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Abstract

The work in this paper is driven by the question how to

exploit the temporal cues available in videos for their ac-

curate classification, and for human action recognition in

particular? Thus far, the vision community has focused on

spatio-temporal approaches with fixed temporal convolution

kernel depths. We introduce a new temporal layer that mod-

els variable temporal convolution kernel depths. We embed

this new temporal layer in our proposed 3D CNN. We extend

the DenseNet architecture - which normally is 2D - with 3D

filters and pooling kernels. We name our proposed video

convolutional network ‘Temporal 3D ConvNet’ (T3D) and

its new temporal layer ‘Temporal Transition Layer’ (TTL).

Our experiments show that T3D outperforms the current

state-of-the-art methods on the HMDB51, UCF101 and Ki-

netics datasets.

1. Introduction

Compelling advantages of exploiting temporal rather

than merely spatial cues for video classification have been

shown lately [4, 20, 27]. Such insights are all the more im-

portant given the surge in multimedia videos on the Internet.

Even if considerable progress in exploiting temporal cues

was made [2, 6, 20, 21], the corresponding systems are still

wanting. Recently, several variants of Convolutional Neural

Networks (ConvNets) have been proposed that use 3D con-

volutions, but they fail to exploit long-range temporal infor-

mation, thus limiting the performance of these architectures.

Complicating aspects include: (i) these video architectures

have many more parameters than 2D ConvNets; (ii) training

the video architectures calls for extra large labeled datasets;

and (iii) extraction and usage of optical-flow maps which is

very demanding, and also difficult to obtain for large scale

dataset, e.g. Sports-1M. All of these issues negatively influ-

ence their computational cost and performance.

Motivated by the above observations, we introduce a

novel deep spatio-temporal feature extractor network illus-

trated in Figure 1. The aim of this extractor is to model

variable temporal 3D convolution kernel depths over shorter

and longer time ranges. We name this new layer in 3D Con-

Nets configuration ‘Temporal Transition Layer’ (TTL). TTL

is designed to concatenate temporal feature-maps extracted

at different temporal depth ranges, rather than only consid-

ering fixed 3D homogeneous kernel depths [2, 20, 21]. We

embed this new temporal layer into the 3D CNNs. In this

work, we extend the DenseNet architecture - which by de-

fault has 2D filters and pooling kernels - to incorporate 3D

filters and pooling kernels, namely DenseNet3D. We used

DenseNet because it is highly parameter efficient. Our TTL

replaces the standard transition layer in the DenseNet ar-

chitecture. We refer to our modified DenseNet architecture

as ‘Temporal 3D ConvNets’ (T3D), inspired by C3D [20],

Network in Network [15], and DenseNet [10] architectures.

T3D densely and efficiently captures the appearance and

temporal information from the short, mid, and long-range

terms. We show that the TTL feature representation fits ac-

tion recognition well, and that it is a much simpler and more

efficient representation of the temporal video structure. The

TTL features are densely propagated throughout the T3D ar-

chitecture and are trained end-to-end. In addition to achiev-

ing high performance, we show that the T3D architecture

is computationally efficient and robust in both the training

and inference phase. T3D is evaluated on three challeng-

ing action recognition datasets, namely HMDB51, UCF101,

and Kinetics. We experimentally show that T3D achieves

the state-of-the-art performance on HMDB51 and UCF101

among the other 3D ConvNets and competitive results on

Kinetics.

2. Related Work

Video Classification with and without ConvNets: Video

classification and understanding has always been a hot topic.

Several techniques have been proposed to come up with ef-

ficient spatio-temporal feature representations that capture

the appearance and motion propagation across frames in

videos, such as HOG3D [12], SIFT3D [16], HOF [14], ES-

URF [26], MBH [3], iDTs [22], and more. These were all

hand-engineered. Among these, iDTs yielded the best per-

formance, at the expense of being computationally expen-

sive and lacking scalability to capture semantic concepts. It

is noteworthy that recently several other techniques [7] have

been proposed that also try to model the temporal structure

11230



3D DenseBlock

Conv

1*1*T1

Conv

3*3*T2

Conv

3*3*T3

Conv

Conv

Concat

3D Temporal Transition Layer

3D DenseBlock

Conv

Avg

Pooling

Figure 1: Temporal Transition Layer (TTL) is applied to

our DenseNet3D. T3D uses video clips as input. The TTL

operates on the different temporal depths, thus allowing the

model to capture the appearance and temporal information

from the short, mid, and long-range terms.

in an efficient way.

Temporal ConvNets: Recently, several temporal archi-

tectures have been proposed for video classification, where

the input to the network consists of either RGB video clips

or stacked optical-flow frames. The filters and pooling ker-

nels for these architectures are 3D (x, y, time) with fixed

temporal kernel depths throughout the architecture. The

most intuitive are 3D convolutions (s × s × d) [27] where

the kernel temporal depth d corresponds to the number of

frames used as input, and s is the kernel spatial size. Si-

monyan et al. [17] proposed a two-stream network, cohorts

of RGB and flow ConvNets. In their flow stream ConvNets,

the 3D convolution has d set to 10. Tran et al. [20] explored

3D ConvNets with filter kernel of size 3 × 3 × 3. Tran et

al. in [21] extended the ResNet architecture with 3D convo-

lutions. Feichtenhofer et al. [6] propose 3D pooling. Sun et

al. [19] decomposed the 3D convolutions into 2D spatial and

1D temporal convolutions. Carreira et al. [2] proposed con-

verting a pre-trained the 2D Inception-V1 [11] architecture

to 3D by inflating all the filters and pooling kernels with

an additional temporal dimension d. They achieve this by

repeating the weights of 2D filters d times for weight initial-

ization of 3D filters. All these architectures have fixed tem-

poral 3D convolution kernel depths throughout the whole

architecture. To the best of our knowledge, our architecture

is the first end-to-end deep network that integrates variable

temporal depth information over shorter and longer tempo-

ral ranges.

3. Temporal 3D ConvNets

Our goal is to capture short, mid, and long term dynamics

for a video representation that embodies more semantic in-

formation. We propose a Temporal Transition Layer (TTL)

inspired by GoogLeNet [11]. It consists of several 3D Con-

volution kernels, with diverse temporal depths (see Fig. 1).

The TTL output feature maps are densely fed forward to all

subsequent layers, and are learned end-to-end, as shown in

Fig. 1. We employ this TTL layer in a DenseNet3D archi-

tecture. We name the resulting networks as Temporal 3D

ConvNets (T3D). Fig. 1 sketches the steps of the proposed

T3D.

In this work, we use the DenseNet architecture which

has 2D filters and pooling kernels, but extend it with 3D

filters and pooling kernels. We used the DenseNet architec-

ture for several reasons, such as simpler and highly param-

eter efficient deep architecture, its dense knowledge prop-

agation, and state-of-the-art performance on image classi-

fication tasks. In specific, (i) we modify 2D DenseNet

by replacing the 2D kernels by 3D kernels in the standard

DenseNet architecture and we present it as DenseNet3D;

and (ii) introducing our new Temporal 3D ConvNets (T3D)

by deploying 3D temporal transition layer (TTL) instead of

transition layer in DenseNet. In both setups, the building

blocks of the network and the architecture choices proposed

in [10] are kept same.

Notation. The output feature-maps of the 3D Convolu-

tions and pooling kernels at the lth layer extracted for an

input video, is a matrix x ∈ R
h×w×c where h, w and c

are the height, width, and number of channels of the feature

maps, resp. The 3D convolution and pooling kernels are of

size (s× s× d), where d is the temporal depth and s is the

spatial size of the kernels.

3D Dense Connectivity. Similar to 2D dense connectiv-

ity, in our network it is 3D dense connectivity that directly

connects the 3D output of any layer to all subsequent layers

in the 3D Dense block. The composite function Hl in the lth

layer receives the {xi}
l−1

i=0
3D feature maps of all preceding

(l − 1) layers as input. The output feature-map of Hl in the

lth layer is given by:

xl = Hl([x0, x1, . . . , xl−1]) (1)

where [x0, x1, . . . , xl−1] denotes that the features maps are

concatenated. The spatial sizes of the xi features maps are

the same. The Hl(·) is a composite function of BN-ReLU-

3DConv operations.

Temporal Transition Layer. Fig. 1 shows a sketch of

Temporal Transition Layer (TTL). TTL is composed of sev-

eral variable 3D Convolution temporal depth kernels and a

3D pooling layer, the depth of 3D Conv kernels ranges be-

tween d, d ∈ {T1, . . . , TD}, where Td have different tempo-

ral depths. The advantage of TTL is that it captures the short,

mid, and long term dynamics, that embody important in-

formation not captured when working with some fixed tem-

poral depth homogeneously throughout the network. The

feature-map of lth layer is fed as input to the TTL layer,

TTL : x → x
′

, resulting in a dense-aggregated feature rep-

resentation x
′

, where x ∈ R
h×w×c and x

′

∈ R
h×w×c

′

.

In specific, the feature-map from lth, xl is convolved with

K variable 3D convolution kernel temporal depths, result-

ing to intermediate feature-maps {S1, S2, . . . , SK}, S1 ∈
R

h×w×c1 , S2 ∈ R
h×w×c2 , SK ∈ R

h×w×cK , where c1,

c2, and cK have different channel-depths as xl is convolved

with different 3D convolution kernel temporal depths, while

the spatial size (h,w) is same for all the {Sk}
K

k=1
feature-

maps. These feature-maps {Sk}
K

k=1
are simply concate-

nated into a single tensor [S1, S2, . . . , SK ] and then fed into

the 3D pooling layer, resulting to the output TTL feature-
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map x
′

. The output of TTL, x
′

is fed as input to (l + 1)th

layer in the T3D architecture. The TTL layer is learned in

an end-to-end network learning, as shown in Fig. 1.

In our work, we also compare T3D with DenseNet3D i.e

with the standard transition layer but in 3D. Compared to

the DenseNet3D, T3D performs significantly better in per-

formance, shown in Experimental Section 4. Although we

agree that T3D model has 1.3 times more model parameters

than DenseNet3D, but it is worth to have it because of its

outstanding performance. It is also worth saying that, one

can readily employ our TTL in other architectures too such

as in Res3D [21] or I3D [2], instead of using fixed 3D Con-

volutions homogeneously through out the network.

4. Experiments

In this section, we demonstrate a study for the architec-

ture of the proposed T3D model, and then the configurations

for input data. Afterwards, we first introduce the datasets

and implementation details of our proposed approach. Fol-

lowing, we test and compare our proposed methods with

baselines and other state-of-the-art methods. For the abla-

tion study of architecture search and configurations of input

data, we report the accuracy of split-1 on UCF101.

4.1. Datasets

We evaluate our proposed method on three challenging

video datasets with human actions, namely HMDB51 [13],

UCF101 [18], and Kinetics [2]. For all of these datasets,

we use the standard training/testing splits and protocols pro-

vided as the original evaluation scheme. For HMDB51 and

UCF101, we report the average accuracy over the three splits

and for Kinetics, we report the performance on the valida-

tion and test set.

4.2. Implementation Details

We use the PyTorch framework for 3D ConvNets imple-

mentation and all the networks are trained on 8 Tesla P100

NVIDIA GPUs. Here, we describe the implementation de-

tails of our Temporal 3D ConvNets.

Training: We train our T3D from scratch on Kinetics. Our

T3D operates on a stack of 32 RGB frames. We resize the

video to 256px when smaller, and then randomly apply 5

crops (and their horizontal flips) of size 224 × 224. For

network weight initialization, we adopt the same technique

proposed in [9]. For the network training, we use SGD, Nes-

terov momentum of 0.9, weight decay of 10−4 and batch

size of 64. The initial learning rate is set to 0.1, and reduced

by a factor of 10x manually when the validation loss is satu-

rated. The maximum number of epochs for the whole Kinet-

ics dataset is set to 200. Batch normalization also has been

applied. We should mention that the proposed DenseNet3D

shares the same experimental details as T3D.

Testing: For video prediction, we decompose each video

into non-overlapping clips of 32 frames. The T3D is applied

over the video clips by taking a 224 × 224 center-crop, and

finally we average the predictions over all the clips to make

a video-level prediction.

4.3. Architecture Search

To find the best architecture for our T3D, we conduct a

large scale architecture search. We start the search by de-

signing a new DenseNet3D based on the 2D DenseNet ar-

chitecture, then we explore T3D architecture based on our

DenseNet3D. Due to the high computational time of 3D

ConvNets we limit the exploring space by exploiting a lot

of insights about good architectures [2, 21].

DenseNet3D: As mentioned before, we have designed a

new DenseNet3D architecture. To achieve the best configu-

ration for the new architecture we have done a series of tests

on the network-size, and temporal-depth of input data to the

network. For the architecture study, the model weights were

initialized using [9].

We employ two versions of 2D-DenseNet with network

sizes of 121 and 169 for designing the DenseNet3D, namely

T3D-121 and T3D-169. The models are trained on UCF101

first split from scratch and we have obtained 69.1% and

71.3% respectivley.

Temporal depth of series of input frames plays a key role

in activity recognition tasks. Therefore, we have evaluated

our T3D with configurations for different temporal depths.

In the our evaluations the depth of 32 performs better than

16 with 69.1% versus 66.8%.

Frame Resolution: We use the DenseNet3D-121 for

frame resolution study. We evaluate the model by vary-

ing the resolution of the input frames in the following set

{(224×224), (112×112)}. In the DenseNet3D and later on

the T3D setup, the higher frame size of 224px yields better

performance. With DenseNet3D we have achieved 69.1%

against 61.2%.

T3D: Seeking for the best configurations of our T3D, we

have done experiments based on the results of experimen-

tal study which are exploited from DenseNet3D. The TTL

layer is added to make more efficient spatial-temporal con-

nection between 3D DenseBlocks of convolutions, and im-

provement is observed in the performance.

Method Top1- Val Avg-Test

DenseNet3D 59.5 -

T3D 62.2 71.5

Inception3D 58.9 69.7

ResNet3D-38 [8] 58.0 68.9

C3D* [8] 55.6 -

C3D* w/ BN [2] - 67.8

RGB-I3D w/o ImageNet [2] - 78.2

Table 1: Comparison results of our models with other state-

of-the-art methods on Kinetics dataset. * denotes the pre-

trained version of C3D on the Sports-1M.
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Method UCF101 HMDB51

DT+MVSM [1] 83.5 55.9

iDT+FV [23] 85.9 57.2

C3D [20] 82.3 56.8

Conv Fusion [6] 82.6 56.8

Conv Pooling [27] 82.6 47.1

Spatial Stream-Resnet [5] 82.3 43.4

Two Stream [17] 88.6 −
FST CV (SCI fusion) [19] 88.1 59.1

TDD+FV [24] 90.3 63.2

TSN-RGB [25] 85.7 -

Res3D [21] 85.8 54.9

ResNet3D 86.1 55.6

Inception3D 87.2 56.9

DenseNet3D 88.9 57.8

T3D (ours) 91.7 61.1

T3D+TSN (ours) 93.2 63.5

Table 2: Accuracy (%) performance comparison of T3D

with state-of-the-art methods over all three splits of UCF101

and HMDB51.

4.4. Comparison with the stateoftheart

Finally, after exploring and finding an efficient T3D ar-

chitecture with the best configuration of input-data, we com-

pare our DenseNet3D and T3D with the state-of-the-art

methods by pre-training on Kinetics and finetuning on all

three splits of UCF101 and HMDB51 datasets. For the

UCF101 and HMDB51, we report the average accuracy over

all three splits.

Table 1 shows the result on Kinetics dataset for T3D

compared with state-of-the-art methods. C3D [20] employs

batch normalization after each convolutional and fully con-

nected layers (C3D w/ BN), and RGB-I3D which is without

pretraining on the ImageNet (RGB-I3D w/o ImageNet) [2].

The T3D and DenseNet3D achieve higher accuracies than

ResNet3D-34, Sports-1M pre-trained C3D and C3D w/ BN

which is trained from scratch. However, RGB-I3D achieved

better performance which might be the result of usage of

longer video clips than ours (64 vs. 32). As mentioned ear-

lier, due to high memory usage of 3D models we had to limit

our model space search and it was not possible to checkout

the longer input video clips. Moreover, [2] used larger num-

ber of mini-batches by engaging a large number of 64 GPUs

that they have used, which plays a vital role in batch nor-

malization and consequently training procedure.

Table 2 shows the results on UCF101 and HMDB51

datasets for comparison of T3D with other RGB based ac-

tion recognition methods. Our T3D and DenseNet3D mod-

els outperform the Res3D [21], Inception3D and C3D [20]

on both UCF101 and HMDB51 by 93.2% and 63.5% re-

spectively. As shown in the Table 2, T3D performs bet-

ter than Inception3D by almost 4% on UCF101. Further-

more, DenseNet3D and T3D achieve the best performance

among the methods using only RGB input on UCF101 and

HMDB51. Moreover it should be noted that, the reported

result of RGB-I3D [2] pre-trained on ImageNet and Kinet-

ics by Carreira et al. [2] is better than us on both UCF101

and HMDB51, this might be due to difference in usage of

longer video clips and larger mini-batch sizes by using 64

GPUs. Furthermore, we note that the state-of-the-art Con-

vNets [2, 25] use expensive optical-flow maps in addition to

RGB input-frames, as in I3D which obtains a performance

of 98% on UCF101 and 80% on HMDB51. However the

high cost of computation of such data limits their applica-

tion at real world large scale applications. As additional

experiments, we study the effect of feature fusion methods

like TSN [25] on our T3D video features. TSN intends to

encode the long term information coming from video clips.

We employ the technique of TSN, but here we use our T3D

features from 5 non-overlapping clips of each video for en-

coding via TSN aggregation method. The T3D+TSN results

are reported in the same table. This simple feature aggrega-

tion method on T3D shows major improvement over using

2D CNN feature extraction from single RGB frames using

the same aggregation method.

Note that, in our work we have not used dense optical-

flow maps, and still achieving comparable performance to

the state-of-the-art methods [25]. This shows the effective-

ness of our T3D to exploit temporal information and cap-

ture long-range dynamics in video-clips. This calls for effi-

cient methods like ours instead of computing the expensive

optical-flow information (beforehand) which is very com-

putationally demanding, and also difficult to obtain for large

scale datasets.

5. Conclusion

In this work, we introduce a new ‘Temporal Transi-

tion Layer’ (TTL) that models variable temporal convolu-

tion kernel depths. We clearly show the benefit of exploit-

ing temporal depths over shorter and longer time ranges

over fixed 3D homogeneous kernel depth architectures. In

our work, we also extend the DenseNet architecture with

3D convolutions, we name our architecture as ‘Temporal

3D ConvNets’ (T3D). Our TTL feature-maps are densely

propagated throughout and learned in an end-to-end learn-

ing. The TTL feature-maps model the feature interaction in

a more expressive and efficient way without an undesired

loss of information throughout the network. Our T3D is

evaluated on three challenging action recognition datasets,

namely HMDB51, UCF101, and Kinetics. T3D archi-

tecture achieves state-of-the-art performance on HMDB51,

UCF101 and comparable results on Kinetics , in compari-

son to other temporal deep neural network models. Even

though, in this paper, we have employed TTL to T3D archi-

tecture, our TTL has the potential to generalize to any other

3D architecture too.
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