
AutonoVi-Sim: Autonomous Vehicle Simulation Platform with Weather, Sensing,

and Traffic Control

Andrew Best1 Sahil Narang1 Lucas Pasqualin2 Daniel Barber2 Dinesh Manocha1

1Department of Computer Science, UNC Chapel Hill 2Institute for Simulation and Training, UCF

{best,sahil,dm}@cs.unc.edu {lpasqual,dbarber}@ist.ucf.edu

Abstract

We present AutonoVi-Sim, a novel high-fidelity simula-

tion platform for autonomous driving data generation and

driving strategy testing. AutonoVi-Sim is a collection of

high-level extensible modules which allows the rapid de-

velopment and testing of vehicle configurations and facil-

itates construction of complex traffic scenarios. Autonovi-

Sim supports multiple vehicles with unique steering or ac-

celeration limits, as well as unique tire parameters and dy-

namics profiles. Engineers can specify the specific vehicle

sensor systems and vary time of day and weather condi-

tions to generate robust data and gain insight into how con-

ditions affect the performance of a particular algorithm. In

addition, AutonoVi-Sim supports navigation for non-vehicle

traffic participants such as cyclists and pedestrians, allow-

ing engineers to specify routes for these actors, or to cre-

ate scripted scenarios which place the vehicle in danger-

ous reactive situations. Autonovi-Sim facilitates training of

deep-learning algorithms by enabling data export from the

vehicle’s sensors, including camera data, LIDAR, relative

positions of traffic participants, and detection and classifi-

cation results. Thus, AutonoVi-Sim allows for the rapid pro-

totyping, development and testing of autonomous driving

algorithms under varying vehicle, road, traffic, and weather

conditions. In this paper, we detail the simulator and pro-

vide specific performance and data benchmarks.

1. Introduction

Autonomous driving represents an imminent challenge

encompassing a number of domains including robotics,

computer vision, motion planning, civil engineering, and

simulation. Central to this challenge are the safety consid-

erations of autonomous vehicles navigating the roads sur-

rounded by unpredictable actors. Humans, whether drivers,

pedestrians, or cyclists, often behave erratically, inconsis-

tently, or dangerously, forcing other vehicles (including au-

tonomous vehicles) to react quickly to avoid hazards. In

order to facilitate acceptance and guarantee safety, vehicles

must be tested not only in typical, relatively safe scenarios,

but also in dangerous, less frequent scenarios.

Aside from safety concerns, costs pose an additional

challenge to the testing of autonomous driving algorithms.

Each new configuration of a vehicle or new sensor requires

re-calibration of a physical vehicle, which is labor intensive.

Furthermore, the vehicle can only be tested under condi-

tions limited either by a testing track, or the current traffic

conditions if a road test is being performed. This means the

vehicle can be tested no faster than real-time and without

any speedups or parallel testing.

Many recent approaches to autonomous driving rely on

machine-learning via Bayesian networks or deep-learning

to provide entity detection [23], entity prediction [13], and

end-to-end control [6]. However, such approaches rely on

substantial amounts of annotated data in safe, as well as

dangerous scenarios. The dataset must also encompass var-

ied weather and lighting conditions. In addition, not all au-

tonomous vehicles are equipped with identical or equivalent

sensing capability; training data must be available for the

specific configuration or sensors of the vehicle being tested.

Gathering such data by physical tests can be expensive, dif-

ficult and even dangerous. In contrast, a high-fidelity simu-

lator can augment and improve training of algorithms, and

allow for testing safely and efficiently.

Insights gained from simulation could provide critical

training data and information on algorithmic inefficien-

cies before actual vehicle testing. In an effort to facili-

tate progress in these areas, we present AutonoVi-Sim, a

simulation framework for training and testing autonomous

driving algorithms and sensors. AutonoVi-Sim is a collec-

tion of high-level, extensible modules designed to allow re-

searchers and engineers to rapidly configure novel road net-

works, driving scenarios, and vehicle configurations, and to

test these in a variety of weather and lighting conditions.

AutonoVi-Sim captures a variety of autonomous driving

phenomena and testing requirements including:

• Data Generation: Autonovi-Sim facilitates data anal-
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ysis by allowing exports of relevant data for traffic

proximate to the autonomous vehicle as well as data

from each virtual sensor on the vehicle. Sensor and

local traffic data can be used in training deep-learning

approaches by generating automatically labelled clas-

sification and decision data efficiently.

• Varying vehicle, cyclist, pedestrian, and traffic con-

ditions: AutonoVi-Sim includes various vehicle and

sensor models, pedestrians, and cyclists. Diversity of

these traffic entities allows for training classification

on differing shapes, sizes, colors, and behaviors of cy-

clists, pedestrians, and other drivers.

• Dynamic Traffic, Weather and Lighting Condi-

tions: AutonoVi-Sim provides high fidelity traffic sim-

ulation, supporting dynamic changes in traffic density,

time of day, lighting, and weather including rain and

fog.

• Rapid Scenario Construction: Typical road networks

can be easily laid out using spline painting and are au-

tomatically connected for routing and navigation pur-

poses. AutonoVi-Sim supports many lane configura-

tions and atypical road geometry such as cloverleaf

overpasses. In addition, other vehicles and entities can

be scripted to generate repeatable erratic behavior, e.g.

cutting in front of the ego-vehicle, walking into the

road.

The rest of the paper is organized as follows. In sec-

tion 2, we motivate simulation as a tool for advancing au-

tonomous driving and detail related work in the field. In sec-

tion 3, we detail the core modules provided by AutonoVi-

Sim. We reserve discussion of the Drivers and Vehicles

modules for section 4 and offer demonstrations of the sim-

ulator in section 5.

2. RELATED WORK

Simulation has been an integral tool in the development

of controllers for autonomous vehicles. [12], [18], and [27]

offer in-depth surveys of the current state of the art and

the role simulation has played. Many successful vehicle

demonstrations of autonomy were first tested in simulation

[2, 21, 1]. Recent work in traffic modelling has sought to

increase the fidelity of the modelled drivers and vehicles; a

survey is provided in [8].

Recent studies support the use of high-fidelity micro-

scopic simulation for data-gathering and training of vision

systems. [25] and [17] leveraged Grand Theft Auto 5 to

train a deep-learning classifier at comparable performance

to manually annotated real-world images. Several recent

projects seek to enable video games to train end-to-end

driving systems, including ChosenTruck and DeepDrive-

Universe which leverages the OpenAi Universe system. Us-

ing video game data provides benefits in the fidelity of the

vehicle models but limits the ability to implement sensing

systems and access data beyond visual data. A fully dedi-

cated high-fidelity simulator can address these limitations

and provide access to point-cloud data, visual data, and

other vehicle sensors without the limitations imposed by

adapting gaming software. Research in this area has begun

to emerge [10]. Our work is complimentary to such sys-

tems and can be combined with generated data from other

simulators to increase robustness of training data.

Modeling Vehicle Kinematics and Dynamics: A num-

ber of approaches have been developed to model the motion

of a moving vehicle, offering trade-offs between simplicity,

efficiency and physical accuracy of the approach. Simpler

models are typically based on linear dynamics and analyti-

cal solutions to the equations of motion [20]. More accurate

models provide a better representation of the physical mo-

tion, but require more computational power to evaluate and

incorporate non-linear forces in the vehicle dynamics [7].

Margolis and Asgari [22] present several representations of

a car including the widely used single-track bicycle model.

Borrelli et al. [7] extend this model by including detailed

tire-forces. The Reeds-Shepp formulation is a widely used

car model with forward and backward gears [24]. Our sim-

ulator leverages the NVIDIA PhysX engine for the under-

lying vehicle model.

Modeling Traffic Rules: As well as planning the appro-

priate paths to avoid collisions, autonomous vehicles must

also follow applicable laws and traffic norms. Techniques

have been proposed to simulate typical traffic behaviors in

traffic simulation such as Human Driver Model [29] and

data-driven models such as [16]. Logic-based approaches

with safety guarantees have also been demonstrated [30].

An extensive discussion on techniques to model these be-

haviors in traffic simulation can be found in [8]. Our sim-

ulator allows for modelling such trafic behaviors as well as

traffic control strageties at the infrastructure level.

Path Planning and Collision Avoidance: Prior ap-

proaches to path planning for autonomous vehicles are

based on random-exploration [11], occupancy grids [19],

potential-field methods [14], driving corridors [15], etc. Re-

cent approaches seek to incorporate driver behavior pre-

diction in path planning using Bayesian behavior model-

ing [13] and game-theoretic approaches [26]. Continu-

ous approaches for collision-avoidance have been proposed

based on spatial decomposition or velocity-space reason-

ing. Ziegler et al. [32] utilize polygonal decomposition of

obstacles to generate blockages in continuous driving corri-

dors. Sun et al. [28] demonstrate the use of prediction func-

tions and trajectory set generation to plan safe lane-changes.

Berg et al. [31] apply velocity-space reasoning with accel-
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Figure 1. AutonoVi-Sim Platform Overview: The eight modules composing AutonoVi-Sim encompass varying aspects of autonomous

driving. The Road, Road Network, and Infrastructure modules define the driving environment. The Environment module allows engineers

to specify specific environment conditions including time of day and weather. The Non-vehicle Traffic module allows engineers to specify

navigation goals for pedestrians and cyclists, or setup specific triggered behaviors. The Drivers and Vehicles modules work as a pair

to define current traffic conditions and specific driving destinations and decisions for the vehicles in the simulation. Each vehicle in the

simulation has a unique set of sensing capabilities and a single driver which operates the vehicle during the simulation. Finally, the Analysis

module is used to catalog and export data, including agent positions and sensor readings, for analysis.

eration constraints to generate safe and collision-free veloc-

ities. Bareiss et al. [4] extend the concept of velocity ob-

stacles into the control space to generate a complete set of

collision-free control inputs. We have implemented several

driving strategies in the simulator to demonstrate its gener-

ality.

3. SIMULATION MODULES

Drawing from recent work in crowd simulation, [9],

AutonoVi-Sim is divided into eight extensible modules,

each with various sub-components. The modules are En-

vironment, Road Network, Road, Drivers, Infrastructure,

Vehicles, Non-vehicle Traffic, and Analysis. Each module

captures some aspect of autonomous driving simulation and

can be extended and modified to suit the specific needs of

a particular algorithm. Figure 1 shows the connection be-

tween components in AutonoVi-Sim. In this section, we

will detail the modules which make up the basic simula-

tion system, reserving discussion of the vehicle and driving

strategy modules for section 4.

3.1. Roads

Roads in AutonoVi-Sim are represented by their center

line, a number of lanes and directions thereof, and the sur-

face friction of the road. Roads are placed interactively by

drawing splines on a landscape which allows quick con-

struction. Each road maintains occupancy information, av-

erage flow, and can maintain hazard information. The road

module also maintains the set of hazards such as potholes or

debris, which can be specified by density (number of haz-

ards per km) or interactively by placing them on the road.

Alternately, roads can be specific pieces of geometry as

in the case of intersections. This provides the flexibility

to place specific intersections and model atypical road con-

structions for modelling specific environments. Figure 2(A)

shows an example of road placement in AutonoVi-Sim.

3.2. Infrastructure

Infrastructure controllers represent traffic lights, signage,

and any other entity which modifies the behaviors of vehi-

cles on the road. These controllers can be added specifically

to roads, as in the case of intersections, or placed indepen-

dently as in signage or loop detectors. Vehicles implement

their own detection of these entities as is described in sec-

tion 4.1.2. Infrastructure components are provided with ba-

sic detection capability and agency. For example, traffic

lights can determine which lanes are congested and adjust

the light cycle accordingly to more traffic more effectively.

3.3. Road Network

The road network in AutonoVi-Sim provides the basic

connectivity information for the traffic infrastructure to the

vehicles in the simulation. At run-time, the network is auto-

matically constructed by connecting roads into a directed

graph. The road network provides GPS style routing to

vehicles and localization for mapping purposes. Coupled

with the road and infrastructure modules, the Road Net-

work also provides information about upcoming traffic and

current road conditions. As part of the Road Network, vehi-

cle spawners are provided which generate vehicles and can

provide specific destinations for each vehicle. The Road

Network can be used to specify per-road initial density as

well or to specify a general initial traffic density over the

network.
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(A) (B) (C)

Figure 2. AutonoVi-Sim Sensor Modules: (A): Sensors on the vehicle are placed interactively. The most basic sensors (shown here)

provide ray-cast detection with configurable noise, detecting time, angle, and range. The sensors here are configure to provide debugging

detection information. (B):This configuration demonstrates a hatchback with a laser rangefinder navigating around traffic cones. Returned

beams are illustrated in red. Beams which do not return data are illustrated in cyan for debugging. (C): Once sensors are placed, the

vehicle’s navigation algorithm can be tested and examined interactively. The driving algorithm described in [5] samples potential controls

and projects forward in time. Red control paths indicate predicted collisions with the nearby vehicle. The data analysis module allows for

exporting sensor data as the vehicle navigates.

3.4. Environment

The environment module allows engineers to specify the

specific environmental conditions for a given driving sce-

nario. This currently includes time of day and weather.

The system implements varying levels of fog and rain con-

ditions. Basic environmental effects such as road friction

reduction are controlled by the environment module. The

interaction between weather and specific sensors is imple-

mented by the sensor module.

3.5. Non­Vehicle Traffic

AutonoVi-Sim implements two non-vehicle traffic par-

ticipants: pedestrians and cyclists. Pedestrians operate sep-

arately from the road network and can be given specific des-

tinations. By default, pedestrians follow safe traffic rules to

navigate to their goal. They can also be setup to trigger spe-

cific occurrences. For example, as the ego-vehicle nears, a

pedestrian can be triggered to walk into the street in front of

the vehicle to test its reaction time.

Cyclists operate similarly to vehicles in AutonoVi-Sim.

Cyclists are given destinations and route over the road net-

work. Similarly to pedestrians, cyclists can be programmed

to trigger erratic behavior under specified conditions. For

example, as the ego-vehicle approaches, a cyclist can be

triggered to stop in the road, suddenly change direction, or

enter the road in an unsafe fashion.

3.6. Analysis and Data Capture

AutonoVi-Sim implements a module for logging posi-

tions, velocities, and behaviors of the various traffic partici-

pants. It also supports logging egocentric data from the ve-

hicle, such as relative positions of nearby entities at varying

times during simulation. Camera-based sensors can record

out the video data captured during simulation as can LI-

DAR based sensors Section 4.1.2 describes sensors in more

detail.

4. AUTONOMOUS DRIVING MODULES

The simulation modules described in section 3 serve as

the basis for AutonoVi-Sim. This section describes the

two core modules which allow for testing autonomous driv-

ing and sensing algorithms under varying conditions, the

Drivers and Vehicles modules.

4.1. Vehicles

The vehicle in AutonoVi-Sim is represented as a physics-

driven entity with specific tire, steering, and sensor param-

eters. Physics parameters include the base tire coefficient

of friction, the mass of the vehicle, engine properties such

as gear ratios, and the physical model for the vehicle. Each

of these parameters can vary between vehicles and relevant

properties such as tire friction or mass can vary at runtime

as needed.

4.1.1 Control and Dynamics

Vehicle control is provided on three axes: steering, throt-

tle, and brake inputs. The specific inputs are chosen each

simulation step by the driver model, described in section

4.2. The vehicle’s dynamics are implemented in the NVidia

PhysX engine. This allows the simulator to model the vehi-

cle’s dynamics and communicate relevant features such as

slipping as needed by the driving algorithm.

4.1.2 Perception

The perception module provides the interface to gather and

store information about the vehicle’s surroundings. The ba-

sic sensing module in AutonoVi-Sim employs a ray-cast

with configurable uncertainty, detection time, classification

error rate, and sensor angle / range. This module is suffi-

cient to test scenarios such as late detection or misclassifi-

cation of pedestrians with minimal intervention. A vehicle

can be equipped with multiple sensors with varying angles

and fidelity. This allows the vehicle to equip high-fidelity
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Figure 3. Simulated Camera Outputs in AutonoVi-Sim: Camera data captured from different cameras while (top row) passing a pedes-

trian in the road and (bottom row) passing a cyclist. (A): A high-resolution camera. (B): Low-resolution camera. (C): A black-and-white

camera. (D): A fish-eye 150 degree view camera.

sensors in the longitudinal directions and broader, less ac-

curate sensors in lateral directions. In addition, the percep-

tion module specifies how the sensors interact with envi-

ronmental conditions, including performance impacts and

uncertainty caused by weather effects.

The perception module provides interfaces to a generic

camera interface and Monte-Carlo scanning ray-casts to

simulate various sensor types. These interfaces can be ex-

tended to implement LIDAR or camera-based neural net-

work classifiers in simulation. The LIDAR can be config-

ured to change the scanning range, angle, and resolution.

Similarly, the camera resolution, color parameters, and re-

fresh rate can be configured for each camera sensor. Fig-

ure 2 shows an example of sensor configuration and laser

scanner in AutonoVi-Sim. Figure 3 demonstrated varying

camera setups in AutonoVi-Sim.

4.1.3 Modelling Real Sensors

A core challenge to generating effective perception data is

the capacity to replicate the parameters of sensors found

on typical autonomous vehicles. Each sensing modality

presents unique refresh rates, error rates, and interactions

with the vehicle platform itself. The specific data format of

a particular camera or LIDAR must be modelled, and the

latency expected of the physical sensor must accounted for.

We believe AutonoVi-Sim can provide a platform for ex-

ploring these issues.

The sensor system in AutonoVi-Sim is modular, and al-

lows for specifying parameters of the sensors. A sensor’s

refresh rate can be configured independently of the vehicle,

and the expected and output data formats are configurable

for sensors of different types. In addition, cameras can be

configured for color range, focal length, and camera intrin-

sic such focal length and distortion, and they can be mod-

eled under varying noise conditions.

The perception systems built on top of imperfect sen-

sor systems can be modelled as well. Misclassification is

a typical problem in vision in which an object is assigned

an incorrect category. For example, a pedestrian could be

misclassified as debris in the road, or a vehicle misidenti-

fied as part of the background. By exploiting simulated data

from imperfect cameras, we can model classification error

and observe and correct the relevant features which cause

the vehicle to misidentify and respond inappropriately to

nearby entities.

4.2. Drivers

Driving decisions in AutonoVi-Sim, including routing

and control inputs, are made by driver models. A driver

model fuses information from the road network and the ve-

hicle’s sensors to make appropriate decisions for the vehi-

cle. The specific update rate of the driver model can be

configured as well as what sensors the model supports and

prefers. Each model can implement any necessary parame-

ters needed for the specific approach.

AutonoVi-Sim currently implements three driver mod-

els. The Basic Driver is a simple lane-following approach

which employs control methods similar to a driver assis-

tance lane-keeping system. This driver model is used to

generate passive vehicles travelling along their destinations

without aberrant or egocentric behaviors. These vehicles

are capable of lane-changes and turns, but follow simple

rules for these maneuvers and rely on perfect sensing mod-

els to accomplish them.

At each planning step, the Basic Driver projects the po-

sitions of nearby entities into the future by a pre-determined

time threshold. It leverages these projections to exclude

choices of control inputs which would lead to a collision

with its neighbors. It then chooses the closest speed to its

target speed that avoids potential collisions.

We have implemented a more extensive driving model
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Figure 4. AutonoVi-Sim Performance Graph: We conducted repeated simulations on a traffic network, increasing the number of vehicles

in each scenario. This graph details the computation time for each simulation step as a function of the number of vehicles simulated. The

limit of 30 frames per second and 10 frames per second are shown for reference. In this scenario, each vehicle is equipped with two basic

ray-cast sensors with perfect accuracy. We find that the computation time scales linearly in the number of vehicles simulated, with the

ability to simulate 160 vehicles at 30 frames per second and up to 420 vehicles at 10 frames per second.

originally described in [5], the AutonoVi Driver. This

model uses optimization-based maneuvering with traf-

fic constraints to generate behaviors such as overtaking

and combines steering and braking maneuvers through a

data-driven vehicle dynamics prediction model. At each

planning-step, the model uses a modified control-obstacle

[4] formulation to avoid collisions and determines the best

control for the next step using a sampling-based approxima-

tion of a multi-objective optimization function.

Finally, the simulator implements a Manual Driver,

which can be activated from any autonomous driver. Man-

ual mode allows an engineer to drive the vehicle using a

keyboard, game-pad, or steering wheel and pedal combi-

nation. The authors of [3] demonstrate using this manual

operation to test vehicle signalling and connected vehicle

operation. It can also be used to collect data for neural-

network methods, as shown in figure 3.

5. Results

In this section, we provide an overview of several scenar-

ios we have tested in AutonoVi-Sim, training data we have

generated, and provide performance results for large-scale

traffic simulations. Our results were gathered on a desktop

PC running Windows 10, with a quad-core Intel Xeon pro-

cessor, NVIDIA TitanX gpu, and 16 gb ram.

5.1. Performance Timing

We conducted a series of repeated traffic trials to deter-

mine the expected performance of AutonoVi-Sim. We find

that the computational costs scale approximately linearly

with the number of vehicles simulated. We have success-

fully simulated over 400 vehicles simultaneously at high-

densities at interactive simulation rates. Figure 4 shows the

results of our performance tests.

5.2. Autonomous Driving Scenarios

We have implemented the behavior benchmarks de-

scribed in [5] in Autonovi-Sim to test an autonomous vehi-

cle under challenging conditions. In these benchmarks, the

vehicle under observation is referred to as the ego-vehicle.

Passing a bicycle: the ego-vehicle must pass a bicycle

on a four-lane road. The vehicle should maintain a safe dis-

tance from the bicycle, changing lanes if possible to avoid

the cyclist. This scenario can be configured for the density

of surrounding traffic to prevent the vehicle from passing

without adjusting its speed.

Jaywalking Pedestrian: The vehicle must react quickly

to safely decelerate or stop to avoid a pedestrian stepping

into the road in front of the vehicle.

Sudden Stop at High Speed: The ego-vehicle must ex-

ecute an emergency stop on a highway at high speeds when

the vehicle in front of it stops suddenly. Autonovi-Sim sup-

ports configuring the density and location of surrounding

traffic. This allows engineers to test the vehicle in condi-

tions where swerving is not executed simply and must ac-

count for surrounding traffic.

High-Density Traffic Approaching a Turn: The ego-

vehicle approaches a stoplight at which it must execute a

turn, but the ego-vehicle’s lane is congested by slow traffic.

To make optimal progress, the ego-vehicle should execute a
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Figure 5. Simulated scenarios and conditions in Autonovi-Sim: (A): Heavy fog obstructs the view of the vehicle. (B): A simulated city

modelled in AutonoVi-Sim. Closed circuit road networks allow engineers to test driving algorithms over long timescales by assigning new

navigation goals periodically. (C): Vehicles pass through a slick intersection during rainy conditions.

lane change to the adjoining lane and return to the correct

lane with sufficient time to execute the turn.

Car Suddenly entering Roadway: The ego-vehicle

travels along a straight road at constant speed when a vehi-

cle suddenly enters the roadway, blocking the ego-vehicle’s

path. The ego-vehicle must decelerate and swerve to avoid

colliding with the blocking vehicle. The speed of the ego-

vehicle is configurable. Consistent with [5], we test the ego-

vehicle at 10, 30, and 50 mph and with the blocking vehicle

obstructing either the right lane or both lanes.

S-turns: The ego-vehicle navigating a set of tight alter-

nating turns, or S turns.

Simulated City: The ego-vehicle navigates to several

key points in a small simulated city. The vehicle must exe-

cute lane changes to perform various turns as it obeys traffic

laws and navigates to its goals. The vehicle encounters bi-

cycles, pedestrians, and other vehicles as it navigates to its

goal.

Figure 6 and figure 5 demonstrate several additional sce-

narios and configurations we have tested in AutonoVi-Sim.

5.3. Generating Training Data

AutonoVi-Sim can be used to generate labelled training

data for typical as well as atypical and dangerous situations.

We can simulate many scenarios involving pedestrians, cy-

clists, and other vehicles, such as jaywalking or passing in

traffic [5]. The vehicle can be driven automatically using

the driver models, or manually by an engineer. Camera, LI-

DAR, relative position, detection, and control data are ex-

ported from each trial of the simulation. The controls of

the vehicle combined with local conditions can be used for

reinforcement learning in the autonomous driving case or

imitation learning in the manual case. These scenarios can

be repeatedly run under varying lighting and weather con-

ditions; different surroundings, i.e. buildings, trees, etc; and

with different pedestrians, cyclists, and vehicle shapes and

sizes. Figure 3 demonstrates a vehicle with 4 co-located

cameras of varying properties capturing interactions with a

cyclist and pedestrian.

6. Conclusion

We have presented AutonoVi-Sim, a platform for au-

tonomous vehicle simulation with the capacity to represent

various vehicles, sensor configurations, and traffic condi-

tions. We have demonstrated AutonoVi-Sim’s applicabil-

ity to a number of challenging autonomous-driving situa-

tions and detailed the ways in which AutonoVi-Sim can be

used to generate data for training autonomous-driving ap-

proaches. AutonoVi-Sim is a modular, extensible frame-

work. While many modules currently represent preliminary

implementations of advanced functionality, the extensible

nature of the framework provides the basis for progress in

the various disciplines which define autonomous driving.

Our work is in active development and still faces a num-

ber of limitations. AutonoVi-Sim contains basic implemen-

tations of the various modules such as sensors for percep-

tion, a physics engine to simulate dynamics etc. However,

each of these modules can be extended to more accurately

reflect real world conditions. For example, our sensor mod-

els currently do not model noise or uncertainty in the ex-

ported data. The basic driver behavior is also quite limited;

in the future we intend to model additional driver models to

provide more rich behaviors for other vehicles.

AutonoVi-Sim currently lacks calibration information to

replicate specific sensors and sensor configurations. In the

future we hope to model specific sensing packages and al-

gorithms to test specific real-world configurations. In ad-

dition, it will be beneficial to explore the transfer between

algorithms trained on AutonoVi-Sim and actual test vehi-

cles. Our current driver models are limited to hierarchical,

rule-based driving approaches. In future work, we intend

to include exploration of end-to-end approaches, which can

be represented by a novel Driver model. The current simu-

lator supports few hundreds of vehicles. By combining our

simulator with macroscopic or hybrid traffic simulation ap-

proaches, we seek to increase the size of supported traffic

conditions.
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Figure 6. Simulated Reactive Scenarios in AutonoVi-Sim: (A): The vehicle must stop as a pedestrian enters the roadway suddently. (B):

The vehicle changes lanes to pass a cyclist on a four lane road. (C): The basic driver model provides expected positions and projections

visually while stopping at a stop-light. AutonoVi-Sim provides interfaces for modelling strategy specific visual debugging information.
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