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Abstract

We consider the single image super-resolution problem

in a more general case that the low-/high-resolution pairs

and the down-sampling process are unavailable. Differ-

ent from traditional super-resolution formulation, the low-

resolution input is further degraded by noises and blur-

ring. This complicated setting makes supervised learn-

ing and accurate kernel estimation impossible. To solve

this problem, we resort to unsupervised learning without

paired data, inspired by the recent successful image-to-

image translation applications. With generative adversar-

ial networks (GAN) as the basic component, we propose

a Cycle-in-Cycle network structure to tackle the problem

within three steps. First, the noisy and blurry input is

mapped to a noise-free low-resolution space. Then the in-

termediate image is up-sampled with a pre-trained deep

model. Finally, we fine-tune the two modules in an end-to-

end manner to get the high-resolution output. Experiments

on NTIRE2018 datasets demonstrate that the proposed un-

supervised method achieves comparable results as the state-

of-the-art supervised models.

1. Introduction

Recent deep learning based super-resolution (SR) meth-

ods have achieved significant improvement either on PSNR

values [8, 12, 13, 16, 17, 25, 28, 30] or on visual qual-

ity [16, 20]. These methods require supervised learning on

high-resolution (HR) and low-resolution (LR) image pairs.

However, their common assumption that the downscaling

factor is known and the input image is noise-free hinders

them from practical usages. In real-world scenarios, the SR
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Ground Truth Bicubic EDSR [17] BM3D+EDSR CinCGAN

PSNR/SSIM 29.42/0.82 28.95/0.76 30.94/0.91 31.01/0.92

Figure 1. ×4 Super-resolution results of the proposed CinCGAN

method for “0896” (DIV2K). For comparison, the sub-figures are

cropped from results of existing algorithms. When the input is

noisy, the results of bicubic interpolation and the EDSR [17]

model both are in low quality, while CinCGAN learns to recon-

struct clean result with fine details. The BM3D+EDSR method

means using BM3D for denoising first and then using EDSR for

super-resolution.

problem often have the following properties: 1) HR datasets

are unavailable, 2) downscaling method is unknown, 3) in-

put LR images are noisy and blurry. This problem is ex-

tremely difficult if the input images suffer from different

kinds of degradation. For an easier case, in this study, we

assume that input images are degraded with the same pro-

cessing which is complex and unavailable.

Under the above circumstances, models learned from

synthetic data tend to generate similar results as traditional
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methods [13, 30] or even simple interpolation. In Fig. 1,

we show the results of bicubic interpolation and the state-

of-the-art deep learning model—EDSR [17] with a noisy

input. This is mainly due to the data bias between training

and testing images. Detailed survey and analysis of deep

learning based methods on real data can be found in [15].

As an alternative choice, blind SR [7, 19, 29] deal with

the real-world data by estimating the down-sampling kernel

from internal or external similar patches. However, when

the input is noisy, the down-sampling kernel cannot be ac-

curately estimated, and the inverse mapping results are ac-

companied by amplified noises. There are also works at-

tempting at restoring LR images with addictive Gaussian

noises [34]. But real-world noises may neither be addictive

nor follow the standard Gaussian distribution, causing noise

estimation infeasible. More generally, LR images may suf-

fer from complex noises, blurry and non-uniform down-

sampling kernels, which fail almost all existing blind SR

methods.

Inspired by the development of unsupervised learning

in image-to-image translation, such as CycleGAN [35] or

WESPE [9], we intend to investigate unsupervised strate-

gies to overcome this obstacle. In CycleGAN, images are

translated between different domains with unpaired train-

ing data. They assume that the input image is of the same

size as the output image, with only the difference on styles.

However, in SR, output images are several times larger than

the inputs, making the direct application of CycleGAN im-

possible. Further, using a bicubic-upsampled image as the

input also could not obtain satisfactory results. SR problem

is specific as it requires high quality output but not just a

different style.

After exploring several training strategies, we find an ef-

fective Cycle-in-Cycle structure, named CinCGAN, which

could achieve superior results. The whole pipeline consists

of two CycleGANs, while the second GAN covers the first

one (See Fig. 2). The first CycleGAN maps the LR image to

the clean and bicubic-downsampled LR space. This module

ensures that the LR input is fairly denoised/deblurred. We

then stack another well-trained deep model with bicubic-

downsampling assumption to up-sample the intermediate

result to the desired size. Finally, we fine-tune the whole

network using adversarial learning in an end-to-end man-

ner. We conduct experiments on the NTIRE2018 Super-

Resolution Challenge1 dataset, and show that the pro-

posed Cycle-in-Cycle structure is much stable at training

and achieves competitive performance as supervised deep

learning methods.

The contributions of this work are three-folds: 1) We

study a more general super-resolution problem, where the

1https://competitions.codalab.org/competitions/18024

high-resolution ground truth, down-sampling kernel and

degradation function are unavailable. 2) We explore several

unsupervised training strategies under the above assump-

tion, and show that super-resolution task is different from

conventional image-to-image translation. 3) We propose a

Cycle-in-Cycle structure that could achieve comparable re-

sults as supervised CNN networks.

2. Related work

2.1. Image SuperResolution

Single image super-resolution (SISR) has been widely

studied for decades. Early approaches either rely on nat-

ural image statistics [33] [13] or pre-defined models [10]

[5] [26]. Later, mapping functions between LR images and

HR images are investigated, such as sparse coding based SR

methods [30] [32].

Recently, deep convolution neural networks (CNN) have

shown explosive popularity and powerful capability to im-

prove the quality of SR results. Ever since Dong [3] first

proposed using CNN for SR and achieved the state-of-the-

art performance, plenty of CNN architectures have been

studied for SISR. Inspired by the VGG [24] networks used

for ImageNet classification, Kim et al. [12] present a very

deep network (VDSR) that learns a residual image. For ac-

celerating the speed of SR, FSRCNN [4] and ESPCN [23]

extract feature maps at the low-resolution space and up-

sample the image at the last layer by transposed convolu-

tion and sub-pixel convolution, respectively. All the above

mentioned CNN based SR methods aim at minimizing the

mean-square error (MSE) between the reconstructed HR

image and the ground truth. Based on the observation that

minimizing MSE will make the SR results overly smooth,

SRGAN [16] combines an adversarial loss [6] and a per-

ceptual loss [24] [11] as the final objective function, and

generates visually pleasing images which contain more high

frequency details than the MSE-loss based methods. The

champion of NTIRE2017 Super-Resolution Challenge [27],

EDSR [17], employs deeper and wider networks to achieve

the state-of-the-art performance by removing the unneces-

sary modules in SRResNet [16].

2.2. Blind Image SuperResolution

Although a lot of works focus on SR problems with

known degradation/downsamping kernels, little works try

to solve blind SR—the degradation operation from HR im-

ages to LR images are unavailable. Estimating the degra-

dation/blur kernel is an essential step for blind SR. Wang et

al. [29] propose a probabilistic framework combined with

the image co-occurrence prior to estimate the unknown

point spread function (PSF) parameters. According to the

property that small image patches will re-appear in natu-
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ral images, Michaeli and Irani [19] present a method that is

able to estimate the optimal blur kernel. Another relevant

work [21] introduces a convolution consistency constraint

and bi-l0-l2-norm regularization [22] to guide the blur ker-

nel estimation process, achieving state-of-the-art blind SR

performance.

In this work, we investigate how deep learning can be

beneficial for addressing blind SR problems.

2.3. Unsupervised Learning

Existing supervised deep learning methods cannot han-

dle blind SR without LR-HR image pairs. In real-world

scenarios, where paired data is unavailable, it is essential to

find a way to realize unsupervised learning. Recent work

on GAN [6] provides a feasible solution, which includes a

generator and a discriminator. The generator tries to gen-

erate fake images to fool the discriminator, while the dis-

criminator aims at distinguishing the generated results from

real data. GAN is widely used to solve the unsupervised

learning problems. DualGAN [31] and CycleGAN [35] are

two works about image-to-image translation using unsuper-

vised learning, and both of them present an interesting net-

work structure that contains a pair of forward and inverse

generators. The forward generator maps domain X to do-

main Y, while the inverse generator maps the output back to

domain X to maintain cycle consistency. Ignatov et al. [9]

use the similar architecture to design a weakly supervised

photo enhancer (WESPE) that translates ordinary photos to

DSLR-quality images.

Different from the proposed method, both Dual-

GAN [31] and CycleGAN [35] deal with input and output

images of the same size, while SR requires the output im-

ages several times larger than the inputs. Utilizing the prop-

erty of cycle consistency, we present a Cycle-in-Cycle GAN

(CinCGAN) to super-resolve the LR images of which the

degradation operators are unknown. Our method achieves

a comparable performance with the state-of-the-art super-

vised CNN based algorithms [4, 16, 17].

3. Proposed Method

Problem formulation The conventional formulation of

SISR [30] is x = SHz + n, where x and z denote LR and

HR image respectively, SH represents the down-sampling

and blurring matrix, and n is the addictive noise. Blind

SR [19,29] follow the same assumption, only with unknown

SH . In this work, we study a more general formulation as

x = fn(fd(z)) + n, where fd is the down-sampling pro-

cess, fn is a degradation function that may introduce com-

plex noises, shift and blur. Here, we assume that fd, fn and

the paired HR-LR training data are unavailable. Neverthe-

less, we can obtain a set of LR images that can be used for

analysis and unsupervised training.

Motivation 1) Why applying unsupervised training? As the

down-sampling and degradation functions are complex and

coupled, it is hard to perform accurate estimation like tra-

ditional blind SR methods [19, 29]. The unavailability of

HR images in practise also makes supervised training with

simulated paired data impractical. This drives us to explore

unsupervised learning strategies. 2) What is the difference

between SR and image-to-image translation? SR accepts

an LR image and outputs a HR image with much larger

resolution. Further, SR requires the output to be of high

quality, not just a different style. If we directly apply the

image-to-image translation methods, we need to up-sample

the LR image first by interpolation, which will also enlarge

the noisy patterns. Directly applying existing methods like

CycleGAN cannot remove such amplified noises, and train-

ing becomes very unstable. Experiments (in Sec. 4.4) also

show that when the degradation function varies from image

to image, it is difficult to deal with all kinds of images in a

single forward pass.

Solution pipeline Our solution pipeline consists of three

steps. First, we learn a mapping from an LR image set X

to a “clean” LR image set Y , where images are noise-free

and down-sampled from HR images Z with bicubic kernel.

In other words, we deblur and denoise the input images at

low resolution. Second, we adopt an existing SR model to

super-resolve the intermediate results to the desired resolu-

tion. In the end, we combine and fine-tune these two models

simultaneously to get the final HR images.

Under the guidance of the above pipeline, we propose

a Cycle-in-Cycle structure named CinCGAN as shown in

Fig. 2. To be specific, we adopt two coupled CycleGANs to

learn the mapping from X to Y and Y to Z, respectively.

Unpaired images xi ∈ X , yj ∈ Y and zj ∈ Z are used for

training2, where yj is down-sampled from zj with bicubic

kernel. Details are given in the following.

3.1. LR Image Restoration

The framework of the first CycleGAN that maps an LR

image x to a clean LR image y is shown as LR→clean LR

in Fig. 2. Given an input image x, the generator G1 learns

to generate an image ỹ that looks similar to the clean LR y,

so as to fool the discriminator D1. Meanwhile, D1 learns to

distinguish the generated sample G1(x) from the real sam-

ple y. To stabilize the training procedure, we use the least

square loss [18] instead of the negative log-likelihood used

in [6]. The generator-adversarial loss is:

LLR
GAN =

1

N

N∑

i

||D1(G1(xi))− 1||2, (1)

2For simplicity, we omit the subscript i and j in the following.
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Figure 2. The framework of the proposed CinCGAN, where G1, G2 and G3 are generators and SR is a super-resolution network. D1 and

D2 are discriminators. The G1, G2 and D1 compose the first LR→clean LR CycleGAN model, mapping the degrade LR images to clean

LR images. The G1, SR, G3 and D2 compose the second LR→HR CycleGAN model, mapping the LR images to HR images.

where N is the number of training samples. To maintain

consistency between input x and output y, we add a network

G2 and let x′ = G2(G1(x)) be identical to the input x.

Hence, we also use a cycle consistency loss as:

LLR
cyc =

1

N

N∑

i

||G2(G1(xi))− xi||2. (2)

In the previous work [35], the authors introduce an

identity loss to preserve color composition between input

and output images when they work on painting generation.

They claim that the identity loss can help preserve the color

of input images. In image SR, we also need to avoid color

variation among different iterations, thus we add an identity

loss

LLR
idt =

1

N

N∑

i

||G1(yi)− yi||1. (3)

In addition, we add a total variation (TV) loss to impose

spatial smoothness

LLR
TV =

1

N

N∑

i

(||∇hG1(xi)||2 + ||∇wG1(xi)||2), (4)

where ∇h and ∇w are functions to compute the horizontal

and vertical gradient of G1(xi).
In summary, the final objective loss for the LR→clean

LR model is a weighted sum of the four losses:

LLR
total = LLR

GAN + w1L
LR
cyc + w2L

LR
idt + w3L

LR
TV (5)

where w1, w2, w3 are the weights of different losses.

3.2. Jointly Restoration and SuperResolution

We then investigate how to super-resolve the interme-

diate image ỹ to the desired size. Recently, the enhanced

deep residual network – EDSR [17] has won the first

prize in the NTIRE 2017 challenge on single image super-

resolution [1]. For simplicity, we directly adopt EDSR as

the SR network stacked after G1. Similarly, we use a dis-

criminator D2 for adversarial training both G1 and SR net-

works. We also utilize another generator G3 to ensure cycle

consistency between x and the reconstructed x′′. The GAN

loss, cycle loss and TV loss for the LR→HR network are

formulated as follows:

LHR
GAN =

1

N

N∑

i

||D2(SR(G1(xi)))− 1||2, (6)

LHR
cyc =

1

N

N∑

i

||G3(SR(G1(xi)))− xi||2, (7)

LHR

TV =
1

N

N∑

i

(||∇hSR(G1(xi))||2 + ||∇wSR(G1(xi))||2).

(8)

For the identity loss, instead of maintaining the tint con-

sistency between input and output, we consider ensuring

the SR network can generate adequate quality of super-

resolved images. We define a new identity loss as:

LHR
idt =

∑

i

||SR(z′)− z||2. (9)
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Figure 3. The generators G1, G2 and G3 share the same framework as (a) and the discriminators D1 and D2 share the same framework

as (b). For the 2-nd and 3-rd convolution layers in generator (a), k3n64s1 is for G1 and G2, while k4n64s2 is for G3. For the first three

convolution layers in discriminator (b), k4n64s1, k4n128s1, and k4n256s1 are for D1 and k4n64s2, k4n128s2, and k4n256s2 are for D2.

Please see text for details.

where z′ is down-sampled from z with bicubic kernel. This

LHR
idt makes the SR network does not betray its original am-

bition, such that the produced z̃ can be reasonable SR re-

sults.

To sum up, the total loss for fine-tuning the LR to HR

networks is

LHR
total = LHR

GAN + λ1L
HR
cyc + λ2L

HR
idt + λ3L

HR
TV (10)

where λ1, λ2, λ3, for i = 1, 2, 3, are weights of each loss.

3.3. Network Architecture

The architecture of generators G1, G2, G3 and discrim-

inators D1, D2 are shown in Fig. 3. We adapt similar ar-

chitecture as the work of Zhu et al. [35], which has shown

impressive results for unpaired image-to-image translation.

Here, “conv” means convolution layer, where a Leaky

ReLU layer with negative slope 0.2 is added right after ex-

cept for the last convolution layer (we omit it for simplicity).

“BN” means a batch normalization layer. The number after

symbols k, n and s represents kernel size, number of filters

and stride size, respectively. For example, k3n64s1 refers

to the convolution layer that contains 64 filters, of which the

spatial size is 3 and stride is 1.

For the generators G1 and G2, we use 3 convolution lay-

ers at the head and tail, and 6 residual blocks in the middle.

The generator G3 shares the same architecture as G1 and

G2, except for the 2-nd and 3-rd convolution layers, where

the stride is set to 2 to perform down-sampling. As to the

discriminator, we use a 70 × 70 PatchGAN for D2. Since

we up-sample LR images with a scale of ×4, the size of

input images is usually less than 70 (we use 32 × 32 LR

images and 128× 128 HR images for training). Hence, we

modify the stride of the first three convolution layers as 1

for discriminator D1, such that the respective field of D1 is

reduced to 16× 16.

4. Experiments

In this section, we first introduce the dataset and details

we used for training. We then evaluate the performance of

the proposed CinCGAN model by comparing with several

state-of-the-art SISR methods. Finally, we perform ablation

study to validate the advantages of CinCGAN.
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4.1. Training data

We take the track 2 dataset from the NTIRE2018 Super-

Resolution Challenge for training. The challenge aims to

restore a HR image given a degraded LR image. They pro-

vide a high-quality image dataset, DIV2K [1], which con-

tains 800 training images and 100 validation images. The

DIV2K dataset contains almost all kinds of natural scenar-

ios: buildings (indoor and outdoor), forest, lakes, animals,

people, etc. The track 2 dataset is degraded from DIV2K

dataset, with down-sampling, blurring, pixel shifting and

noises. Although the parameters of the degradation opera-

tors are fixed for all images, the blur kernels are randomly

generated and their resulting pixel shifts vary from image

to image. Hence, the degradation kernels of images in the

track 2 dataset are unknown and diverse.

Since our purpose is to unsupervised train a network

without paired LR-HR data, we take the first 400 images

(numbered from 1 to 400) from the training LR set as input

images X , and the other 400 images (numbered from 401

to 800) from the HR set as demanding HR images Z. The

intermediate clean LR images Y are directly bicubic down-

sampled from Z. Similar to [4] [24], we augment data with

90 degree rotation and flipping. Our experiments are per-

formed with a scaling factor of ×4. We randomly crop X

and Y with size 32 × 32 and crop Z with size 128 × 128.

We conduct testing on the provided 100 validation images.

Note that, although DIV2K contains paired training dataset,

we do not use paired data for supervised training.

4.2. Training details

We divide our training process into two steps. We first

train the model G1, G2 and D1 for mapping LR images to

clean LR images (shown as LR→clean LR in Fig. 2). The

three parameters in (5) are set to be w1 = 10, w2 = 5
and w3 = 0.5, respectively. We train our model with

Adam optimizer [14] by setting β1 = 0.5, β2 = 0.999 and

ǫ = 10−8, without weight decay. Learning rate is initial-

ized as 2 × 10−4 and then decreased by a factor of 2 every

40000 iterations. The weights of filters in each layer are

initialized using a normal distribution and the batch size is

set as 16. We train the model over 400000 iterations, until

it converges.

We then jointly fine-tune the LR to HR model (shown as

LR→HR in Fig. 2). We initialize our SR network by pub-

licly available EDSR model3. We set parameters in (10) as

λ1 = 10, λ2 = 5 and λ3 = 2. The optimizer is set almost

the same as training the LR→clean LR model, except for

we initialize learning rate with 10−4. As to the weight of

identity loss LLR
idt in (5), we set w2 = 1. At each iteration,

we update (5) and (10) in turn. We first train G1 and G2 to

3https://github.com/thstkdgus35/EDSR-PyTorch

update the LR→clean LR network. We then train G1, SR

and G3 simultaneously to update the LR→HR network.

We implement the proposed networks with PyTorch and

train them on a Nvidia Tesla K80 GPU. It takes about 1 day

to pre-train the LR→clean LR model and about 2 days to

jointly fine-tune the LR→HR model.

4.3. Results

We compare the performance of the proposed CinCGAN

model with several state-of-the-art SISR methods: FSR-

CNN [4], EDSR [17] and SRGAN [16]. We use the publicly

available FSRCNN and EDSR models which are trained

with paired LR and HR images, where the inputs are clean

LR images down-sampled from HR images. To make the

results more comparable, we also fine-tune EDSR and SR-

GAN (labelled as EDSR+ and SRGAN+ respectively) with

the paired track 2 dataset. To emphasize the effectiveness

of CinCGAN structure, we also try to first denoise the in-

put LR images and then super-resolve the denoised images

for comparison. BM3D [2] is one of the state-of-the-art im-

age denoising approach, which is an efficient and powerful

denoiser. Hence, we pre-process the test LR images with

BM3D first, and then super-resolve it using EDSR (labelled

as BM3D+EDSR).

Table 1 shows the average PSNR and SSIM values of

the restored test images. It shows that FSRCNN and EDSR

cannot work well if the blur and noises are unknown in

the training process. After fine-tuning by paired track 2

dataset, EDSR+ and SRGAN+ improve their results and

our method can work comparably against SRGAN+ in

terms of PSNR and SSIM without paired training data. Al-

though BM3D can remove noise, it also over-smooth the in-

put images. The PSNR and SSIM values of BM3D+EDSR

are lower than the proposed method. Several subjective re-

sults are illustrated in Fig. 4.

4.4. Ablation Study

To validate the advantages of the proposed CinCGAN

model for the unsupervised SISR problem, we design some

other network structures for comparison.

Structure 1 The first frame structure is to restore LR images

X to HR images Z using only one CycleGAN, i.e. denoise,

deblur and super-resolve the LR images at the same time.

The structure of the model is shown in Fig. 5(a), where we

set an LR image x as input to the SR network directly. Cor-

respondingly, we only minimize the total loss LHR
total (with

replacing SR(G1(·)) as SR(·) in Eq. (6)(7)(8)). However,

during the training procedure, we found that the result z̃ are

always unstable and there are a lot of undesired artifacts,

as shown in Fig. 6(a). It is hard for a single network to si-

multaneously denoise, deblur and up-sample the degraded

6819



(a) ground truth (b) bicubic (c) EDSR+ [17] (d) SRGAN+ [16] (e) BM3D+EDSR (f) CinCGAN (ours)

PSNR/SSIM 23.22/0.64 26.23/0.68 24.06/0.58 23.06/0.65 24.83/0.65

(a) ground truth (b) bicubic (c) EDSR+ [17] (d) SRGAN+ [16] (e) BM3D+EDSR (f) CinCGAN (ours)

PSNR/SSIM 22.25/0.68 29.06/0.75 27.36/0.68 22.18/0.72 27.95/0.72

(a) ground truth (b) bicubic (c) EDSR+ (d) SRGAN+ [16] (e) BM3D+EDSR (f) CinCGAN (ours)

PSNR/SSIM 26.81/0.83 30.28/0.88 29.05/0.85 26.84/0.86 28.26/0.84

Figure 4. Super-resolution results of “0801”, “0816” and “0853” (DIV2K) with scale factor ×4. EDSR+ and SRGAN+ are trained on

paired NTIRE2018 track 2 dataset. BM3D+EDSR means using BM3D for denoising first and then using EDSR for super-resolution. The

proposed CinCGAN model shows comparable results with SRGAN+ and is better than BM3D+EDSR method.

Table 1. Quantitative evaluation on NTIRE 2018 track 2 dataset of the proposed CinCGAN model, in terms of PSNR and SSIM.

method bicubic FSRCNN [4] EDSR [17] EDSR+ SRGAN+ [16] BM3D+EDSR CinCGAN (ours)

PSNR 22.85 22.79 22.67 25.77 24.33 22.88 24.33

SSIM 0.65 0.61 0.62 0.71 0.67 0.68 0.69

images, especially when the degradation kernels are differ-

ent from image to image and with unsupervised learning.

Structure 2 We remove D2 and G3 from the proposed

CinCGAN model for our second experiment. We map the

input LR images to a set of clean LR images using the same

LR→clean LR networks shown in Fig. 2; we then super-

resolve the converted LR images directly using the SR net-

work. The whole structure is shown in Fig. 5(b). The cor-

responding result is illustrated in Fig. 6(b). As we can see,

some negligible noise in the resulted clean LR images is
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Figure 5. Experiments for validating the advantages of the proposed structure. (a) Structure 1: transform the LR images x to HR images z

directly with one CycleGAN model; (b) Structure 2: remove D2 and G3 from the proposed CinCGAN model; (c) Structure 3: remove D1

and G2 from the proposed CinCGAN model.

(a) Structure 1 (b) Structure 2 (c) Structure 3 (d) CinCGAN (ours) (e) ground truth

Figure 6. Super-resolution results of “0829” (DIV2K) with scale factor ×4, for each frame structure as described in Fig. 5.

magnified and now is visible in the super-resolved images,

which affects the visual quality.

Structure 3 Our third experiment is performed by remov-

ing D1 and G2 from the proposed CinCGAN model, as

shown in Fig. 5(c). We use one CycleGAN for the LR to

HR model, where we take G1+SR as the forward network

and G3 as the inverse network. D2 is used for distinguish-

ing z̃ from z. We load the pre-trained G1 (in the LR→clean

LR networks) and the downloaded EDSR models for ini-

tialization. Experimental results on Fig. 6(c) show that the

resulting z̃ are still noisy. Since without the LLR
cyc and LLR

GAN

constraints on G1 network (LLR
idt and LLR

tv are still used for

this model), G1 is unable to deonise and deblur. The whole

model becomes similar to Structure 1.

Proposed Method We then propose our final solution as

shown in Fig. 2: jointly fine-tune LR to HR networks with

CinCGAN. We sequentially update the LR→ clean LR and

the LR→HR models. With the two constraint LLR
total and

LHR
total, the G1 network can denoise and deblur the degraded

input image x, while the SR network can up-sample as well

as further restore the resulted intermediate image ỹ. The

final resulted SR image is shown in Fig. 6(d), which shows

the best visual result comparing with other three structures.

5. Conclusions

We investigate the single image super-resolution prob-

lem with a more general assumption: the low-/high-

resolution image pairs and the down-sampling process are

unavailable. Inspired by the recent successful image-to-

image translation applications, we resort to the unsuper-

vised learning methods to solve this problem. Using gen-

erative adversarial networks (GAN), the proposed method

contains two CycleGANs, where the second GAN cov-

ers the first one. The solution pipeline consists of three

steps. First, we map the input LR images to the clean

and bicubic-downsampled LR space with the first Cycle-

GAN. We then stack another well-trained deep model with

bicubic-downsampling assumption to up-sample the inter-

mediate result to the desired size. Finally, we fine-tune

the two modules in an end-to-end manner to get the high-

resolution out. Experimental results demonstrate that the

proposed unsupervised method achieves comparable results

as the state-of-the-art supervised models.

Acknowledgement. This work is supported by Sense-

Time Group Limited and in part by the Projects of Na-

tional Science Foundations of China (61571254), Guang-

dong Special Support plan (2015TQ01X16), and Shenzhen

Fundamental Research fund (JCYJ20160513103916577).

8821



References

[1] E. Agustsson and R. Timofte. Ntire 2017 challenge on sin-

gle image super-resolution: Dataset and study. In Computer

Vision and Pattern Recognition Workshops (CVPRW), 2017

IEEE Conference on, pages 1122–1131. IEEE, 2017.

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Bm3d

image denoising with shape-adaptive principal component

analysis. In SPARS’09-Signal Processing with Adaptive

Sparse Structured Representations, 2009.

[3] C. Dong, C. C. Loy, K. He, and X. Tang. Image

super-resolution using deep convolutional networks. IEEE

transactions on pattern analysis and machine intelligence,

38(2):295–307, 2016.

[4] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-

resolution convolutional neural network. In European Con-

ference on Computer Vision, pages 391–407. Springer, 2016.

[5] R. Fattal. Image upsampling via imposed edge statistics. In

ACM transactions on graphics (TOG), volume 26, page 95.

ACM, 2007.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014.

[7] Y. He, K.-H. Yap, L. Chen, and L.-P. Chau. A soft map

framework for blind super-resolution image reconstruction.

Image and Vision Computing, 27(4):364–373, 2009.

[8] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5197–5206, 2015.

[9] A. Ignatov, N. Kobyshev, R. Timofte, K. Vanhoey, and

L. Van Gool. Wespe: Weakly supervised photo enhancer

for digital cameras. arXiv preprint arXiv:1709.01118, 2017.

[10] M. Irani and S. Peleg. Improving resolution by image reg-

istration. CVGIP: Graphical models and image processing,

53(3):231–239, 1991.

[11] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision, pages 694–711. Springer,

2016.

[12] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-

resolution using very deep convolutional networks. In Com-

puter Vision and Pattern Recognition, pages 1646–1654,

2016.

[13] K. I. Kim and Y. Kwon. Single-image super-resolution using

sparse regression and natural image prior. IEEE transactions

on pattern analysis and machine intelligence, 32(6):1127–

1133, 2010.

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.
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