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Abstract

Over the past few years, various tasks involving videos

such as classification, description, summarization and

question answering have received a lot of attention. Current

models for these tasks compute an encoding of the video by

treating it as a sequence of images and going over every

image in the sequence. However, for longer videos this is

very time consuming. In this paper, we focus on the task

of video classification and aim to reduce the computational

time by using the idea of distillation. Specifically, we first

train a teacher network which looks at all the frames in a

video and computes a representation for the video. We then

train a student network whose objective is to process only

a small fraction of the frames in the video and still produce

a representation which is very close to the representation

computed by the teacher network. This smaller student net-

work involving fewer computations can then be employed at

inference time for video classification. We experiment with

the YouTube-8M dataset and show that the proposed student

network can reduce the inference time by upto 30% with a

very small drop in the performance.

1. Introduction

Today video content has become extremely prevalent on

the internet influencing all aspects of our life such as educa-

tion, entertainment, sports etc. This has led to an increasing

interest in automatic video processing with the aim of iden-

tifying activities [12, 15], generating textual descriptions

[6], generating summaries [16], answering questions [8]

and so on. Current state of the art models for these tasks are

based on the neural encode-attend-decode paradigm [3, 5].

Specifically, these approaches treat the video as a sequence

of images (or frames) and compute a representation of the

video by using a Recurrent Neural Network (RNN). The in-

put to the RNN at every time step is an encoding of the cor-

responding image (frame) at that time step as obtained from

a Convolutional Neural Network. Computing such a repre-

sentation for longer videos can be computationally very ex-

pensive as it requires running the RNN for many time steps.

Further, for every time step the corresponding frame from

the video needs to pass through a convolutional neural net-

work to get its representation. Such computations are still

feasible on a GPU but become infeasible on low end devices

which have power, memory and computational constraints.

In this work, we focus on the task of video classification

[1] and aim to reduce the computational time. We take mo-

tivation from the observation that when humans are asked

to classify a video or recognize an activity in a video they

do not typically need to watch every frame or every sec-

ond of the video. A human would typically fast forward

through the video essentially seeing only a few frames and

would still be able to recognize the activity (in most cases).

Taking motivation from this we propose a model which can

compute a representation of the video by looking at only a

few frames of the video. Specifically, we use the idea of dis-

tillation wherein we first train a computationally expensive

teacher network which computes a representation for the

video by processing all frames in the video. We then train

a relatively inexpensive student network whose objective is

to process only a few frames of the video and produce a rep-

resentation which is very similar to the representation com-

puted by the teacher. This is achieved by minimizing the

squared error loss between the representations of the stu-

dent network and the teacher network. At inference time,

we then use the student network for classification thereby

reducing the time required for processing the video. We ex-

periment with the YouTube-8M dataset and show that the

proposed student network can reduce the inference time by

upto 30% and still give a classification performance which

is very close to that of the expensive teacher network.

2. Related Work

We focus on video classification in the context of the

YouTube-8M dataset [1]. On average the videos in this
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Figure 1: Architecture of TEACHER-STUDENT network for video classification

dataset have a length of 200 seconds. Each video is repre-

sented using a sequence of frames where every frame corre-

sponds to one second of the video. These one-second frame

representations are pre-computed and provided by the au-

thors. The authors also proposed a simple baseline model

which treats the entire video as a sequence of these one-

second frames and uses an Long short-term memory net-

works (LSTM) to encode this sequence. Apart from this,

they also propose some simple baseline models like Deep

Bag of Frames (DBoF) and Logistic Regression [1]. Vari-

ous other classification models [10, 14, 9, 4, 13] have been

proposed and evaluated on this dataset which explore differ-

ent methods of: 1) feature aggregation in videos (temporal

as well as spatial) [4, 10], 2) capturing the interactions be-

tween labels [14] and 3) learning new non-linear units to

model the interdependencies among the activations of the

network [10]. We focus on one such state of the art model,

viz., a hierarchical model whose performance is close to that

of the best model on this dataset. We take this model as the

teacher network and train a comparable student network as

explained in the next section.

Our work is inspired by the work on model compres-

sion in the context of image classification. For exam-

ple, [2, 7, 11] use Knowledge Distillation to learn a more

compact student network from a computationally expensive

teacher network. The key idea is to train a shallow student

network to mimic the deeper teacher network, by ensur-

ing that the final output representation and the intermediate

hidden representations produced by the student network are

very close to those produced by the teacher network. While

in their case the teacher and student differ in the number of

layers, here, the teacher and student network differ in the

number of time steps of frames processed by two networks.

3. Proposed Approach

Our model contains a teacher network and a student net-

work. The teacher network can be any state of the art video

classification model but in this work we consider the hier-

archical RNN based model. This model assumes that each

video contains a sequence of b equal sized blocks. Each of

these blocks in turn is a sequence of m frames thereby mak-

ing the entire video a sequence of sequences. In the case of

the YouTube-8M dataset, these frames are one-second shots

of the video and each block b is a collection of m such one-

second frames. The model contains a lower level RNN to

encode each block (sequence of frames) and higher level

RNN to encode the video (sequence of blocks). As is the

case with all state of the art models for video classifica-

tion, this teacher network looks at all the N frames of video

(F0, F1, . . . , FN−1) and computes an encoding ET of the

video, which is then fed to a simple feedforward neural net-

work with a multi-class output layer containing a sigmoid

neuron for each of the C classes (a video can have multiple

labels). The parameters of the teacher network as well as

the output layer are learnt using a standard multi-label clas-

sification loss Lmodel, which is a sum of the cross-entropy

losses between the true labels y and predictions ŷ for each

of the C classes, given by:

Lmodel = (−1)

C∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

In addition to this teacher network, we introduce a

student network which only processes every jth frame

(F0, Fj , F2j , . . . , FN
j
−1

) of the video and computes a rep-

resentation ES of the video from these N
j

frames (which

constitutes 100

j
= k % of N frames). At the time of evalu-

ation, this representation is fed to the feedforward network

with a multi-class output layer. We introduce an additional

loss function as shown below which ensures that the repre-

sentation computed by the student network is very similar

to the representation computed by the teacher network.

Lstudent = ||ET − ES ||
2
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We also try a simple variant of the model, where in addition

to ensuring that the final representations ES and ET are sim-

ilar, we also ensure that the intermediate representations of

the models are similar. In particular, we ensure that the rep-

resentation of the frames j, 2j and so on computed by the

teacher and student network are very similar by minimizing

the squared error distance between the corresponding inter-

mediate representations. The parameters of the teacher net-

work, student network and output layer are trained jointly

as shown in the Figure 1. Note that for ease of illustration,

in the figure, we show a simple RNN model as opposed to

a hierarchical RNN model.

4. Experimental Setup

In this section, we describe the dataset used for our

experiments, the hyperparameters that we considered, the

baseline models that we compare with and the performance

of the two variants of our model.

1. Dataset: The YouTube-8M dataset [1] contains 8

million videos with multiple classes associated with each

video. The average length of a video is 200s and the

maximum length of a video is 300s. The authors of

the dataset have provided pre-extracted audio and visual

features for every video such that every second of the

video is encoded as a single frame feature. The original

dataset consists of 5,786,881 training (70%), 1,652,167

validation (20%) and 825,602 test examples (10%). Since

[1] does not provide access to the test set, we have reported

results on the validation dataset. In this work, we do not

use any validation set as we experiment with a fixed set of

hyperparameters as explained below.

2. Hyperparameters: For all our experiments, we used

Adam Optimizer with the initial learning rate set to 0.001
and then decrease it exponentially with 0.95 decay rate.

We used a batch size of 256. For both the student and

teacher networks we used a 2-layered MultiRNN Cell with

cell size of 1024 for both the layers of the hierarchical

model. The size of the hidden representation of the LSTM

was 2048. For regularization, we used dropout (0.5) and

L2 regularization penalty of 2 for all the parameters. We

trained all the models for 5 epochs. For the teacher network

we chose the value of m (number of frames per block) to

be 20 and for the student network we set the value of m

to 5. We first train the teacher, student and output layer

jointly using the two loss functions described in Section 3.

After that, we remove the teacher network and finetune the

student network and the output layer.

3. Evaluation Metrics: We used the following metrics for

evaluating the performance of different models [1]:

• GAP (Global Average Precision): is defined as

GAP =

P∑

i=1

p(i)∇r(i)

where p(i) is the precision of prediction i, r(i) is the re-

call of prediction i and P is the number of predictions

(label/confidence pairs). We limit our evaluation to only

top-20 predictions for each video as mentioned in the

YouTube-8M Kaggle competition.

• AVG-Hit@t : Fraction of test samples for which the

model predicts at least one of the ground truth labels in

the top t predictions.

• PERR (Precision at Equal Recall Rate) : For each sample

(video), we compute the precision of the top L scoring

labels, where L is the number of labels in the ground truth

for that sample. The PERR metric is the average of these

precision values across all the samples.

• mAP (Mean Average Precision) : The mean average pre-

cision is computed as the unweighted mean of all the per-

class average precisions.

4. Baseline Models: As mentioned earlier the student net-

work only processes k% of the frames in the video. We

report results with different values of k : 5, 10, 25 or 50 and

compare the performance of the student network with the

following versions of the teacher network:

a) TEACHER-FULL: The original hierarchical model

which processes all the frames of the video.

b) TEACHER-UNIFORM-k : A hierarchical model trained

from scratch which only processes k% of the frames

of the video. These frames are separated by a constant

interval and are thus equally spaced. However, unlike

the student model this model does not try to match the

representations produced by the full teacher network.

c) TEACHER-RANDOM-k: A hierarchical model trained

from scratch which only processes k% of the frames of

the video. These frames are sampled randomly from the

video and may not be equally spaced.

We refer to our proposed student network which pro-

cesses k% of the frames and matches its final representa-

tion to that of the teacher as STUDENT-k-FINAL. We refer

to the student network which matches all the intermediate

representations of the teacher network in addition to the fi-

nal representation as STUDENT-k-INTERMEDIATE.

5. Results

The results of our experiments are summarized in Tables

1 (performance) and 2 (computation time). We can show

that the observed results are enough to convey the main find-

ings of our work as discussed below.
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MODEL AVG-HIT@1 PERR mAP GAP

TEACHER-FULL 0.862 0.736 0.402 0.809

TEACHER-UNIFORM-50 0.859 0.731 0.390 0.804

TEACHER-UNIFORM-25 0.855 0.725 0.371 0.798

TEACHER-UNIFORM-10 0.848 0.716 0.362 0.788

TEACHER-UNIFORM-5 0.834 0.698 0.333 0.770

TEACHER-RANDOM-50 0.841 0.702 0.305 0.775

TEACHER-RANDOM-25 0.832 0.693 0.297 0.765

TEACHER-RANDOM-10 0.829 0.693 0.320 0.765

TEACHER-RANDOM-5 0.804 0.665 0.288 0.731

STUDENT-50-FINAL 0.860 0.733 0.360 0.803

STUDENT-25-FINAL 0.857 0.727 0.385 0.802

STUDENT-10-FINAL 0.852 0.721 0.375 0.795

STUDENT-5-FINAL 0.842 0.710 0.359 0.783

STUDENT-50-INTERMEDIATE 0.862 0.739 0.385 0.805

STUDENT-25-INTERMEDIATE 0.851 0.718 0.346 0.792

STUDENT-10-INTERMEDIATE 0.854 0.725 0.382 0.799

STUDENT-5-INTERMEDIATE 0.845 0.720 0.356 0.787

Table 1: Performance comparison of proposed STUDENT-k-FINAL and STUDENT-k-INTERMEDIATE models with different

baselines on YouTube-8M dataset. Here, STUDENT-k refers to k% of frames used by student network. FINAL encoding and

INTERMEDIATE encoding refer to two simple variants of the proposed framework.

1. Performance comparison against baselines: As the

percentage of frames processed decreases, there is a gap in

the performance of TEACHER and TEACHER-UNIFORM-

50. However, this gap is not very large. In particular,

even when we process only 10% of the frames (TEACHER-

UNIFORM-10) the drop in AVG-Hit@1, PERR, mAP and

GAP is only 2-4%. As expected, sampling equally spaced

frames from the video (UNIFORM) gives better performance

than randomly sampling frames from the video (RANDOM).

Further, the gap between the performance of the student net-

work and teacher network is even smaller. In particular,

TEACHER-RANDOM-k< TEACHER-UNIFORM-k < STU-

DENT-k < TEACHER-FULL. This suggests that the student

network indeed learns better representations which are com-

parable to the representations learned by the TEACHER net-

work. In fact, when we train the student network to match

all the intermediate representations produced by the teacher

network then we get the best performance.

2. Computation time of different models: As expected,

the computation time of all the models that process only

k% of the frames (< N ) is much less than the computa-

tion time of the teacher network which processes all (N )

frames of the video (see Table 2). We would like to high-

light that the STUDENT-10-INTERMEDIATE gives a drop of

1.2%, 0.8%, 1.1% and 2% in GAP, AVG-Hit@1, PERR and

mAP scores respectively while the inference time drops by

30%.

MODEL TEACHER-FULL 10% 25% 50%

TIME (HRS.) 13.00 9.11 11.00 12.50

Table 2: Comparison of evaluation time of models using

k% of frames and the TEACHER-FULL(original) model on

validation set using Tesla k80 machines

6. Conclusion and Future Work

We proposed a method to reduce the computation time

for video classification using the idea of distillation. Specif-

ically, we first train a teacher network which computes a

representation of the video using all the frames in the video.

We then train a student network which only processes k %

of the frames of the video. We add a loss function which en-

sures that the final representation produced by the student is

the same as that produced by the teacher. We also propose

a simple variant of this idea where the student is trained

to also match the intermediate representations produced by

the teacher for every jth frame. We evaluate our model on

the YouTube-8M dataset and show that the computationally

less expensive student network can reduce the computation

time by upto 30% while giving similar performance as the

teacher network.

As future work, we would like to evaluate our model on

other video processing tasks such as summarization, ques-

tion answering and captioning. We would also like to ex-

periment with different teacher networks other than the hi-

erarchical RNN considered in this work.
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