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Abstract

We revisit the problem of visual depth estimation in the

context of autonomous vehicles. Despite the progress on

monocular depth estimation in recent years, we show that

the gap between monocular and stereo depth accuracy re-

mains large—a particularly relevant result due to the preva-

lent reliance upon monocular cameras by vehicles that are

expected to be self-driving. We argue that the challenges

of removing this gap are significant, owing to fundamen-

tal limitations of monocular vision. As a result, we focus

our efforts on depth estimation by stereo. We propose a

novel semi-supervised learning approach to training a deep

stereo neural network, along with a novel architecture con-

taining a machine-learned argmax layer and a custom run-

time that enables a smaller version of our stereo DNN to

run on an embedded GPU. Competitive results are shown

on the KITTI 2015 stereo dataset. We also evaluate the re-

cent progress of stereo algorithms by measuring the impact

upon accuracy of various design criteria.1

1. Introduction

Estimating depth from images is a long-standing prob-

lem in computer vision. Depth perception is useful

for scene understanding, scene reconstruction, virtual and

augmented reality, obstacle avoidance, self-driving cars,

robotics, and other applications.

Traditionally, multiple images have been used to esti-

mate depth. Techniques that fall within this category in-

clude stereo, photometric stereo, depth from focus, depth

from defocus, time-of-flight,2 and structure from motion.

The reasons for using multiple images are twofold: 1) abso-

lute depth estimates require at least one known distance in

the world, which can often be provided by some knowledge

regarding the multi-camera rig (e.g., the baseline between

1Video of the system is at https://youtu.be/0FPQdVOYoAU.
2Although time-of-flight does not, in theory require multiple images, in

practice multiple images are collected with different bandwidths in order

to achieve high accuracy over long ranges.

stereo cameras); and 2) multiple images provide geomet-

ric constraints that can be leveraged to overcome the many

ambiguities of photometric data.

The alternative is to use a single image to estimate

depth. We argue that this alternative—due to its funda-

mental limitations—is not likely to be able to achieve high-

accuracy depth estimation at large distances in unfamiliar

environments. As a result, in the context of self-driving

cars we believe monocular depth estimation is not likely

to yield results with sufficient accuracy. In contrast, we

offer a novel, efficient deep-learning stereo approach that

achieves compelling results on the KITTI 2015 dataset by

leveraging a semi-supervised loss function (using LIDAR

and photometric consistency), concatenating cost volume,

3D convolutions, and a machine-learned argmax function.

The contributions of the paper are as follows:

• Quantitative and qualitative demonstration of the gap

in depth accuracy between monocular and stereoscopic

depth.

• A novel semi-supervised approach (combining lidar

and photometric losses) to training a deep stereo neu-

ral network. To our knowledge, ours is the first deep

stereo network to do so.3

• A smaller version of our network, and a custom run-

time, that runs at near real-time (∼20 fps) on a stan-

dard GPU, and runs efficiently on an embedded GPU.

To our knowledge, ours is the first stereo DNN to run

on an embedded GPU.

• Quantitative analysis of various network design

choices, along with a novel machine-learned argmax

layer that yields smoother disparity maps.

2. Motivation

The undeniable success of deep neural networks in com-

puter vision has encouraged researchers to pursue the prob-

lem of estimating depth from a single image [5, 20, 6, 9, 17].

3Similarly, Kuznietsov et al. [17] use a semi-supervised approach for

training a monocular network.
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This is, no doubt, a noble endeavor: if it were possible to ac-

curately estimate depth from a single image, then the com-

plexity (and hence cost) of the hardware needed would be

dramatically reduced, which would broaden the applicabil-

ity substantially. An excellent overview of existing work on

monocular depth estimation can be found in [9].

Nevertheless, there are reasons to be cautious about the

reported success of monocular depth. To date, monocular

depth solutions, while yielding encouraging preliminary re-

sults, are not at the point where reliable information (from a

robotics point of view) can be expected from them. And al-

though such solutions will continue to improve, monocular

depth will never overcome well-known fundamental limi-

tations, such as the need for a world measurement to infer

absolute depth, and the ambiguity that arises when a pho-

tograph is taken of a photograph (an important observation

for biometric and security systems).

One of the motivations for monocular depth is a long-

standing belief that stereo is only useful at close range.

It has been widely reported, for example in [10], that be-

yond about 6 meters, the human visual system is essentially

monocular. But there is mounting evidence that the hu-

man stereo system is actually much more capable than that.

Multiple studies have shown metric depth estimation up to

20 meters [18, 1]; and, although error increases as disparity

increases [13], controlled experiments have confirmed that

scaled disparity can be estimated up to 300 m, even with-

out any depth cues from monocular vision [22]. Moreover,

since the human visual system is capable of estimating dis-

parity as small as a few seconds of arc [22], there is rea-

son to believe that the distance could be 1 km or greater,

with some evidence supporting such a claim provided by

the experiments of [4]. Note that an artificial stereo system

whose baseline is wider than the average 65 mm interpupil-

lary distance of the human visual system has the potential

to provide even greater accuracy.

This question takes on renewed significance in the con-

text of self-driving cars, since most automobile manufac-

turers and experimental autonomous vehicles do not install

stereo cameras in their vehicles.4 Rather, these systems

rely on various combinations of monocular cameras, lidar,

radar, and sonar sensors.5 For detecting static obstacles

such as trees, poles, railings, and concrete barriers, most

systems rely on cameras and/or lidar. Although it is be-

yond the scope of this paper whether monocular cameras are

sufficient for self-driving behavior (certainly people with

monocular vision can drive safely in most situations), or

whether stereo is better than lidar, we argue that the proper

4To the authors’ knowledge, at the time of this writing stereo cameras

can be found only on certain models of Mercedes and Subaru vehicles; no

major autonomous platform uses them.
5Tesla vehicles, for example, are equipped with monocular cameras,

sonar, and radar, but no lidar. Despite having multiple foveated cameras for

wider field of view, such vehicles do not rely upon depth from stereopsis.

engineering approach to such a safety-critical system is to

leverage all available sensors rather than assume they are

not needed; thus, we believe that it is important to accu-

rately assess the increased error in depth estimation when

relying upon monocular cameras.

At typical highway speeds, the braking distance re-

quired to completely stop before impact necessitates ob-

serving an unforeseen stopped object approximately 100 m

away. Intrigued by the reported success of monocular

depth, we tried some recent algorithms, only to discover

that monocular depth is not able to achieve accuracies any-

where close to that requirement. We then turned our at-

tention to stereo, where significant progress has been made

in recent years in applying deep learning to the problem

[25, 24, 11, 27, 26, 29, 8, 15, 23]. An excellent overview

of recent stereo algorithms can be found in [15]. In this

flurry of activity, a variety of architectures have been pro-

posed, but there has been no systematic study as to how

these design choices impact quality. One purpose of this

paper is thus to investigate several of these options in order

to quantify their impact, which we do in Sec. 5. In the con-

text of this study, we develop a novel semi-supervised stereo

approach, which we present in Sec. 4. First, however, we il-

lustrate the limitations of monocular depth estimation in the

next section.

3. Difficulties of Monocular Depth Estimation

To appreciate the gap between mono and stereo vision,

consider the image of Fig. 1, with several points of interest

highlighted. Without knowing the scene, if you were to ask

yourself whether the width of the near road (on which the

car (A) sits) is greater than the width of the far tracks (dis-

tance between the near and far poles (E and F)), you might

be tempted to answer in the affirmative. After all, the road

not only occupies more pixels in the image (which is to be

expected, since it is closer to the camera), but it occupies

orders of magnitude more pixels. We showed this image to

several people in our lab, and they all reached the same con-

clusion: the road indeed appears to be significantly wider.

As it turns out, if this image is any indication, people are not

very good at estimating metric depth from a single image.6

The output of a leading monocular depth algorithm,

called MonoDepth [9], is shown in Fig. 2,7 along with the

output of our stereo depth algorithm. At first glance, both

results appear plausible. Although the stereo algorithm pre-

serves crisper object boundaries and appears at least slightly

more accurate, it is difficult to tell from the grayscale im-

6Specifically, we asked 8 people to estimate the distance to the fence

(ground truth 14 m) and the distance to the building (ground truth 30 m).

Their estimates on average were 9.3 m and 12.4 m, respectively. The dis-

tances were therefore underestimated by 34% and 59%, respectively, and

the distance from the fence to the building was underestimated by 81%.
7Other monocular algorithms produce similar results.
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Figure 1. An image from the KITTI dataset [7] showing a road

in front of a pair of train tracks in front of a building. Several

items of interest are highlighted: (A) car, (B) fence, (C) depot, (D)

building, (E) near pole, (F) far pole, (G) people, and (H) departing

train. The building is 30 m from the camera.

Figure 2. Results of MonoDepth [9] (top) vs. our stereo algorithm

(bottom) on the image (or pair of images, in the latter case) of the

previous figure, displayed as depth/disparity maps.

ages just how much the two results differ.

In fact, the differences are quite large. To better appreci-

ate these differences, Fig. 3 shows a top-down view of the

point clouds associated with the depth/disparity maps with

the ground truth LIDAR data overlaid. These results reveal

that monocular depth is not only inaccurate in an absolute

sense (due to the overall scale ambiguity from a single im-

ages), it is also inaccurate in recovering details. In fact, of

the 8 objects of interest highlighted in Fig. 1, the monocular

algorithm misses nearly all of them—except perhaps the car

(A) and some of the fence (B). In contrast, our stereo algo-

rithm is able to properly detect the car (A), fence (B), depot

(C), building (D), near (E) and far (F) poles, and people

(G). The only major object missed by the stereo algorithm

is the train (H) leaving the station, which is seen primarily

through the transparent depot glass. These results are even

more dramatic when viewed on the screen with freedom to

rotate and zoom.

One could argue that this is not a fair comparison: ob-

viously stereo is better because it has access to more infor-

mation. But that is exactly the point, namely, that stereo

algorithms have access to information that monocular algo-

rithms will never have, and such information is crucial for

MonoDepth [9] our stereo algorithm

Figure 3. Results of MonoDepth [9] (left) vs our stereo algorithm

(right), displayed as 3D point clouds from a top-down view. Green

dots indicate ground truth from LIDAR. The letters indicate ob-

jects of interest from Fig. 1. Note that stereo is able to recover

accurate geometry up to at least 30 m away. (Best viewed in color.)

accurately recovering depth. Therefore, any application that

requires accurate depth and can afford to support more than

one camera should take advantage of such information.

To further shed light on this point, notice that the top-

down view of the previous figure contains the answer to the

question posed at the beginning of the section: the width

of the tracks is approximately the same as that of the road.

Amazingly, the stereo algorithm, with just a single pair of

images from a single point in time, is able to recover such

information, even though the building behind the tracks is

30 m away. In contrast, the fact that the human visual

system is so easily fooled by the single photograph leads

us to believe that the limitation in accuracy for monocular

depth is not due to the specific algorithm used but rather is a

fundamental hurdle that will prove frustratingly difficult to

overcome for a long time.8

4. Deep Stereo Network

Recognizing the limitations of monocular depth, we in-

stead use a stereo pair of images. Our stereo network,

shown in Fig. 4, is inspired by the architecture of the recent

GC-Net stereo network [15] which at the time we began the

investigation, was the leader of the KITTI 2015 benchmark.

The left and right images (size H ×W × C, where C = 3
is the number of input channels) are processed by 2D fea-

ture extractors based on a residual network architecture that

bears resemblance to ResNet-18 [12]. The resulting feature

tensors (dimensions 1⁄2H × 1⁄2W × F , where F = 32 is the

number of features) are used to create two cost volumes, one

for left-right matching and the other for right-left matching.

The left-right cost volume is created by sliding the right ten-

sor to the right, along the epipolar lines of the left tensor, up

8Of course, one could use multiple images in time from a single camera

to overcome such limitations. Note, however, that in the context of a self-

driving car, the forward direction (which is where information is needed

most) is precisely the part of the image containing the least image motion

and, hence, the least information.
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Figure 4. Architecture of our binocular stereo network to estimate disparity (and hence depth).

to max disparity. At corresponding pixel positions, the left

and right features are concatenated and copied into the re-

sulting 4D cost volume (dimensions 1⁄2D×1⁄2H×1⁄2W×2F ,

where D is the max disparity). The right-left cost volume is

created by repeating this procedure in the opposite direction

by sliding the left tensor to the left, along the epipolar lines

of the right tensor, also up to the max disparity. Note that,

as in [15], the first layer of the network downsamples by a

factor of two in each direction to reduce both computation

and memory in the cost volumes.

These two cost volumes are used in a 3D convolution /

deconvolution bottleneck that performs stereo matching by

comparing features. This bottleneck contains a multiscale

encoder to perform matching at multiple resolutions, fol-

lowed by a decoder with skip connections to incorporate

information from the various resolutions. Just as in the fea-

ture extraction layers above, the weights in the left and right

bottleneck matching units are shared and learned together.

After the last decoder layer, upsampling is used to produce

both a left and right tensor (dimensions D×H×W×1) con-

taining matching costs between pixels in the two images.

At this point it would be natural to apply differentiable

soft argmax [15] to these matching costs (after first convert-

ing to probabilities) to determine the best disparity for each

pixel. Soft argmax has the drawback, however, of assuming

that all context has already been taken into account, which

may not be the case. To overcome this limitation, we im-

plement a machine-learned argmax (ML-argmax) function

using a sequence of 2D convolutions to produce a single

value for each pixel which, after passing through a sigmoid,

becomes the disparity estimate for that pixel. We found the

Table 1. Previous stereo methods have used either supervised or

unsupervised training, whereas we use both (semi-supervised).

method supervised unsupervised

SGM-Net [25] S ·
PBCP [24] S ·

L-ResMatch [26] S ·
SsSMnet [29] · U

GC-Net [15] S ·
CRL [23] S ·

Ours S U

sigmoid to be a crucial detail, without which the disparities

were not learned correctly. Our machine-learned argmax is

not only able to extract disparities from the disparity PDF

tensor, but it is also better at handling uniform or multi-

modal probability distributions than soft argmax. Moreover,

it yields more stable convergence during training.

Three key differences of our architecture with respect

to GC-Net [15] are the following: 1) our semi-supervised

loss function which includes both supervised and unsuper-

vised terms, as explained in more detail below; 2) our use

of ELU activations [3] rather than ReLU-batchnorm, which

enables the network to train and run faster by obviating the

extra operations required by batchnorm; and 3) our novel

machine-learned argmax function rather than soft argmax,

which allows the network to better incorporate context be-

fore making a decision.

To train the network, we use the following loss function,

which combines the supervised term (Elidar) used by most

other stereo algorithms [25, 24, 26, 15, 23] along with un-
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supervised terms similar to those used by MonoDepth [9]:

L = λ1Eimage + λ2Elidar + λ3Elr + λ4Eds, (1)

where

Eimage = El
image + Er

image (2)

Elidar = |dl − d̄l|+ |dr − d̄r| (3)

Elr =
1

n

∑

ij

|dlij − d̃lij |+
1

n

∑

ij

|drij − d̃rij | (4)

Eds = El
ds + Er

ds. (5)

Note that Eq. (2) ensures photometric consistency, Eq. (3)

compares the estimated disparities to the sparse LIDAR

data, Eq. (4) ensures that the left and right disparity maps

are consistent with each other, and Eq. (5) encourages the

disparity maps to be piecewise smooth, respectively, where

El
image =

1

n

∑

i,j

α
1− SSIM(I lij , Ĩ

l
ij)

2
+ (1− α)|I lij − Ĩ lij |

El
ds =

1

n

∑

i,j

|∂xd
l
ij |e

−‖∂xI
l
i,j‖ + |∂yd

l
ij |e

−‖∂yI
l
i,j‖

and similarly for Er
image and Er

ds. The quantities above are

defined as

Ĩ l = wrl(Ir, dl) (6)

Ĩr = wlr(Il, dr) (7)

d̃l = wrl(dr, dl) (8)

d̃r = wlr(dl, dr) (9)

wlr(I, d) = (x, y) 7→ I(x− d(x, y), y) (10)

wrl(I, d) = (x, y) 7→ I(x+ d(x, y), y) (11)

SSIM(x, y) =

(

2µxµy + c1

µ2
x + µ2

y + c1

)(

2σxy + c2

σ2
x + σ2

y + c2

)

(12)

Note that Il and Ir are the input images, dl and dr are the

estimated disparity maps output by the network, d̄l and d̄r
are the ground truth disparity maps obtained from LIDAR,

SSIM is the structural similarity index [30, 28, 9], n is the

number of pixels, and c1 = 10−4 and c2 = 10−3 are con-

stants to avoid dividing by zero. Note that in Eqs. (10)–(11)

the coordinates are often non-integers, in which case we use

bilinear interpolation, implemented similar to [14].

5. Experimental Results

To evaluate our network as well as its variants, we trained

and tested on the KITTI dataset [7], requiring more than 40

GPU-days. For training, we used the 29K training images9

with sparse LIDAR for ground truth. To our knowledge,

9This the same training set split used by MonoDepth [9].

we are the first to combine supervised and unsupervised

learning for training a deep stereo network, see Tab. 1. The

network was implemented in TensorFlow and trained for

85000 iterations (approx. 2.9 epochs) with a batch size of 1

on an NVIDIA Titan X GPU. We use the Adam optimizer

starting with a learning rate of 10−4, which was reduced

over time. We then tested the network on the 200 train-

ing images from the KITTI 2015 benchmark, which contain

sparse LIDAR ground truth augmented by dense depth on

some vehicles from fitted 3D CAD models. (Note that this

process separates the training and testing datasets, since the

200 images are from 33 scenes that are distinct from the 28

scenes associated with the 29K training images.) Like other

authors, we used these 200 training images for testing, since

the ground truth for the KITTI 2015 test images is not pub-

licly available, and submission to the website is limited.

For all tests, the input images (which are originally dif-

ferent sizes) were resized to 1024×320; and for the LIDAR-

only experiments the images were further cropped to re-

move 37.8% of the upper part. The maximum disparity was

set to D = 96. No scaling was done on the input images,

but the LIDAR values were scaled to be between 0 and 1.

The same procedure was used for all variants, and no post-

processing was done on the results.

The various architectures that we tested are listed in

Tab. 2. These variants are named with respect to a baseline

architecture. Thus, our ML-argmax network is an exten-

sion to the baseline, whereas the other variants are less pow-

erful versions that either replace concatenation with cross-

correlation (sliding dot product), replace the bottleneck lay-

ers with simpler convolutional layers, remove one of the two

towers, or use a smaller number of weights.10 The single-

tower version has a modified loss function with all terms

involving the right disparity map removed.

The notation of the layers in the table is as follows: mBk

means m blocks of type B with k layers in the block. Thus,

1↓1 means a single downsampling layer, 1↑1 means a single

upsampling layer, and 2C means two convolutional layers.

The subscript + indicates a residual connection, so 8(2C+)
means 8 superblocks, where each superblock consists of

2 blocks of single convolutional layers accepting residual

connections.

Our first set of experiments was aimed at comparing un-

supervised, supervised, and semi-supervised learning. The

results of three variant architectures, along with monocular

depth, are shown in Tab. 3, which contains the D1-all error

of all pixels as defined by KITTI (the percentage of pixels

with an error at least 3 disparity levels or at least 5%). This

error is the percentage of outliers. Surprisingly, in all cases

the unsupervised (photometric) loss yielded better results

than the supervised loss (LIDAR). The best results were

10We also tried replacing 3D convolutions with 2D convolutions (similar

to [21]), but the network never converged.
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Table 2. Stereo architecture variants. The top row describes our deep stereo network, the second row is our baseline system (without

machine-learned argmax), and the remaining rows describe variations of the baseline. Feature extraction is identical in all cases except

for “small / tiny”. The cost volume is constructed using either concatenation or correlation of features, leading to either a 4D or 3D cost

volume, respectively; there are actually two cost volumes except for “single tower”. The bottleneck layers are smaller in “small / tiny” and

replaced by convolutional layers in “no bottleneck”; “tiny” has half as many 3D filters as “small” in the bottleneck. The aggregator is soft

argmax except for our network, which uses our machine-learned argmax. For the layer notation, see the text.

model features cost volume bottleneck upsampler aggregator

(2D conv.) (3D conv./deconv.) (3D deconv.) (2D conv.)

ML-argmax (ours) (1↓1, 8(2C+), 1C) concat. (4D) (4↓3, 2C, 4↑1+) 1↑1 ML-argmax (5C)

baseline (ours) (1↓1, 8(2C+), 1C) concat. (4D) (4↓3, 2C, 4↑1+) 1↑1 soft-argmax

correlation (1↓1, 8(2C+), 1C) correlation (3D) (4↓3, 2C, 4↑1+) 1↑1 soft-argmax

no bottleneck (1↓1, 8(2C+), 1C) concat. (4D) (2C) 1↑1 soft-argmax

single tower (1↓1, 8(2C+), 1C) concat. (4D, single) (4↓3, 2C, 4↑1+) 1↑1 soft-argmax

small / tiny (5C) concat. (4D) (2↓3, 2C, 2↑1+) 1↑1 soft-argmax

Table 3. Improvement from combining supervised (LIDAR) with

unsupervised (photometric consistency) learning. Shown are D1-

all errors on the 200 KITTI 2015 augmented training images after

training on 29K KITTI images with sparse ground truth. Note that

only relative values are meaningful; see text.

model lidar photo lidar+photo

MonoDepth [9] - 32.8% -

no bottleneck 21.3% 18.6% 14.5%

correlation 14.6% 13.3% 12.9%

baseline (ours) 15.0% 12.9% 8.8%

obtained by combining the two, because photometric and

LIDAR data complement each other: LIDAR is accurate at

all depths, but its sparsity leads to blurrier results, and it

misses the fine structure, whereas photometric consistency

allows the network to recover fine-grained surfaces but suf-

fers from loss in accuracy as depth increases. These obser-

vations are clearly seen in the example of Fig. 5.

MonoDepth [9] performed noticeably worse, thus

demonstrating (as explained earlier) that the gap between

mono and stereo is significant. (We used MonoDepth be-

cause it is a leading monocular depth algorithm whose code

is available online; other monocular algorithms perform

similarly.) Note that only the relative values are important

here; the absolute values are large in general from testing on

images with dense ground truth despite being trained only

on images with sparse ground truth. For these experiments

as well as the next, the relative weights in the loss func-

tion were set to λ1 = λ3 = 1.0 for lidar and for photo,

or λ1 = 0.01, λ3 = 0.1 for lidar+photo; and λ4 = 0.1,

α = 0.85.

Having established the benefit of combining supervised

and unsupervised learning, the second set of experiments

aimed at providing further comparison among the archi-

tecture variants. Results are shown in Tab. 4. A sig-

nificant improvement is achieved by our machine-learned

Table 4. Influence of various network architecture changes. Shown

are D1-all errors on the 200 KITTI 2015 augmented training im-

ages after training on 29K KITTI images with sparse ground truth.

Network size is measured by the number of weights. Note that

only relative values are meaningful; see text.

model size lidar+photo

no bottleneck 0.2M 14.5%

correlation 2.7M 12.9%

small 1.8M 9.8%

tiny 0.5M 11.9%

single tower 2.8M 10.1%

baseline (ours) 2.8M 8.8%

ML-argmax (ours) 3.1M 8.7%

argmax. Somewhat surprisingly, reducing the size of the

network substantially by either using a smaller network,

cross-correlation, or removing one of the towers entirely

has only a slight effect on error, despite the fact that a single

tower requires 1.8X less memory, cross-correlation requires

64X less memory, the small network contains 36% fewer

weights, and the tiny network contains 82% fewer weights.

From these data we also see that the bottleneck is extremely

important to extract information from the cost volume, and

that concatenation is noticeably better than correlation, thus

confirming the claim of [15].

To test on the official KITTI 2015 benchmark,11 we sub-

mitted two versions. The first version is exactly the same

baseline network as described above without retraining or

fine-tuning, except that we validated using the 200 KITTI

training images to learn the relative weights, λ1 = 0.01,

λ2 = 1.0, λ3 = λ4 = 0.1; and we set the maximum dis-

parity to D = 136. The results, shown in Tab. 5, are sig-

nificantly better (due to this reweighting) than on the aug-

mented training images, achieving 5.1% D1-all error on all

pixels. Although this is not competitive with recent tech-

11http://www.cvlibs.net/datasets/kitti
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Table 5. Results of our network compared with the leaders of the KITTI 2015 website, as of 2018-Mar-19. Anonymous results are excluded.

With fine-tuning, our network achieves errors that are competitive with state-of-the-art, even without training on synthetic data.

Non-occluded All

model D1-bg D1-fg D1-all D1-bg D1-fg D1-all

DispNetC [21] 4.1% 3.7% 4.1% 4.3% 4.4% 4.3%

SGM-Net [25] 2.2% 7.4% 3.1% 2.7% 8.6% 3.7%

PBCP [24] 2.3% 7.7% 3.2% 2.6% 8.7% 3.6%

Displets v2 [11] 2.7% 5.0% 3.1% 3.0% 5.6% 3.4%

L-ResMatch [26] 2.4% 5.7% 2.9% 2.7% 7.0% 3.4%

SsSMnet [29] 2.5% 6.1% 3.0% 2.7% 6.9% 3.4%

DRR [8] 2.3% 4.9% 2.8% 2.6% 6.0% 3.2%

GC-Net [15] 2.0% 5.6% 2.6% 2.2% 6.2% 2.9%

CRL [23] 2.3% 3.1% 2.5% 2.5% 3.6% 2.7%

iResNet [19] 2.1% 2.8% 2.2% 2.3% 3.4% 2.4%

Ours (no fine-tuning) 2.7% 13.6% 4.5% 3.2% 14.8% 5.1%

Ours (fine-tuned) 2.1% 4.5% 2.5% 2.7% 6.0% 3.2%

Figure 5. From top to bottom: an image, and results from su-

pervised (LIDAR), unsupervised (photometric consistency), and

semi-supervised (both) learning. Notice that the sparse LIDAR

data leads to smoothed results that misses fine details (e.g., the

fence), and the photometric loss recovers fine details but yields

noisy results. Our semi-supervised approach combines the best of

both. See the text for an explanation of the colormap.

niques, it is surprisingly good considering that the network

was not trained on dense data. For the next result, we took

this same network and fine-tuned it using the 200 KITTI

2015 augmented training images. After fine-tuning, our re-

sults are competitive with state-of-the-art, achieving 3.2%

D1-all error on all pixels and only 2.5% on non-occluded

pixels. These results were achieved without any postpro-

cessing of the data.

Our baseline network achieves results similar to those of

GC-Net [15], actually winning on three of the six metrics.

The remaining difference between the results is likely due

to GC-Net’s pretraining on dense data from the Scene Flow

dataset [21]. As a result, our network performs less well

around the boundaries of objects, since it has seen very little

dense ground truth data. Similar arguments can be made for

other competing algorithms, such as CRL [23] and iResNet

[19]. However, the focus of this paper was to examine the

influence of network architecture and loss functions rather

than datasets. It would be worthwhile in the future to also

study the influence of training and pretraining datasets, as

well as the use of synthetic and real data.

Fig. 5 highlights an advantage of our approach over GC-

Net and other supervised approaches. Because our network

is trained in a semi-supervised manner, it is able to recover

fine detail, such as the fence rails and posts. The sparse

LIDAR data in the KITTI dataset rarely captures this detail,

as seen in the second row of the figure. As a result, all

stereo algorithms trained on sparse LIDAR only (including

GC-Net) will miss this important structure. However, since

the LIDAR on which the KITTI ground truth is based often

misses such detail itself, algorithms (such as ours) are not

rewarded by the KITTI 2015 stereo benchmark metrics for

correctly recovering the detail.

The colormap used in Fig. 5 was generated by traversing

the vertices of the RGB cube in the order KRYGCBMW,

which uniquely ensures a Hamming distance of 1 between
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Figure 6. Example results of our algorithm on the KITTI 2015 testing dataset, from the KITTI website. From left to right: left input image,

disparity map, and error, using the KITTI color maps.

consecutive vertices (to avoid blending artifacts) and pre-

serves the order of the rainbow. Distances are scaled so that

∆E according to CIE1976 is the same between consecutive

vertices. All images are scaled in the same way, thus pre-

serving the color to disparity mapping. Objections to rain-

bow color maps [16, 2] do not appear relevant to structured

data such as disparity maps.

Additional results of our final fine-tuned network on the

KITTI 2015 online testing dataset are shown in Fig. 6, using

the KITTI color maps. Note that the algorithm accurately

detects vehicles, cyclists, buildings, trees, and poles, in ad-

dition to the road plane. In particular, notice in the third

row that the interior of the white truck is estimated properly

despite the lack of texture.

Tab. 6 shows the computation time of the various models

on different architectures. Note that with our custom run-

time (based on TensorRT / cuDNN), we are able to achieve

near real-time performance (almost 20 fps) on Titan XP,

as well as efficient performance on the embedded Jetson

TX2.12 As far as we know, this is the first deep-learning

stereo network ported to embedded hardware.

6. Conclusion

We have shown that a significant gap exists between

monocular and stereo depth estimation. We also presented a

careful analysis of various deep-learning-based stereo neu-

ral network architectures and loss functions. Based on this

analysis, we propose a novel approach combining a cost

volume with concatenated features, 3D convolutions for

matching, and machine-learned argmax for disparity extrac-

tion, trained in a semi-supervised manner that combines LI-

DAR and photometric data. We show competitive results

12Our custom runtime, which implements a set of custom plugins for

Tensor RT that implement 3D convolutions / deconvolutions, cost vol-

ume creation, soft argmax, and ELU, is available at https://github.

com/NVIDIA-Jetson/redtail.

Table 6. Computation time (milliseconds) for different stereo mod-

els on various GPU architectures (NVIDIA Titan XP, GTX 1060,

and Jetson TX2). Resolution shows the image dimensions and

max disparity, TF indicates TensorFlow runtime, opt indicates our

custom runtime based on TensorRT / cuDNN, and OOM indicates

“out of memory” exception. Note that our runtime is necessary for

Jetson TX2 because TensorFlow does not run on that board.

Titan XP GTX 1060 TX2

resolution TF opt TF opt opt

baseline 1025x321x136 950 650 OOM 1900 11000

small 1025x321x96 800 450 2500 1150 7800

small 513x161x48 280 170 550 300 990

tiny 513x161x48 75 42 120 64 370

on the standard KITTI 2015 stereo benchmark, as well as

superior ability to extract fine details when compared with

approaches trained using only LIDAR. Future work should

be aimed at real-time performance, detecting objects at in-

finity (e.g., skies), and handling occlusions.
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