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Abstract

3D hand pose inference from monocular RGB data is a

challenging problem. CNN-based approaches have shown

great promise in tackling this problem. However, such ap-

proaches are data-hungry, and obtaining real labeled train-

ing hand data is very hard. To overcome this, in this work,

we propose a new, large, realistically rendered hand dataset

and a neural network trained on it, with the ability to refine

itself unsupervised on real unlabeled RGB images, given

corresponding depth images. We benchmark and validate

our method on existing and captured datasets, demonstrat-

ing that we strongly compare to or outperform state-of-the-

art methods for various tasks ranging from 3D pose estima-

tion to hand gesture recognition.

1. Introduction

CNN based methods have recently led to significant ad-

vances in the literature of hand pose estimation. Many

works, however, are hindered [28, 61, 9, 7, 29] due to lim-

ited real datasets [46, 59, 54, 58], and thus rely on syntheti-

cally generated data. 3D hand pose estimation from monoc-

ular RGB images and video is in particular challenging and

has only recently been explored [62].

We need new network architectures, and new real ground

truth (GT) datasets to tackle this highly ambigious prob-

lem. While the former is easier to achieve and also compare

to, unfortunately on very limited monocular datasets cap-

tured [59], the latter is quite hard to obtain, and based on

the hunger of CNN-s for real data, it seems to also explain

the bottleneck behind limited accuracy of various architec-

tures on such monocular RGB based tasks, as opposed to

their depth counterparts.

In this work, we propose new learning architectures and

high quality datasets to improve the accuracy of 3D hand

pose estimation from a single RGB image. Our squeeze-

net [15] based architecture attempts to map a single RGB

hand image directly to a 3D hand representation (using

angle differences from a reference neutral pose, similar

to [61]), without the necessity to lift from 2D to 3D as in

Figure 1. Real predictions on the HGR dataset [16, 27, 13].

previous works [62, 60, 54]. It is trained on our new, large,

realistically rendered hand dataset, consisting of around 3

Million RGB images with respective 3D annotations. By

construction, such a model allows to refine itself on real-

data in a semi-supervised fashion, showing improved per-

formance on gesture classification tasks (see Sec.5).

A crucial part of our technique is refining the network in

an unsupervised way on real unseen monocular data, given

that a depth image is provided or extracted. We demonstrate

through various experiments that we can obtain a perfor-

mance boost as compared to training with purely synthetic

or limited monocular ground truth data, unlocking further

applications that work with RGB monocular data.

We show increased performance as compared to previ-

ous works based on monocular RGB images on a variety of

tasks (3D pose estimation, hand gesture recognition and 2D

fingertip detection), while being on par with methods that

require depth as input. Our technique can also be seen as an

economic and automatic way of creating a ground truth la-

beled dataset and we believe will be instrumental in creating

new datasets as well.

To summarize, our main contributions are :

• A new realistically rendered hand dataset with 3D an-

notations available to the community, that helps in

hand segmentation and 3D pose inference tasks.

• A method for refining an RGB-based network trained

on synthetic data with unlabeled RGB hand images

and the corresponding depth maps.
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• A state-of-the-art complete system for 3D hand pose

estimation and gesture recognition from monocular

RGB data that is thoroughly validated on available

datasets.

2. Related work

Hand pose estimation methods can be primarily classi-

fied with respect to the input as depth, monocular RGB,

multi-view, and video-based. Given the low cost of RGBD

sensors, there has been a vast amount of work on hand pose

estimation based on depth images, which can be further

classified as being either generative (model-based), discrim-

inative (appearance based), or both (hybrid) [11]. An addi-

tional classification can be made based on how the input is

mapped to the output : 2D-to-3D lifting [62, 53, 60, 3, 54,

31] or direct 3D mapping based methods [9, 61, 28]. Our

method can be classified as a discriminative, direct 3D map-

ping method with a monocular RGB as input.

Generative Approaches. Melax et al. [22] formulate the

hand optimization as a constrained rigid body problem.

Schröder et al. [37] suggest optimizing in a reduced param-

eter space and Tagliasacchi et al. [45] combine ICP with

temporal, collision, silhouette, kinematic and data-driven

terms to track with high robustness and accuracy from a

depth video. Sharp et al. [38] enhance this approach with a

smooth model and the possibility of reinitialization. Particle

swarm optimization (PSO) approaches have also been used,

requiring extensive rendering of an explicit hand model in

various poses [30], estimating ground truth [54] for the

NYU dataset [54], or combining it with ICP [32] to increase

its robustness. Taylor et al. [50] minimize an error between

a realistically synthesized and real depth image.

Discriminative Approaches. Oberweger et al. [28] show

how to boost the prediction performance by a projection to

a reduced subspace before the final regression, through a

bottleneck layer. Zhou et al. [61] predict joint rotation an-

gles (similar to us) by proposing a forward kinematic layer,

coupled with a physical loss to penalize angles outside a

specified range. Similarly, Dibra et al. [9] map to angles

and show how to refine their CNN on unlabeled depth input

images. Ge et al. [12] do not make use of depth, but instead

project a hand point cloud onto three orthogonal planes and

feed the projections into three different CNN-s. Deng et

al. [7] and Moon et al. [25] map 3D volumetric representa-

tions though 3D CNNs to the pose in 3D. Apart from CNN-

s, there exist also methods that utilize decision forests to

make a 3D pose prediction [17, 47, 56]. These methods are

typically fully supervised, except for [55, 49] and [9]. We

show semi-supervised and unsupervised adaptations, with

real RGB and depth data, however applied to RGB input.

Hybrid Approaches. Sometimes, CNN predictions are

complemented with an optimization step. Tompson et al.

[54] first predict hand keypoints and optimize for the actual

pose using inverse kinematics. Mueller et al. [26] fit the

hand skeleton to 2D and 3D joint predictions from a CNN.

Ye et al. [57] combine CNN-s and PSO in a cascaded and

hierarchical manner. Sinha et al. [40] first reduce the dimen-

sionality of the depth input through a CNN and then adopt

a matrix completion approach with temporal information to

optimize for the final pose. Oberweger et al. [29] use a

deep generative neural network to synthesize depth images,

which are utilized to iteratively correct a pose predicted by

another network during testing.

Our method can be regarded as an extension and adaptation

of data-driven methods that directly map an input to e.g. 3D

joint angles [61, 4, 48], with the ability to refine themselves

in an unsupervised manner to real data [9], being the first to

apply this to monocular RGB images instead of depth im-

ages as the input.

Video-Based Methods. Since RGBD sensors are not al-

ways available, further methods have been proposed, that

utilize RGB images in combination with temporal informa-

tion. La Gorce et al. [6] use texture, position and pose infor-

mation from the previous frame to predict the current pose.

Romero et al. [35] exploit temporal knowledge to guide a

nearest-neighbor search. All these methods have to solve

the problem of obtaining a first estimate.

Multi-View-Based Methods. Another approach involves

the use of multiple cameras to compensate for the lack of

depth data, alleviating the problems with occluded parts.

Zhang et al. [59] utilize stereo matching for hand track-

ing, Simon et al. [39] apply multi-view bootstrapping for

keypoint detection, and Sridhar et al. [44] estimate 3D

hand pose from multiple RGB cameras, with a hand shape

representation based on a sum of Anisotropic Gaussians,

whereas [43] combine RGB and Depth data to obtain a

richer input space.

Image-Based Methods. Due to the larger availability of

regular color cameras, as opposed to the abovementioned

methods, we make use of neither depth nor multi-camera or

temporal information. One of the first single frame based

hand detection works, from Athitsos and Sclaroff [1] utilize

edge maps and Chamfer matching. It was only recently that

one of the first monocular RGB based methods [62] for 3D

hand pose estimation was presented, utilizing CNN-s and

synthetic datasets. In contrast to our method, they split the

prediction into a 2D joint localization step followed by a

3D up-lifting, and use their own synthetic dataset to com-

plement the scarcity of existing datasets. We utilize our

new, high quality, hand synthetic dataset to predict 3D joint

angles directly from an RGB image and strongly compare

to [62] on various tasks in Sec. 5. Concurrent to our work,

there exist methods based on Variational Autoencoders [41]

for cross-modal learning and GANs [26] for learning a map-

ping from synthetic to real hands data, that tackle the same

problem of 3D hand pose estimation from RGB images.
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Figure 2. Overview of the training pipeline. Given a monocular RGB image as input, a SegNet [2] based network first segments out the

background, the result of which is input into SynthNet, a CNN model trained purely on synthetic data (Sec.4) that predicts the hand pose

in terms of angles α. In order to fine-tune the network to real monocular data, provided that a corresponding depth image is given, we

augment the initial base network with a depth loss component. We refer to this combination during training time as RefNet. Given α as

well as PCL, a point cloud that initially represents our hand model and gets iteratively updated to the input one, the weights of SynthNet

can be updated without the need of labeled data. At test time, a forward pass through SegNet and SynthNet estimates the desired pose.

3. 3D Hand Pose Estimation and Refinement

The overview of our method is depicted in Fig. 2. We at-

tempt to achieve two main goals : 1. estimate the 3D hand

pose, given a single monocular RGB image, and 2. enable a

refinement of our method predictions on unseen real images

in an unsupervised way. Due to the lack of real RGB ground

truth datasets, we tackle the first goal, by training a CNN

(SynthNet Sec.3.2) that minimizes an angle loss (Langle)

in a supervised manner. We train purely on a new large syn-

thetic dataset (Sec.4), consisting of masked-out renderings

of hands in various poses, shapes, illuminations and textures

and their respective 3D annotations. At test time, we first

segment a raw RGB image in order to obtain only the hand

part, by passing it through a segmentation CNN (Sec.3.1),

trained on a combination of real and our own synthetic data

to minimize a categorical cross-entropy loss (Lmask). This

first part captures priors on the variability of possible free

hand poses already at training time and achieves results on-

par or even better than state-of-the-art works on real datasets

for a variety of tasks (Sec.5).

We tackle the second goal of real data based refinement,

by extending our SynthNet with a component based on

a depth loss (Ldepth), which allows it to get fine-tuned

on unseen unlabeled real RGB data, provided that an ana-

logue unlabeled depth image (registered or unregistered), is

present at training time. We refer to this combination during

training time as RefNet, which can be considered as a dif-

ferentiable renderer. The weights of SynthNet are adapted

to real data in an unsupervised manner. During test time,

a forward pass through it allows to estimate the 3D pose.

This second part is very important, because of the known

discrepancy between real and synthetic data due to different

hand shapes, poses, sensors, and environment conditions.

Figure 3. (Left) Rigged hand model with max 3 (rotational) ×
17 (joints) DOF (Middle) 5 samples from our dataset in 5 differ-

ent orientations (Right) Two semi-supervised refinement examples

from our own dataset (top) and Senz3D [23, 24] (bottom) - from

left to right : input, SynthNet unrefined and refined prediction.

This refinement leads to significant improvements over the

network trained purely on synthetic data, which we show

through experiments in Sec.5 and supplementary.

3.1. Hand Segmentation Nets

Before segmentation, the hand needs to be localized in

the image. Inspired by He et al. [14] that compute object

detection and segmentation operating in two stages with

Faster R-CNN [34], we adopted SegNet [2] to first pro-

pose the hand region and then compute a pixel-wise mask

of the hand. The detection is also performed via segmenta-

tion, producing a rough mask to localize the hand and crop

around it, which in turn is utilized to produce a more refined

hand mask. In order to decrease training and inference time,

without affecting accuracy, we removed some layers from

both the encoder (two convolutions and one max-pooling)

and decoder (8 convolutions and one up-sampling). We call

this architecture OurSegNet and provide details in the sup-

plementary. Segmentation is a necessary preprocessing step

of our pipeline, and not a contribution of this work, hence

throughout this paper we analyze both it‘s performance
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(Sec.5) and that of HandSegNet from [62]. The expected

input RGB image and segmented output are 256× 256 pix-

els each. The latter serves as input for the next stage.

3.2. Synthetic RGB CNN Model (SynthNet)

Inspired by recent work [5] that trains a SqueezeNet [15]

based architecture purely on realistically rendered masked-

out synthetic garment images to map directly to 3D garment

vertex meshes, we also pose our problem as finding a map-

ping from masked-out images of hands to the 3D hand pose.

We start by training a SqueezeNet model (SynthNet)

adapted to regression (details in the supplementary) purely

on our synthetically generated dataset (Sec.4), which di-

rectly predicts, as in [8, 5, 61, 21], a 3D pose α from a

(masked-out) RGB image I (Sec.5). Our 3D pose α is rep-

resented in euler angles, similar to Zhou et al. [61], however

quaternions or rotation matrices can be utilized too. The

main constraint is that α must be informative enough to cal-

culate a forward kinematic chain, yielding the exact infor-

mation on how each joint transforms to the predicted pose

(Sec. 3.3). This is made possible by our rigged hand model

(Fig.3 (Left)). More specifically, α is given as an angle dif-

ference for each of the hand joints from the joint angles of a

hand in a neutral pose (open palm). Given the RGB images

of the synthetic training data, we train our SynthNet from

scratch to minimize the mean squared error (Langle) be-

tween the pose from our dataset and the predicted pose. We

noticed that by first converting the input images to grayscale

and then applying histogram normalization, with one and 99
percentile as borders to remove pixel outliers, not only made

the network converge faster, but also helped with skin-color

invariance. Since during training, all the hand masks are

centered, at test time we also center and scale the hands to

a square image of 225× 225 pixels (similar to SqueezeNet

input), when necessary padded at the borders.

Semi-Supervised Refinement on Real RGB Images. One

advantage of utilizing angles instead of joint positions, is

that they can be easily restricted to the allowed Degrees of

Freedom, reducing the large space of infeasible poses, and

constraining the latent space [4]. Given a skeleton, angles

can easily be converted to joints and hence fully determine

a pose. This might penalize accuracy on exact 3D joint esti-

mation tasks, under fixed hand skeleton model assumptions,

however it can be quite attractive for other tasks where the

hand skeleton constellation is more important than the exact

joint position, e.g. hand gesture recognition/classification.

Another advantage of utilizing angles, is that it allows any

pre-trained fully supervised network (regardless whether

real or synthetic data is used), to refine itself on easily ob-

tainable real unlabeled RGB images. Real images of hands

in various shapes, skin colors, lighting conditions and rota-

tions can be easily captured with cheap RGB sensors, under

the constraint that users perform pre-specified gestures, as

in [23, 24]. These gestures can be easily modeled, given a

synthetic hand model, obtaining the ground truth (angles)

without additional manual effort. Angles are advantageous

here, as various user poses would map to the same ground-

truth, regardless of the exact hand position and rotation in

the image. In this way, the input space is enriched with

multiple real images that map to the same angles, which in

turn helps to fine-tune synthetic networks and improve the

gesture recognition predictions (Fig.3 (right) and Sec.5).

3.3. Unsupervised Refinement from Depth Images

SynthNet alone gives good initial predictions on var-

ious real data ((Sec.5), Fig.1 and Fig.5), however a dis-

crepancy between synthetic and real datasets is known

in literature. Inspired by works based on differentiable

renderers [20] and differentiable offline [33, 9] and on-

line [52] depth based calibration and refinement, we extend

our network with a component that enables SynthNet to

get refined unsupervised, trained to minimize a depth loss

(Ldepth) on unlabelled depth data, that have one-to-one cor-

respondences to the input real RGB images. Let‘s assume

we have pairs of RGB and Depth images (I,D). Acqui-

sition of such pairs is very cheap with today‘s RGBD sen-

sors (Sec.5). Based on the approach from [9], we compare

the input depth image D to a synthesized depth image DI ,

which is computed from SynthNet predicted pose α, given

I as input, and a pointcloud PCL sampled from the hand

mesh model, in order to predict the accuracy on unlabelled

data. We transform the PCL points according to α, apply-

ing Linear Blend Skinning (LBS) [19], and subsequently

render them to obtain a synthetic depth image.

Pointcloud Transformation. Similar to [61], we compute

the forward kinematic chain, which yields for each joint the

transformation matrix, transforming from the model space

of a neutral pose into the model space of the skinned pose

α. What is important is that this step is differentiable, since

only matrix multiplications and trigonometric functions are

required. We denote with T (α) = [T1(α1), . . . , TJ(αJ)]
these transformation matrices, where J is the number of

joints used (see supplementary for details). In contrast

to [61], we do not just transform the joint positions, but a

bigger set of points PCL = [p1, . . . , pn] representing the

whole hand. Each point pi is associated with one or more

joints. The weight wi,j defines how much the point is bound

to the joint j. Applying LBS [19] fLBS(PCL, T ) trans-

forms each point by a linear combination of the matrices Tj

according to its weights:

p̂i := fLBS
i (PCL, T ) =

J
∑

j=1

wi,jTj(αj)pi (1)

Because this formulation is not just differentiable with re-

spect to T (a very important property that allows backprop-

agation to the SynthNet model), but also with respect to
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PCL, we can relax the static hand model to a dynamic one,

that gets updated during training to automatically adapt to

the hand shape. In order to give an intuitive advantage of

this approach, imagine a personalized adaption to a differ-

ent real person‘s hand shape, starting from a non-parametric

3D hand model. This becomes important since in reality,

not only the poses change but also the hand shapes.

Depth Rendering. The 3D hand shape and pose can be

adapted to the real hand shape and pose by iteratively

minimizing a difference in depth projections (Ldepth), of

points PCL and PCLD, sampled from the hand model

and the input depth image D, respectively. PCL is uni-

formly sampled from the hand mesh. In order to render

PCL in a differentiable way, we select only the points with

the lowest z-value (closest to the camera) for each of the

image coordinates (Di,j), and weight the z-value of each

point with a 2D basis function φ around its position. This

weighting (smoothing) step is important since otherwise,

only picking a depth value at each widely spaced sam-

pled point would make the method non-differentiable. Let

pi = [pi,x, pi,y, pi,z] ∈ PCL. The rendered depth image

approximation is defined as:

DI i,j := f
depth
i,j (PCL) = max

k
(depthi,j(pk)) (2)

where the points are assumed to be in the [0, 1] range and

the z-values represent the depth values with respect to the

camera:

depthi,j(p) = (1− pz)φi,j(p) (3)

Let dist2i,j(p) = (j− px)
2 +(i− py)

2. φ ∈ C1 was chosen

to have finite spatial support of a circle with radius r, and

can be defined as:

φi,j(p) =

(

1−

(

disti,j(p)

r

)2
)2

✶dist2
i,j

(p)<r2 (4)

Due to the discrepancy between the synthesized (DI ) and

real depth (D) images, as also motivated in [9], we do not

directly compute the loss, but instead also sample a point

cloud PCLD from the real depth image D and render it

using fdepth to obtain DS . The actual loss taken in the end

is the L1 norm of the difference between both synthesized

images, Fig.2 :

Ldepth =
∑

i,j

|fdepth
i,j (fLBS(PCL, T (α)))−f

depth
i,j (PCLD)|

(5)

4. Synthetic Dataset Generation

In the absence of monocular RGB labelled datasets, in

order to capture the space of pose variability already at

training time, we create a new, large, realistically rendered,

available free-hand dataset.

Figure 4. Three base poses (in boxes) with linear interpolation on

the parameter space in between.

Hand Model. We opted for a commercial rigged and tex-

tured hand model1 for Maya R©2. The skeleton consists of 21
bones with 51 degrees of freedom (DoF), see Fig.3 (Left).

Since not all the DoF are feasible for a human skeleton, we

restrict our method to 4 DoF per finger and 3 for the rota-

tion of the wrist. A real human hand has more than these 23

DoF [18], however, the additional DoF are often ignored to

simplify the problem [45].

Synthetic Dataset. Inspired by [56], we decided to use

a combination of manual and automatic sampling. We first

create some base poses. Then we linearly interpolate over

the parameters between each pair of base poses to generate

new poses, as in Fig.4, detecting intersections. This pro-

cedure allows to easily adapt the dataset to a desired pur-

pose by crafting suitable base poses and then automatically

generating the linear span between them. We end up with

399 such poses. Details on the proposed enumeration of

base poses for a general purpose system can be found in

the supplementary material, along with a heat map visual-

ization experiment demonstrating our network’s capability

to be trained on the generated poses (with minor difficulty

on typically occluded parts, such as the thumb). In addition

to the varying poses, for each view (we consider 5 views -

front, back, both sides and top, Fig.3 (Middle)) we apply

5 random rotations (45 degrees for each DoF of the wrist

joint) and illumination changes to each image. We also vary

the texture and shape.

Collision Avoidance. Since a linear interpolation within the

hand pose space can lead to self-intersection, the automatic

generation of new poses contains an intersection detection

which rejects such undesired poses. In order to detect inter-

sections, we loop over all finger vertices to find the nearest

(other) finger neighbor. By projecting the vertices differ-

ence vector onto the other finger surface normal, it can be

computed whether the vertex is inside the foreign mesh or

not. An intersection occurrence is detected when an “in-

side” threshold is passed. In order to simulate flesh interac-

tion between fingers, we relax the threshold allowing very

little intersection. Due to interpolation with collision avoid-

ance we end up with 122106 different poses.

Un-natural Poses. The linear interpolation preserves many

constraints applied to the base poses, e.g. maximal angle-

range and fixed ratio between certain angles. Thus, it suf-

1https://www.turbosquid.com/3d-models/rigged-male-hand-

max/786338
2www.autodesk.com/products/maya
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fices to create the base poses with the desired constraints to

make sure that the same holds within the complete dataset.

5. Experiments and Results

5.1. Training and Test Datasets

Detection and Segmentation Datasets. We utilize the

method and dataset from [62], for hand bounding box detec-

tion. On the other hand, for segmentation we use both real

and synthetic data. The real hand dataset contains 19000
images, 6000 of which come from the Hand Gesture Recog-

nition (HGR) dataset [16, 27, 13], which is an augmentation

of the initial 1500 raw images (consisting of 33 individuals

and 70 gestures), that we segment, add various backgrounds

and perform in-plane rotations of the hand. The remain-

ing 13000 belong to three individuals, captured performing

various poses in front of a green screen, which is replaced

with a random background. The synthetic images are in the

100K range and come from our synthetic dataset.

Pose Inference Datasets. Many publicly available datasets

are shot with depth cameras, e.g. the recently introduced

BigHand2.2M Dataset [58]. There is a lack of proper RGB

datasets. The NYU Hand Pose Dataset [54] e.g. contains

holes in the RGB images if no depth data is available,

while the Dexter RGBD dataset [42] has incomplete hand

annotation (fingertips) [62]. We make use of the Stereo

Hand Tracking Dataset [59] (StereoDS), which contains

twelve motion sequences in front of various backgrounds

(B1 through B6, and for each set, a count and random se-

quence of 1500 images each), which provides RGB and

Depth images together with the 3D joint positions. Another

area having a rich variety of RGB datasets is hand gesture

recognition, where the ground truth is a class label. We

utilize the German Fingerspelling Database (RWTH) [10],

that provides the classes of 35 gestures from the German

sign language, for 20 people, HGR [16, 27, 13], which in

addition to the class provides visible 2D fingertip locations

and Senz3D [23, 24] containing 11 gestures performed by

4 different people repeated 30 times each. Additionally, to

demonstrate unsupervised refinement on real data, we cap-

ture our own dataset (IntelDS) utilizing the Intel RealSense

Camera. It consists of 1000 pairs of registered RGB and

depth images for testing and 30, 000 for training (in the size

of 120× 120 pixels and without GT annotations), from one

individual wearing a black wristband, that allows for a sim-

ple intensity based segmentation.

5.2. Segmentation Accuracy Improvement

We evaluate the segmentation accuracy for both Hand-

SegNet [62] and OurSegNet, when training is performed

with and without adding our synthetic dataset to the avail-

able real ones. We evaluate on B1 random and count (150

images each) of StereoDS and the complete RWTH , ob-

Dataset [62] [62]+Synth OSN OSN+Synth

B1 Random 91.5 97.7 91 95.5

B1 Count 92 98 92 96

RWTH 93.34 93.37 92.9 93,1
Table 1. Segmentation accuracy in % for HandSegNet [62] and

OurSegNet (OSN) trained with and without our synthetic dataset.

serving an accuracy increase in the latter case (Table 1).

5.3. Refinement with Unlabeled Data

Semi-Supervised on Real RGB Images. As a proof-of-

concept, we utilize the Senz3D dataset [23, 24], to fine-

tune our SynthNet on real RGB images, by splitting the

dataset in half (300 each) for training and testing for a ges-

ture classification task on 10 of the classes. We first man-

ually craft a synthetic pose for each of the classes, in order

to obtain approximate GT labels (angles) for each training

image. Then, we learn a mapping from angles to classes,

similar to [62]. We measure the accuracy utilizing a 10-fold

cross validation, and notice an increase from 94 to 96.7%,

which is enabled by representing the 3D pose in terms of an-

gles as opposed to 3D joints (Sec.3.2). Fig.3 (Right) visual-

izes this improvement along with the supplementary video.

Unsupervised on Pairs of RGB and Depth Images. We

utilize the IntelDS to refine our RefNet in an unsuper-

vised way, utilizing pairs of RGB and depth data, and com-

pare it to the results of SynthNet before refinement. We

visualize the results before and after refinement in Fig.6,

also through videos and ROC curves in the supplementary,

demonstrating a clear improvement after the refinement. By

computing MSE between the two synthesized images which

are utilized to compute the depth loss, we notice that the

error halves in the latter case. Additionally we show a

video where we compare to [9] trained on depth images and

demonstrate similar performance.

5.4. Comparison to State­of­the­art

We compare to related methods working on RGB or

depth input images, and investigate generalization on var-

ious dataset, for three main tasks : gesture recognition, 2D

fingertip estimation and 3D pose estimation. Qualitative re-

sults on predictions are depicted in Fig.1 and Fig.5 as well

as in the supplementary material.

Classification on Spelling Dataset. Like Zimmermann

et al. [62], we evaluate our system on RWTH on all the

30 static gestures, by first predicting the poses and then ap-

plying a pose classifier to the respective class. Unlike [62],

we do not utilize images from this dataset to refine on and

we first segment the images utilizing OurSegNet. We uti-

lize 10-fold cross validation to estimate the accuracy since

no split specification was given by [62]. Training was done

with one hidden layer of 500 neurons with Relu activation

and dropout probability of 0.5. We achieve superior perfor-
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Figure 5. SynthNet predictions on (left) HGR dataset [16, 27, 13] (middle) one individual hand (right) synthetic dataset from [62].

Figure 6. Two examples from our validation set IntelDS. SynthNet predictions before (top) and after refinement (bottom). From left to

right : RGB Input (I), Input Depth (D) , Synthesized Input Depth (DS), Prediction (DI ) and Error in depth prediction.

Method RWTH Senz3D

[10] on subset (from [62]) 63.44 -

[62] 66.8 77

Ours 73.6 94
Table 2. Classification accuracy comparison, in % of correctly

classified poses, on the RWTH [10] and Senz3D [23, 24].

Method Error

[62] (their segmentation) 804.23 px2

[62] (oracle segmentation) 483.28 px2

Ours (oracle segmentation) 361.47 px2

Table 3. Fingertip accuracy on the HGR Dataset [16, 27, 13] com-

puted as MSE over pixel errors, with image size 225× 225 pixels.

Evaluated for \Trained on Joint positions Joint angles

Joint Position MSE 0.199 0.397

Joint Angle MSE (deg) 42.829 12.763
Table 4. Joint Angles vs Positions MSE on our synthetic dataset.

mance compared to [62] and [10] as shown in Table 2. We

repeat the same experiment, however now on Senz3D over

10 classes, also achieving a better performance than [62].

Fingertip Detection Comparison. We evaluate

SynthNet predictions on the HGR dataset, which con-

tains hands from multiple people, assuming an oracle seg-

mentation (ground truth segmented by us). Fig.1 and Fig.5

(left) shows a qualitative assessment of our results, where

the predicted pose seems quite accurate, despite training

only on synthetic data. To quantitatively compare to [62],

we measure the accuracy of predicting 2D (visible) joint

positions, by computing the MSE on pixels for all front fac-

ing images (since back facing ones have almost no visible

fingertip). Zimmermann et al. [62] provide 3D joints di-

rectly, while we apply the kinematic chain on angles α to

retrieve the 3D joints. These 3D fingertips are then pro-

jected into 2D by solving a least-squares system to best fit

to the groundtruth labels (since no camera info is given).

Table 3 depicts these results, with [62] evaluated with their

and the oracle segmentation (since we train OurSegNet on

HGR we only evaluate on oracle segmentation), where our

method achieves higher accuracy.

ROC Angle and 3D Joint Curves. We evaluate accu-

racy on 3D pose prediction for different methods by com-

puting ROC curves, that denote the fraction of frames below

a maximum 3D joint (or angle) prediction error, on the B1

set of StereoDS. We compare to [62], that assume an RGB

input as we do, and four other depth-based methods. Such

methods are trained to directly predict 3D joint positions,

unlike ours that predicts angles (Sec.3.2), and hence min-

imizes a different quantity (e.g. a slight wrist angle miss-

calculation would bring a larger error on 3D joints predic-

tion, even if the rest of the angles are correctly predicted).

Thus, we argue that a direct comparison on this dataset is

not possible, also due to the discrepancy between the GT

skeleton in StereoDS and our hand model skeleton, from

which we compute 3D joints from angles. In order to back

this up, we performed an experiment, on 300 unseen sam-

ples from our synthetic dataset, where we once trained for

3D joint positions and once for angles, and computed the

MSE for both cases. As it can be noticed in Table 4, training

for the respective task always achieves a smaller error. Nev-

ertheless, for completeness we compare on this dataset and
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Figure 7. Accuracy on the StereoDS [59] dataset. (Left) Improvement in euler angles due to refinement (Right) Comparison to state-of-

the-art methods trained to map onto 3D joints. We show our ROC curve trained on angles along with a version trained on joints.

report ROC curves for both angles and joints, in Fig.7. Due

to the lack of GT segmentation we first apply OurSegNet

to obtain the masked-out RGB images. The methods we

compare to, refine on sets B2-B6 consisting of 15, 000 im-

ages. We can not directly fine-tune on such datasets unfor-

tunately, however we apply the following procedure : we

compute the GT angles over B3-B5 (note from a differ-

ent skeleton) and utilize this as our GT for refinement on

the training set. Due to innacurate segmentation we do not

make use of B2 and B6. We then apply forward kinemat-

ics to obtain the 3D joints from angles, and learn a linear

mapping from our skeleton predicted 3D joints to those of

the StereoDS GT, in order to minimize the bias between

both skeletons. At test time, we first predict the angles on

B1, then compute joints and apply the mapping. The re-

sults are depicted in Fig.7 (Right) with [62] achieving (as

expected) a higher Area Under Curve (AUC). Nevertheless,

computing the ROC for euler angle errors, as in Fig.7 (Left),

we notice that the AUC for our method after refinement is

almost the same as that of [62]. In order to quantitatively

prove our claim for the discrepancy between training for

different tasks, we additionally train a network to predict

3D joints instead of angles, utilizing only our synthetic data

and refining on B3-B5. We already notice a boost in the

predictions, with the new curve, Fig.7 ((Right) Ours (joint

regression)), reaching similar accuracy to that of [62]. We

think that the difference between the curves can be due to

our refinement only on a part of the complete training set

that [62] was refined on.

6. Discussion and Conclusions

We could show, through quantitative and qualitative eval-

uations, that utilizing lightweight CNN-s trained purely on

our newly proposed synthetic dataset can achieve accurate

pose inference, for a variety of tasks, strongly competing

with and even outperforming existing state-of-the-art. We

additionally showed that by extending its construction with

a depth loss component, coupled with our pose representa-

tion, the accuracy further improved via semi-supervised and

unsupervised training with real unlabeled images.

At the moment, we utilize training data generated from a

single shape hand model. Despite the fact that we could

show generalization on multiple real hands, and good ac-

curacy especially on classification tasks, there is still room

for improvement, e.g. experimenting with adding a second

shape improved prediction on HGR by 10% (supplemen-

tary). Additionally, due to the joint angle parametrization,

the same parameters could represent different poses when

children and adult hands are considered. Our current opti-

mization model, though, allows an internal adaptation to a

hand shape. Coupling our method with recent more power-

ful hand shape models such as Tkach et al. [51] and Romero

et al. [36]’s has the potential to improve and personalize

hand pose estimation for a variety of human hand shapes.

Even though we could show improvements in segmentation,

based on the synthetic dataset, most of it is due to the real

GT training data we annotated. As also backed up by our

refinement experiments, further real GT datasets with seg-

mentation and pose annotations are very important. Addi-

tionally, we could avoid segmentation, by synthesizing 3D

models in front of various backgrounds, however on the ex-

pense of added training time and larger datasets.

Lastly, we envisage to apply our technique to related tasks

such as human pose estimation, with minimal changes to

the underlying representation and architecture.
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