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Abstract

Recovering high-dimensional spectral images taken with

spectrally low-dimensional camera systems, in the extreme
case RGB-images, has been of great interest for a variety
of applications. An accurate spectral reconstruction is typ-
ically required to either achieve a better color accuracy or
to improve object recognition/classification tasks. Almost
all published work to date aims at performing a mapping
from individual camera signals towards the corresponding
spectrum. However, it might be beneficial to consider not
only single pixels, but also contextual information.
Here, we propose a convolutional neural network architec-
ture that learns a mapping from RGB- to spectral images.
We trained the network on the largest hyper-spectral data
set available to date [3 ] and analyzed the influence of differ-
ent error metrics as loss functions. An objective evaluation
of the performance in comparison to state of the art spec-
tral reconstruction techniques is given by participating in
the NTIRE 2018 challenge on spectral reconstruction [4].

1. Introduction

The task of recovering the spectral image from a low di-
mensional (e.g. RGB) spectral measurement has been of
great interest for a variety of applications for a long time. In
the 1990ies, several groups developed multi-spectral imag-
ing [7, 8, 14]. One of the major questions at the time was
how a multitude of images recorded with narrowband or
even distinct broadband spectral filters can be used to re-
cover the spectral reflection functions of individual pixels
in the most accurate way.

Having knowledge about the reflection functions brings sig-
nificant advantages, especially for color measurement and
object recognition/classification. Regarding colorimetry,
color in the context of human perception can not only be
measured more accurately, but it also allows for an exact
calculation of colors in conjunction with any light source.
Thus, the dependency on the light source being present

when the picture was taken is lifted. On the other hand,
the additional spectral information may be used to identify
previously indistinguishable objects.

Measuring the actual spectral object reflectances typi-
cally requires a controlled environment, even when using
multi-spectral imaging. This is why most of the avail-
able data sets of spectral images, especially those contain-
ing outdoor images, do not provide the spectral object re-
flectances, but the combination of object reflectance and il-
lumination. Separating such spectral images into spectral
object reflectances and illumination is in general a compli-
cated task and constitutes an active field of research [17].

The technique of multi-spectral imaging is not widely
used despite its advantages. Major reasons are simply the
cost and the fact that RGB cameras are typically considered
to be sufficient for consumer end devices. Nevertheless,
multi-spectral imaging systems are established in the pro-
fessional sector, e.g. in the textile industry and in catalogue
production. Multi-spectral line scanners are also available
for professional applications which enable a high quality
color image and/or object recognition, e.g. plastic classifi-
cation in the context of recycling systems.

On the other hand, RGB-cameras are widely used and are
most certainly capable of producing visually appealing im-
ages. Although it has been established for a long time that
such imaging systems are not suited for the task of color
measurement or spectral reconstruction in general, their
performance is still of interest. For one because they are the
devices which are actually available to anybody, but also
since they are a baseline indicator multi-spectral imaging
has to outperform.

The general consensus that RGB-cameras lead to signifi-
cantly inferior spectral reconstructions is based upon mostly
hand crafted algorithms or mathematical methods which de-
scribe a mapping from individual camera signals towards a
spectrum in general. The most widely used methods are
probably the Wiener deconvolution [8] and the application
of learned basis functions [5, 13, 16]. It should be noted,
that both methods have distinct requirements. While knowl-
edge about the spectral sensitivity of the camera is essential
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Figure 1: Examplary images from the ICVL dataset [3].

for the Wiener deconvolution, basis functions need to be ac-
tively learned from training data.

Within this work, machine learning is applied to de-

scribe the mapping from camera RGB-images to spectral
images. Most importantly, a convolutional neural network
architecture is proposed (CNN) that performs this mapping
based not only on individual camera signals but also based
on local contextual information. The proposed architecture
is comparably simple, but convenient, robust to train and
highly competitive.
The evaluation is performed on the largest hyper-spectral
data base to date [3]. An analysis on the influence of three
different metrics chosen as the loss function during train-
ing is provided. As a part of the NTIRE 2018 challenge on
spectral reconstruction [4], the proposed CNN architecture
was evaluated against state-of-the art competitors.

2. Spectral Reconstruction from RGB

Although several mathematical methods have been de-
veloped and tested in the context of multi-spectral imaging
to perform spectral reconstruction, there was also a signif-
icant amount of research specifically targeting the task of
spectral reconstruction from RGB-images. For example,
Arad et al. [3] learn a dictionary based mapping which was
improved by Aeschbacher et al. [1], Jia et al. [12] combine
a non-linear dimensionality reduction of spectral data and a
subsequent manifold mapping with machine learning to per-
form the actual reconstruction and Nguyen et al. [15] use a
radial basis function network.

Still, all of these methods have in common that they per-
form a mapping based on a single RGB value. Instead, it
might be beneficial to actually consider entire regions of
RGB-values for a more sophisticated and stable mapping.
Unfortunately, it is yet unclear how to actually integrate ad-
ditional information from the neighboring pixels. Convolu-
tional neural networks (CNNs) are a promising approach,
however the lack of sufficiently sized data sets has pre-
vented their application to spectral data in the past.

This has changed since the publication of the ICVL data set,
which gave rise to first approaches based on CNNs. Gal-

liani [6] uses a modified version of the Tiramisu architec-
ture [1 1], which in turn is a modified Densenet [9]. Follow-
ing the recent trends in machine learning, an approach using
a generative adverserial network (GAN) has been proposed
by Alvarez-Gila et al. [2].

2.1. Usage of Contextual Information

The idea of calculating the spectral reconstruction
not only from individual RGB-values, but considering
entire regions of pixels instead, is certainly not new. It
is obviously advantageous in the presence of any kind of
disturbances in real world images such as measurement
noise, lens distortions, chromatic aberrations or even com-
pression artifacts. However, there might also be contextual
information available such as shading effects, which could
increase the potential reconstruction quality. One might
even think of a spectral reconstruction based on a previous
object recognition step. For example, identifying a pixel
as part of the sky could heavily limit the set of potentially
corresponding spectra.

2.2. Network Structure and Design

We use a U-Net as a starting point [18]. The choice is
motivated by the idea of combining the task of spectral re-
construction with semantic segmentation, a task the U-Net
is known for. Although we do want to take advantage of
contextual information, we believe that an actual two-step
approach consisting of object recognition and subsequent
spectral reconstruction is not yet possible. This is due to
the limited amount of images within the provided data set,
which is too small to robustly learn recognizing objects such
as cars, buildings or trees to subsequently limit the choices
for the actual spectral reconstruction. Instead, we are focus-
ing solely on the very local neighborhood.

We currently consider spectral reconstruction to be mostly
aregression task which benefits from classification. In con-
trast to pure classification tasks, the pooling layers within
the standard U-Net will most likely lead to inferior re-
sults since information is actively thrown away. This is ac-
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Figure 2: Visualization of used network architectures in case of RGB-images as input.

ceptable for classification tasks since the absolute numbers,
which are computed in the end, are only of limited interest,
whereas regression tasks actually have the goal of calculat-
ing the very precise absolute numbers. All pooling layers of
the U-Net are therefore completely removed.

Following a similiar argumentation, there is no data normal-
ization desired at any point.

One of the core ideas is to focus on local context informa-
tion to enhance the spectral reconstruction results. This is
further enforced by an input image size of 32x32 accepted
by the network.

The resulting network structure is visualized in Figure 2a.
The downsampling path of the network consists of convo-
Iutional layers having a kernel size of 3, a stride of 1 and
no zero-padding, leading to each convolution reducing the
input image size by 2 pixel. Each convolution is followed
by a ReLU activation. The combination of these convolu-
tions and a ReLU activation is visualized by blue arrows in
Figure 2. The upward side of the network consists of corre-
sponding transposed convolutions also having a kernel size
of 3. Such transposed convolutions followed by a ReL.U
activation are drawn as green arrows. Skip connections are
added everywhere but in the uppermost level and are visu-
alized as red arrows.

The very first convolution that is applied takes the image
as observed by a camera as input and outputs 32 channels.
The subsequent two convolutional layers each double the
channel count up to a final count of 128. Afterwards, the
channel count remains constant until it is reduced again in
the upward path, which is symmetric to the downward path.
An initial hyperparameter search quickly revealed that an
amount of five layers and a final filter count of 128 is ideal.
There was no gain observed in increasing the filter count or
the amount of layers any further.

The network has been implemented in PyTorch. The im-
plementation provided within [10, 19] was initially used and
modified.

2.3. Dealing with non-ideal Images

In a real world scenario, images can be expected to be

noisy and subject to different disturbances. In order to be-
come more robust against these disturbances, the network is
slightly modified.
There are exactly two modifications made. First of all, a
convolutional layer is added at the very start. It is meant to
act as a simple pre-processing step. The output of this pre-
processing is fed into the actual network and has as many
channels as the input image. A kernel size of 5 has been
found to be optimal (with a stride of 1 and a zero-pooling
of 2). As a second modification, the original amount of five
layers was increased by one to a new count of six. The
final network structure is displayed in Figure 2b. The pre-
processing step is represented by the yellow arrow.

3. Results and Discussion

In order to quantify the performance of the proposed ar-
chitecture, it has been trained and evaluated on the largest
hyper-spectral data set currently available.

3.1. Data

An extended version of the ICVL data set [3] is con-
sidered, as it was supplied during the NTIRE 2018 chal-
lenge on spectral reconstruction [4]. Next to the 203 hyper-
spectral images, which are currently publicly accessible,
there are also 53 newly collected images. The images are
not used at their full spectral resolution corresponding to
519 channels, but in a downsampled version having 31
channels ranging from 400nm to 700nm in 10nm steps.
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Some exemplary sSRGB images are shown in Figure 1.
Since the dataset has been created with a rotating hyper-
spectral line scanner, the images appear slightly distorted.
Corresponding camera images were computed for each
spectral image using available spectral sensitivity functions
of camera systems by using the formula

i =Sr; Viel, (1)

with r; being a 31-dimensional vector denoting the spec-
trum corresponding to the ¢’th pixel within the image I. The
matrix .S represents the spectral sensitivity and has q rows
and 31 columns, where ¢ denotes the spectral dimension-
ality of the camera system, e.g. ¢ = 3 in case of a RGB-
camera. The multiplication of sensitivity and spectrum for
each pixel ¢ results in the corresponding camera signal x;, a
vector of dimension gq.

It is important to stress that pixel interpolation is not con-
sidered. In reality, single chip cameras have to pay for their
increased spectral resolution with spatial resolution. The
RGGB Bayer pattern is the most prominent example which
implies that information about a channel is not available at
every pixel. In order to not be influenced by different filter
array designs, we follow the same practice as in [2, 3] and
compute all channels at every pixel.

Different RGB-cameras are considered. First of all, a cam-
era of our own is used. The respective sensitivity function
was measured using a monochromator setup. The resulting
relative sensitivity function is displayed in Figure 3.

In addition to our own simulated image pairs, we also
used the image pairs supplied during the NTIRE 2018 chal-
lenge on spectral reconstruction [4]. The challenge con-
sisted of two tracks, which were called ”Clean” and “Real
World”. While the RGB-images within the track Clean
have been computed in the same ideal way we computed
ours but with a different sensitivity, the RGB-images within
the track Real World additionally contain noise and JPEG-
compression artifacts. The data provided by the challenge
offers the possibility to serve as a benchmark test, compar-
ing our method against others.

3.2. Training Details

The entire spectral image set was split into three sub
sets each consisting of approximately the same amount of
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Figure 3: The relative spectral sensitivity function

images. For both cameras, as well as for both challenge
tracks, a network as described in Section 2.3 was trained
from scratch on each of the subsets and evaluated on the
other two. The training was performed on a GTX 1080 TI
and took roughly 3h for an individual network. The patch
size used within the training process was 32, the batch
size was 10. Each model was trained for 5 epochs using
adam optimization and, subsequently, another 5 epochs
using SGD with an initial Nesterov momentum of 0.9. All
training images were split into patches in a deterministic
way, such that neighboring patches are located next to each
other.

A very common question in machine learning is the choice
of an adequate loss function. For spectral reconstruction,
choosing the loss function is difficult as there is no gen-
erally accepted quality measure. The measure is always
task-dependent: For example, there is the well accepted
color error metric A£2000 if accurate color measurement
is desired.

The same argumentation makes it hard to quantify the

quality of a reconstruction in general. Therefore, there
will be a total of 4 metrics provided to assess the quality
of reconstruction: Goodness of fit coefficient (GFC), root
mean square error (RMSE), relative root mean square error
(RMSErel) and mean relative absolute error (MRAE).
The perceptive color error metric AE2000 is explicitly
excluded in our evaluation, since its valid computation
is unclear given the provided data. It would require an
identical illumination in all images, as well as a certain
spectrum which is known to appear as white to the human
observer. Both requirements are not given. It is possible
to compute the A F2000 metric based on some arbitrarily
chosen white reference which is simply assumed to hold for
the entire data set. However, the error metric will change,
when another spectrum within the data set is chosen as
white.

3.3. Discussion

Table 1 displays the mean results for our RGB-camera
for each fold. For all folds, the results are similar. This be-
havior is consistent for all evaluations we made.

Table 2 displays the reconstruction quality for all consid-

| RMSE | RMSErel | MRAE | GFC

Fold 1 | 15.776 | 0.02966 | 0.0153 | 0.9993
Fold2 | 15.161 | 0.02733 | 0.0152 | 0.9995
Fold3 | 15.071 | 0.02964 | 0.0151 | 0.9992

Table 1: Reconstruction quality for each fold when using
our own camera.
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Scenario | RMSE [ RMSErel | MRAE | GFC

RGB Basler [ 15336 | 0.0289 | 0.0152 [ 0.9993
Challenge Track Clean | 20.146 | 0.0382 [ 0.01704 | 0.9988
Challenge Track World | 27.557 | 0.05104 | 0.03081 | 0.9985

Table 2: The quality of reconstruction when using the network described in Section 2.2 trained on the respective image pairs
using MRAE as loss function. The displayed metrics are the mean results over all folds.

loss | RMSE | RMSErel | MRAE | GFC Network | RMSE | RMSErel | MRAE | GFC
RMSE [ 15.0693 [ 0.0263 [ 0.0165 [ 0.9996 Orig. Arch. | 27.557 | 0.05104 | 0.03081 | 0.9985
RMSErel | 15.1333 | 0.02755 | 0.0166 | 0.9995 Mod. Arch. | 26.763 | 0.04892 | 0.03002 | 0.9987
MRAE | 15.3366 | 0.0289 | 0.0152 | 0.9993

Table 3: The influence of the choice of different loss func-
tions onto the reconstruction quality.

ered scenarios, when MRAE was chosen as the loss dur-
ing the training process. The values displayed represent the
mean error metrics over all three folds. The results of our
our RGB-camera are comparable to the images provided
within the challenge. It is also notable, that the results in
the track Real World of the challenge are worse than in the
track Clean, which is expected.

In order to evaluate the influence of a different loss function
on the training, the same training as before is performed
with the important difference that each network is trained
using RMSE or RMSErel as loss.

Table 3 displays the results for our camera averaged over
all three folds. All in all, the results are comparable. Us-
ing the RMSE as loss function does lead towards better re-
sults when considering RMSE, RMSErel as well as GFC
as an evaluation metric. There is no significant difference
observable, when using RMSErel as loss instead of RMSE.
On the other hand, using MRAE as a loss function leads to
improved performance for the MRAE evaluation metric.

Next, the modified architecture described in Section 2.3
is compared against the original architecture of Section 2.2.
Table 4 displays the averaged metrics over all folds for the
respective networks, when considering the track Real World
of the challenge. An improvement in all metrics could be
achieved.

Finally, the proposed networks were used to participate
in the NTIRE 2018 challenge on spectral reconstruction [4].
For each of the two tracks, a network was retrained on
all available images using MRAE as loss function from
scratch. There was no longer a data split performed be-
forehand. In case of the track Clean, the architecture de-
scribed in Section 2.2 was employed, whereas for the track
Real World, the architecture described in Section 2.3 was

Table 4: The quality of reconstruction can be improved in a
real world scenario by using the slightly modified network
described in Section 2.3.

used. With regard to the track Clean, a final test score
of MRAE= 0.0152 (RMSE= 16.191) was achieved. In
the track Real World, a final test score of MRAE= 0.0335
(RMSE= 26.449) was achieved.

4. Conclusion

We have proposed a CNN architecture for the task of
spectral reconstruction from RGB-images. It could be
shown how the addition of a simple pre-processing layer
enhances the quality of reconstruction in a real world
scenario. Care has to be taken when choosing the loss
function during the training process. The optimal choice
is task-dependent. The proposed network architecture is
comparably simple. Therefore, it is easy to implement and
robust during the training process, while still showing a
highly competitive performance. This could be validated
by participating in the NITRE 2018 challenge on spectral
reconstruction from RGB-images [4], achieving final scores
corresponding to a top 4 ranking within both Tracks.
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