. Compared with the above methods, our

proposed models offer more efficient and accurate solutions

for improving the fidelity of hyperspectral reconstruction.

Convolutional neural network. CNNs play an impor-

tant role in the current computer vision society, where an ef-

ficient and powerful framework can be generalized in many

fields. He et al. [20] presented a deep residual network

for image classification. The architecture of residual rep-

resentation eases the training of deep networks, which has

also made a great success in single image super-resolution

[25]. To further utilize the information flow between lay-

ers in the network, Huang et al. [21] proposed a densely-

connected convolutional network which connects all layers

directly with each other. Our proposed HSCNN-R intro-

duces the residual block into hyperspectral reconstruction,

which shows an excellent performance on this task. To bet-

ter exploit the correlation between different spectral bands,

we further propose HSCNN-D by adopting the dense struc-

ture with a novel fusion scheme, which produces even more

accurate results.

3. Our Proposed Method

3.1. Overview of HSCNN

HSCNN is one of the first CNN-based methods for hy-

perspectral recovery from a single RGB image. It intro-

duces the VDSR network [22] originally used for single

image super-resolution into hyperspectral reconstruction.

Similar to the bicubic interpolation generally adopted in
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Figure 1. Network structures of our proposed models and the baseline HSCNN. The “C” with a rectangular block denotes the convolution,

and the following “1” and “3” denote the kernel size (i.e., 1× 1 and 3× 3 respectively). The “R” represents the ReLU activation function.

And the “C” with a circular block denotes the concatenation.

super-resolution, HSCNN first upsamples the RGB input

to a hyperspectral image using a spectral interpolation al-

gorithm [29]. This spectrally upsampled image has the

same number of bands as the expected hyperspectral output.

Then, the network takes the spectrally upsampled image as

input and predicts the missing details (residuals) by learning

a stack of convolutional layers. The structure of HSCNN is

depicted in Fig. 1(a).

However, since the spectral upsampling requires the

knowledge of the spectral response function, HSCNN can-

not be applied in the situation when the spectral response

function is unknown. Actually, the explicit upsampling

is suboptimal and can be replaced by a simple convolu-

tion layer. Also, according to the experimental results of

HSCNN, it fails to achieve an improved performance with

the growth of the network depth, which is not satisfying

when more accurate solutions are pursued. To solve these

problems, we propose several new models that greatly im-

prove the capability of HSCNN.

3.2. HSCNN­u

To investigate the effect of the upsampling operation

in HSCNN, we design an intermediate network, called

HSCNN-u, which learns an end-to-end mapping from the

pairs of RGB/hyperspectral images. HSCNN-u replaces the

spectral upsampling operation by a simple convolutional

layer with filter size of 1× 1 and without bias. In this way,

the convolution layer can be regraded as a learned spectral

upsampling, since the upsampling method used in HSCNN

is also linear. The following structure of HSCNN-u is the

same as HSCNN. As demonstrated by the experimental re-

sults in Sec. 4.1, the spectral interpolation algorithm used

in HSCNN is suboptimal. Embedding the interpolation into

the network in the form of convolution not only achieves

a slightly better performance but also relieves the require-

ment of the spectral response function in advance. The lat-

ter greatly promotes the applicability of HSCNN, since the

spectral response function varies for different camera mod-

els (even under different configurations for the same camera

model) and is not always known in practice. Moreover, for

realworld RGB images that are often in the compressed for-

mats such as JPEG, the actual spectral response function

may be even more complicated and difficult to derive. In

this case, HSCNN-u still works while HSCNN cannot.

3.3. HSCNN­R

While HSCNN-u gets rid of the explicit upsampling op-

eration, it still inherits the network structure of HSCNN.

To boost the performance of hyperspectral reconstruction,

we propose the HSCNN-R model that replaces the plain

convolutional architecture in HSCNN by the modern resid-

ual block [20] while remaining the global residual leanring.

The residual block is defined as

y = F (x,Wl) + x, (1)

where x and y are the input and output of the block, Wl

represents the weight matrix of the l-th block, and F (·) de-

notes the residual mapping to be learned which comprises

two convolutional and one ReLU layers [27]. The addition

is element-wise and performed by a shortcut connection.

The structure of HSCNN-R is depicted in Fig. 1(b),

where the filter size of convolution is uniformly set to 3×3.

Similarly to HSCNN-u, it also replaces the upsampling op-

eration by a convolutional layer. As can be seen in Sec. 4.1,

HSCNN-R achieves a significantly improved performance

under the same network depth as HSCNN, which proves

the superiority of the new architecture. On the other hand,

while simply increasing the filter number can slightly im-

prove the performance, the result will become worse when

the network depth exceed 40. This should be caused by the

vanishing of gradient during the back-propagation.

Loss function. CNN-based methods for image restora-

tion usually adopt the mean square error (MSE) as the loss

function [12, 22, 10] during training, which has also been
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applied to the hyperspectral reconstruction task [4, 39].

However, for hyperspectral images, the luminance level

usually varies significantly among different bands, and the

same deviation in the pixel value may have different influ-

ence to the bands with different luminance levels. It thus

makes the MSE loss generate a bias towards the bands with

high luminance levels, which is not desired because each

band matters equally. To address this issue, we adopt the

mean relative absolute error (MRAE) as the new loss func-

tion for training the HSCNN-R model, which brings notable

performance gain as demonstrated in Sec. 4.1.

Training and testing. We train the HSCNN-R model

using RGB patches of size 50× 50 and their corresponding

hyperspectral cubes. Batch size is set to 64 and the opti-

mizer is Adam [23] by setting β1 = 0.9, β2 = 0.999, and

ǫ = 10−8. The initial learning rate is 2×10−4 with the poly-

nomial function as the decay policy. We set power = 1.5
empirically for training efficiently, and we stop training at

1000 epochs. The algorithm proposed in [19] is adopted

for initializing the weights in each convolutional layer. We

implement the proposed network with the PyTorch frame-

work and train it on a 1080Ti GPU. It takes about 60 hours

to train a typical HSCNN-R model with 16 residual blocks

(equivalent to a depth of 34) and each with a filter number

of 64. During testing, we feed a full-size RGB image (with

a typical resolution of 1300 × 1392) into the model to ob-

tain a hyperspectral image with 31 bands at the same spatial

resolution. Hence, at least 12G GPU memory is required

for inference.

3.4. HSCNN­D

Besides the residual connection described above, we also

investigate the densely-connected structure as an alterna-

tive solution, i.e., the HSCNN-D model, which is shown

in Fig. 1(c). To the best of our knowledge, it is the first

time to apply the dense structure to the hyperspectral recon-

struction task. The dense connection enables the l-th layer

to receive the features from all preceding layers (i.e., f0, ...,

fl−1) as input, which can be represented as

fl = gl([f0, f1, ..., fl−1]), (2)

where gl(·) denotes the l-th convolutional layer and

[f0, f1, ..., fl−1] stands for the concatenation of the features

output from preceding layers. The dense structure can sub-

stantially alleviate the vanishing of gradient during train-

ing. It is demonstrated in experiments that the propagation

issue brought by the increasing depth of the network can

thus be addressed. In other words, the HSCNN-D model

overcomes the limitation of HSCNN and HSCNN-R. With

a much deeper network, HSCNN-D can offer higher recon-

struction fidelity provided sufficient computing resources.

In addition to the inherent advantage of convergence, the

dense structure has another characteristic suitable for hyper-
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Table 1. A typical setting of hyper-parameters for the HSCNN-D

model. C(·) stands for the convolution with (kernel size × kernel

size × filter number). [·]× and {·}× stand for concatenation op-

erators with certain blocks (×1 is omitted). And the symbol “/”

denotes the parallel operation for path-widening fusion.

spectral reconstruction. Specifically, given a three-channel

(i.e., RGB) image as input, we aim to reconstruct a hyper-

spectral image with multi-channels (typically tens of bands

in practice) as output. The main gap between the input and

output lies in the decrease of channels. The concatenation

operator adopted in each dense block explicitly increases

the channel number which has the potential to learn a more

effective model for this inverse problem.

Path-widening fusion. Inspired by [40], we further pro-

pose a path-widening fusion based on the dense structure,

as shown in Fig. 1(c). Intuitively, the operation of fusion

is similar to the group convolution [24]. The difference is

that we expand the number of forward paths to enlarge the

ensembling size for higher capacity. With the concatena-

tion, we aggregate both the fused and the preceding features

using a 1 × 1 convolution in the dense block. Experimen-

tal results demonstrate that our proposed fusion scheme can

further promote the performance of the HSCNN-D model

(as detailed in Sec. 4.1).

Training and testing. We use TensorFlow and the Adam

[23] solver for optimization with the momentum factor set

as 0.9 and the coefficient of weight decay (L2-Norm) as

0.0001. The learning rate is decayed exponentially from

0.001 to 0.0001. We stop training when no notable decay

of training loss is observed. The algorithm proposed in [19]

is adopted for initializing the weights except the last layer.

Specifically, the last layer for reconstruction is initialized

by the random weights drawn from Gaussian distributions

with σ = 0.001. The biases in each convolutional layer

are initialized to zero. The loss function, patch size, and

batch size are set the same as in HSCNN-R. It takes about

38 hours on 8 Tesla M40 GPUs to train a typical HSCNN-D

model with 38 dense blocks (equivalent to a depth of 160)

and each with the filter numbers listed in Table 1. During

testing, a general CPU along with at least 32G memory is

required for inference.

4. Experimental Results

The experiments are conducted strictly following the

instructions of the NTIRE 2018 Spectral Reconstruction

Challenge [5]. The given training dataset in the challenge
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Data Set
Sparse Coding [4] HSCNN [39] HSCNN-u HSCNN-R HSCNN-D

MRAE / RMSE MRAE / RMSE MRAE / RMSE MRAE / RMSE MRAE / RMSE

Clean 0.0816 / 49.217 0.0190 / 17.006 0.0186 / 16.653 0.0145 / 13.911 0.0135 / 13.128

Real World - / - - / - 0.0342 / 24.987 0.0306 / 23.457 0.0293 / 22.935

Running Time (s) 112.93 (CPU) 0.51 (GPU) 0.43 (GPU) 0.96 (GPU) 77.28 (CPU)

Table 2. Comparison between our proposed methods and previous methods. The official validation set of NTIRE 2018 Spectral Recon-

struction Challenge is adopted for evaluation. The filter number of each layer in HSCNN-R is 64 and the depth is 34. For HSCNN-D, the

filter numbers of each layer are listed in Table 1 and the depth is 160. Red color indicates the best performance and blue color indicates the

second best one. We calculate the average running time using an i7-6850K CPU or a 1080Ti GPU.

10 20 40 80 160

Depth

0.014

0.016

0.018

0.02

M
R

A
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HSCNN
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HSCNN-D

Figure 2. The influence of depth on the network performance.

contains 256 pairs of images (203 pairs in “Train1” and 53

pairs in “Train2”). In the development phase, we reserve 10

pairs of images from “Train2” as our own validation set for

parameter tuning and adopt the others as the training set. In

the test phase, we use all 256 pairs of images for training

and the official validation set (5 pairs, hyperspectral images

available in the test phase). No additional preprocessing or

postprocessing is needed for both the “Clean” track and the

“Real World” track, which demonstrates the robustness and

generalizability of our proposed models.

Let I
(i)
R and I

(i)
G denote the ith pixel of the reconstructed

and groundtruth hyperspectral images respectively, and n is

the total number of pixels. Following the scoring script pro-

vide by the challenge, we adopt the MRAE and root mean

square error (RMSE) as the evaluation metrics

MRAE =
1

n

n
∑

i=1

(|I
(i)
R − I

(i)
G |/I

(i)
G ), (3)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(I
(i)
R − I

(i)
G )2. (4)

4.1. Ablation Experiments

Compared with the prior art HSCNN [39], our proposed

models integrate the concepts of residual block and dense

block respectively to derive two distinct solutions. Exten-

sive ablation experiments are conducted on the official val-

idation set to evaluate them respectively.

Upsampling and loss. As described in Sec. 3.2, we con-

duct an experiment to verify that replacing the hand-crafted

upsampling by a simple convolutional layer contributes to

a even better performance. As listed in Table 2, HSCNN-u

achieves 2.1% decrease in MRAE compared with HSCNN

for the “Clean” track. More importantly, it makes HSCNN-

u capable of dealing with the images from the “Real World”

track, where the spectral response function is unknown.

In terms of the loss function discussed in Sec. 3.3, the

HSCNN-u with MRAE loss achieves 12.9% decrease com-

pared to the one with MSE loss, which demonstrates the

superiority of using MRAE loss.

Fusion scheme for HSCNN-D. As described in Sec. 3.4,

we conduct another experiment to investigate the contri-

bution of our proposed fusion scheme in the HSCNN-D

model. Compared with a dense network without fusion, our

HSCNN-D brings 8.7% decrease in MRAE for the “Clean”

track. Note that, we keep the parameter number of the

two networks the same for a fair comparison. Experimen-

tal results demonstrate that a superior performance can be

achieved with our proposed fusion scheme.

Network depth and width. The depth and width (i.e.,

filter number) are two important hyper-parameters in the

neural network, which jointly determine its basic capacity.

However, a deeper or wider network does not always yield

a better performance. To this end, we conduct a compre-

hensive experiment to investigate the relationship between

the network performance and these two hyper-parameters.

Other hyper-parameters such as the decay policy of learn-

ing rate and the initialization method are kept the same to

eliminate their influence.

Fig. 2 shows the influence of depth on the network per-

formance. Unsurprisingly, the MRAE of HSCNN [39] in-

creases quickly with the growth of depth due to the conver-

gence problem brought by the plainly-connected structure.

HSCNN-R behaves better under the same depth as HSCNN

but its performance also degrades once the depth exceeds

40. In contrast, HSCNN-D benefits from the increasing

depth. Specifically, the network with a depth of 160 has

6.7% decrease in MRAE than the one with a depth of 40. In

terms of the filter number, more filters contributes to a bet-
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Model
HSCNN-R HSCNN-D

Clean / RealW. Clean / RealW.

Single model 0.0145 / 0.0306 0.0135 / 0.0293

+Self-ensemble 0.0142 / 0.0303 0.0134 / 0.0291

+Model-ensemble 0.0134 / 0.0297 0.0131 / 0.0288

Table 3. Quantitative results of ensemble methods. The baseline

of ensemble is the single model specified in Table 2. The MRAE

metric is used on the official validation set of the challenge.

Method
Track1: Clean Track2: Real World

MRAE RMSE MRAE RMSE

HSCNN-D 0.0138 14.452 0.0310 24.067

HSCNN-R 0.0139 13.987 0.0321 25.014

3rd method 0.0152 16.192 0.0333 27.104

4th method 0.0153 16.076 0.0335 26.450

5th method 0.0165 16.923 0.0345 26.977

Table 4. Comparison between our proposed models and three com-

petitors. The final test set of NTIRE 2018 Spectral Reconstruction

Challenge is adopted for evaluation. Red color indicates the best

performance and blue color indicates the second best one.

ter performance. For instance, the HSCNN-R model with

256 filters in each layer has about 4% decrease in MRAE

than the one with 64 filters.

Ensemble methods. We adopt two types of ensemble

to further enhance the performance. The first one is called

self-ensemble. We firstly flip the input image left/right and

feed it into the network to obtain a mirrored output. Then

we average the mirrored output and the original output into

the target result. The second one is called model-ensemble,

whose result is the linear combination of three models with

different depths, filter numbers, or initializations. Specifi-

cally, two additional models are trained for model-ensemble

of HSCNN-R (256 filters in each layer and a depth of 20/30)

besides the one specified in Table 2. For HSCNN-D, two

additional models with a depth of 160/240 are trained for

model-ensemble. Experimental results listed in Table 3

demonstrate the performance improvement achieved using

these two ensemble methods.

4.2. Comparison with State­of­the­Art Methods

Comparison with existing models. We adopt two rep-

resentative models for comparison, i.e., sparse coding [4]

and HSCNN [39], in the “Clean” track. For the “Real

World” track, HSCNN does not work so we use HSCNN-u

for comparison instead. All these models are trained us-

ing the whole training set of the challenge, and the official

validation set is adopted for evaluation. The quantitative re-

sults are listed in Table 2. As can be seen, our proposed

models significantly outperform previous models. Specifi-

cally, HSCNN-R achieves 22.0% decrease in MRAE com-

pared with HSCNN. HSCNN-D achieves the best perfor-

mance, which further brings 6.9% decrease in MRAE than

HSCNN-R.

Comparison with competitors in the challenge. Our

proposed models rank the 1st and 2nd places in the

NTIRE 2018 Spectral Reconstruction Challenge for both

the “Clean” and “Real World” tracks. We list the results

from the top 5 methods on the final test set in Table 4.

Compared with the 3rd method, HSCNN-D achieves 9.2%

decrease in MRAE and HSCNN-R is 8.6% in the “Clean”

track. In the “Real World” track, the improvement over the

3rd method in MRAE is 6.9% for HSCNN-D and 3.6% for

HSCNN-R respectively. In terms of the RMSE metric, our

proposed models also give top performance, and HSCNN-R

even outperforms HSCNN-D in the “Clean” track.

Visual and spectral signature comparison. To evalu-

ate the perceptual quality of hyperspectral reconstruction,

we show two examples of error maps in Fig. 3 and Fig. 4

for the “Clean” and “Real World” tracks. As can be seen,

the errors of HSCNN-R and HSCNN-D are notably smaller

than the baseline sparse coding and HSCNN in the “Clean”

track and also smaller than HSCNN-u in the “Real World”

track. For a more intuitive evaluation, the spectral signa-

tures of four selected spatial points from the above exam-

ples are shown in Fig. 5. Compared with sparse coding,

the reconstructed results from CNNs are much closer to

the groundtruth. Moreover, HSCNN-R and HSCNN-D give

higher reconstruction fidelity compared with HSCNN and

HSCNN-u.

Running time. In addition to performance, we also eval-

uate the computational complexity of each model. Note

that, we conduct the inference of HSCNN-D using a general

CPU, due to the limitation of GPU memory. For the sparse

coding method, we use the provided MATLAB scripts for

evaluation. As listed in Table 2, HSCNN-D costs about

77 seconds per image (CPU time) to achieve the best per-

formance, while HSCNN-R only takes 0.96 seconds (GPU

time) to achieve a competitive performance. It is thus a

trade-off of performance and speed between the two mod-

els. According to the requirement in practical applications,

HSCNN-D and HSCNN-R provide alternative solutions ei-

ther in pursuit of performance or speed.

5. Conclusion

In this paper, we present two advanced CNN-based mod-

els for hyperspectral recovery from a single RGB image.

Based on the pioneer work of HSCNN, we first derive

the HSCNN-R model by introducing the modern resid-

ual block. To enable hyperspectral reconstruction when

the spectral response function is unknown, we replace

the hand-crafted upsampling operation by a convolutional

layer. Based on the promising results of HSCNN-R, we fur-

ther propose the HSCNN-D model which replaces the resid-
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Figure 3. Visual comparison of five selected bands for hyperspectral recovery from “Clean” RGB images.

ual block by the dense block with a novel fusion scheme.

It substantially deepens the network structure to achieve a

more accurate solution.
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