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Abstract

Recently, deep learning based models have pushed state-

of-the-art performance for the task of action recognition in

videos. Yet, for many action recognition datasets like Ki-

netics and UCF101, the correct temporal order of frames

doesn’t seem to be essential to solving the task. We find

that the temporal order matters more for the recently intro-

duced 20BN Something-Something dataset where the task

of fine-grained action recognition necessitates the model

to do temporal reasoning. We show that when temporal

order matters, recurrent models can provide a significant

boost in performance. Using qualitative methods, we show

that when the task of action recognition requires temporal

reasoning, the hidden states of the recurrent units encode

meaningful state transitions.

1. Introduction

Understanding videos remains one of the biggest chal-

lenges in computer vision. While Convolutional Neural

Networks (CNN) seem to be the standard building block

for processing static images, it is still not clear what

the architectural counterpart for processing videos should

be. Researchers have come up with many ideas to in-

corporate temporal information in their models. Today

we have a plethora of networks that incorporate Recur-

rent Neural Networks[5] (RNN), ConvolutionalRNNs[19],

3D/Temporal Convolutions[3, 32] and attention[9, 25, 34]

to aggregate temporal information across frames in a video.

Even with these architectural advances, the simple base-

line of temporal averaging of features obtained by pass-

ing single frames through pre-trained networks is still a

formidable baseline for action recognition across many

datasets[8, 27, 34, 35].

The other big question in video understanding is what

is the right data to be working with? For models to truly

understand what is going on in a video, they need to rea-

son about foreground, background, camera motion, human

pose, and context among other concepts. However, it is eas-

ier for models to get good performance on the task of action
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Figure 1: Recurrent models are designed to handle sequential data

making them suitable to consume videos as input. In this work,

we investigate the information encoded in the hidden states of re-

current units for the task of action recognition in videos.

recognition by identifying discriminative features in certain

frames of a full video rather than performing all the tasks

that are crucial for video understanding. For example, it

is easier for models to recognize tennis courts rather track

the player’s motions to figure out they are playing tennis

in a video. Recent work has shown that models can give

good performance even when the frames of the video are

shuffled or reversed[35, 37]. However, time plays a crucial

role in human understanding of everyday actions. One at-

tempt to incorporate more temporal aspects in action recog-

nition tasks is the recently released 20BN Something Some-

thing[10] dataset. It introduces the task of recognizing fine-

grained object-agnostic human-object interactions. Models

need to perform temporal reasoning to differentiate between

closely related actions like opening and closing. As we be-

gin to look at videos and tasks where models need to rea-

son temporally to solve the task, more interesting challenges

will arise.

Videos of humans interacting with objects are of special

interest to the robotics community as this opens up the pos-

sibility of skill transfer to robots by visual observation. If

we expect robots to assist humans in their homes with their

daily chores, they need to understand the rich stream of in-

formation coming through the sensors mounted on them.

One vital component that still needs more work is the abil-

ity to understand human-object interactions from videos. In

current datasets of action recognition, when humans inter-

act with objects there is typically a single action associated

strongly with an object category. For example, if there is

a bicycle in the scene there is a strong correlation with the

biking class. However, in a household setting it is not diffi-

cult to imagine scenarios where many actions are performed

with the same object. For example, a person might open,
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close, lift or throw a common household object like a bag.

This makes the task of fine-grained human-object interac-

tion with household objects interesting and challenging.

Our contribution is three-fold: (i) we experiment with

recurrent architectures for video understanding on multi-

ple datasets (ii) we achieve competitive performance in

fine-grained action recognition on the 20BN Something-

Something dataset[10] (iii) we qualitatively analyze the hid-

den states of the recurrent units and find that when the task

of action recognition requires temporal reasoning, the hid-

den states of the recurrent unit tend to capture meaningful

state transitions.

2. Related Work

Understanding videos is an active research topic with a

lot of open questions. Recognizing actions[11, 13, 15, 28]

has been a core problem in this area for many years[7,

12, 16–18, 23]. Prior work has investigated a wide vari-

ety of both model architectures and train-data source. Re-

searchers have trained models that process videos on raw

images, dynamic images[2] and optical flow maps[3, 27] as

input. Presently, the best state-of-the art models for action

recognition on both UCF1-101, HMDB51 and Charades

datasets[26] are built on top of the I3D[3] model pre-trained

on the Kinetics[13] dataset. The I3D model uses layers of

3D convolutions which greatly increase the number of free

parameters, increasing the need for data to prevent over-

fitting. Mitigating this limitation, the Kinetics dataset has

been shown to be a good dataset for this purpose and the

best models for both UCF-101 and HMDB-51 have been

pre-trained on the Kinetics.

The use of recurrent architectures for video-based tasks

has been a much explored topic in recent years[3, 6, 19–22].

In spite of RNNs being specifically designed to handle se-

quential data, the authors of [3] found non-recurrent models

to be better at action recognition than their recurrent coun-

terparts. This oddity might be attributed to the fact that the

task of recognizing actions in most large-scale datasets is

not one that is sequential in nature and other non-recurrent

models have been better at finding discriminative features

over many frames. On the other hand, RNNs have had suc-

cess in tasks like video object segmentation[31] and video

object tracking[36]. We take this opportunity to study the

use of recurrent architectures on a video dataset where un-

derstanding the sequential nature of the data is essential to

solving the task.

3. Architecture for Action Recognition

We present our architecture in Figure 2. We use an

Image-Net[24] pre-trained convolutional network to ex-

tract low-dimension image features from raw video frames,

which we use as the “base” input to the subsequent recur-

rent module. The base network’s outputs from each frame

are stacked in a new dimension for time. This is provided
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Figure 2: Recurrent architecture used for action recognition.

as input to a sequential model. At this point, we can use 3D

Convnets[3], RNNs, ConvoultionalRNNs or simple spatio-

temporal averaging as the choice for sequential model. We

choose Gated Recurrent Units [4] as our choice of a recur-

rent module. We test with both the standard GRU and its

convolutional version which is similar to the Convolution-

alLSTM presented in [19]. We use dropout[29] on the out-

puts of both variants of the GRU at each time-step. For the

standard GRU model, we perform spatial averaging before

passing it to the GRU. For the ConvGRU model, we per-

form spatial averaging of the hidden state of the ConvGRU.

We take the final hidden state of the recurrent module and

pass it through a fully connected layer to predict the scores

for each class. The models are trained with the standard

cross-entropy loss.

4. Experiments

4.1. Datasets

We evaluate the performance of the proposed architec-

ture on the 20BN-Something-Something dataset[10]. Cur-

rently, it is the largest video dataset focused on human-

object interactions. The dataset has 108, 499 videos with

174 categories of fine-grained human-object interactions.

The training, validation and test sets consists of 86, 017,

11, 522 and 10, 960 videos respectively. The average du-

ration of the videos is 4.0 seconds. The short-duration of

the input video should result in actions that can be consid-

ered “atomic”; they are actions over a small time scale, such

as lifting or pushing an object, rather than long term tasks

such as cooking, playing an instrument, etc. In addition,

the dataset includes difficult to infer fine-grained task defi-

nitions, the semantic contents of which are similar despite

having different classification labels. Examples of this in-

clude: Pouring something into something, Pouring some-

thing into something until it overflows and Trying to pour

something into something, but missing so it spills next to

it. Another interesting aspect of the dataset is the existence

of pretend categories that act as hard examples for some

classes. This property might prevent models from simply

picking up on some secondary cues to recognize a class.

We also experiment the effectiveness of our architecture on
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Figure 3: We show examples of retrieved nearest neighbors (NN)

for each frame in a query video from the class “Moving something

and something away from each other”. We observe that the nearest

neighbors are temporally coherent and indicative of the transitions

expected in a given task. More details in Section 4.5.

the Kinetics [13] dataset which is a large-scale dataset with

clips collected from YouTube. There are more than 200K

and 10K videos in its train and validation set. There are 400

action classes in Kinetics.

4.2. Evaluation Metrics

To enable effective evaluation, we follow the method-

ology suggested in [10] and report top-k accuracy for

k = 1, 2, 5 on all the classes in each dataset. For Kinet-

ics, we report top-k accuracy for k = 1, 5 as is common

practice[3, 33, 35].

4.3. Training Details

We implemented our model in TensorFlow[1]. We use

ImageNet pre-trained InceptionV3[30] as the base network

and pool features from Mixed 7c layer. While InceptionV3

has been trained to perform classification on static images, it

never-the-less encodes useful visual representations. In or-

der to train with a larger batch size, we sample every second

for the Something-Something and every fifth frame for Ki-

netics dataset. For Something-Something we fine-tune only

the last convolutional block while for Kinetics we fine-tune

the last two convolutional blocks. We train the models us-

ing Adam[14] with learning rate of 1.0 × 10−4. We use a

dropout of 0.5 on the GRU outputs at each time-step.

4.4. Architectural Experiments

We implement a simple baseline of spatio-temporal av-

eraging of features and observe it is able to achieve 20.5%

accuracy. We find the ConvGRU model performs the best

on the validation set on the 20BN Something-Something

dataset. We also find our single-scale recurrent models

(both GRU and ConvGRU) outperform multi-scale Tem-

poral Relation Network (TRN)[37]. Our model has an ac-

curacy of 39.6% on the test set outperforming multi-scale

TRN[37] model. At the time of submission, the best accu-

racy on the leaderboard is 45.0% but it is unclear what is

the model or data used for that entry.

We use the same models on Kinetics. However, the GRU

models are slightly worse than the spatio-temporal averag-

ing baseline. This is probably due to the fact that the task

of action recognition on Kinetics videos, although difficult

in its own right, is not one that involves temporal reason-

ing as models can get competitive scores with shuffled and

reversed frames[35]. We still use GRUs on Kinetics to com-

pare the nature of hidden states of the GRU across these two

datasets.

Table 1: We test the impact of various recurrent modules on vali-

dation set performance on the 20BN something Something dataset

Model Accuracy@1 Accuracy@2 Accuracy@5

Single-scale TRN[37] 31.0 - 59.2

Multi-scale TRN[37] 33.0 - 61.3

Spatio-temporal averaging 20.5 32.4 48.2

GRU 35.4 48.1 63.3

ConvGRU 43.7 57.0 71.4

Table 2: Results on the 20BN Something-Something test set

Model Accuracy@1

3D CNN[32] + Temporal Averaging[10] 11.5

MultiScale TRN[37] 33.6

ConvGRU 39.6

Table 3: We test the impact of various recurrent modules on vali-

dation set performance on the Kinetics dataset

Model Pre-trainig Dataset Accuracy@1 Accuracy@5

I3D-RGB[3] ImageNet 72.1 90.3

R(2+1)D-RGB[33] Sports-1M 74.3 91.4

S3D-G[35] ImageNet 74.8 91.9

Spatio-temporal averaging ImageNet 71.5 89.5

GRU ImageNet 70.6 88.4

ConvGRU ImageNet 70.0 88.1

4.5. Qualitative Analysis

In order to visualize the information encoded by the hid-

den layer of the GRU, we perform the following experiment

on the validation set. We consider all the videos in a cho-

sen predicted class. For a selected video, there are many

frames. For each of these frames we find the nearest neigh-

bor frame in other videos of the same class. The nearest

neighbor is found in terms of the hidden state of the GRU

(not in the pixel space). In Figure 3, we show an example of

our nearest neighbor matching process. For each frame in

a given query video (row 1), we retrieve the nearest neigh-

bor frame from other videos of the same class. Even though

the frames are visually different and have different objects,

they are close to each other in the hidden state of the GRU.
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Pulling something from right to left Taking one of many similar things Open something

Figure 4: We highlight the transitions for various action classes by looking at some nearest neighbors (NN) in the hidden state of the

GRU. It is interesting to note the richness in the representation of the hidden state of the recurrent module. The hidden states can encode

the spatial position of objects, abstract concepts related to the group like the count of objects and the state of individual objects changing

(objects changing from closed to opened state).

Such transitions are not observed when we perform nearest

neighbor matching on the convolutional features extracted

from the base network.

4.5.1 Classes with 0 transitions

Models can get 20.5% accuracy (row 3 in Table 2) with-

out respecting the temporal order of the frames. Hence,

there exist classes for which the GRU doesn’t have to keep

track of transitions. One reason might be that there exist

action categories with strong correlation between some ob-

jects present and the action. For example, for the class

”Plugging something into something” the network is able

to predict the class correctly on the basis of wires and sock-

ets present in the scene. This is a more common occurrence

in the Kinetics dataset where often there is only one frame

that is retrieved for all the frames in a video. This is ex-

pected as it is possible to get 71.3% accuracy by perform-

ing spatio-temporal averaging. This also suggests that in the

hidden state of the GRU, the action is represented as a near-

constant embedding that does not change much as the video

progresses, which is fine for action recognition models.

4.5.2 Classes with one transition

For many classes in the Something-Something dataset, there

is only one transition, specifically between the beginning

and the end of the tasks. It is fascinating that in the hidden

state of the GRU, same state of different objects closer. For

example, the second column in Figure 4 shows the model

clusters together the opened and closed states of a variety of

objects like box, dishwasher, book, drawer and bag. Even

though we could have chosen similar frames by hand for

visualization but these states have emerged as a part of the

training process. Furthermore, we have a common repre-

sentation for the opened state of a number of objects on

unseen videos from the validation set.

4.5.3 Classes with multiple transitions

There are other classes where we find that the hidden states

are transitioning multiple times. In column 1 of Figure 4

we can see the object being roughly tracked as the action

proceeds. We find these multiple transitions more often in

action classes where the location of objects was important

like ”Move something up/down” and ”Pull/Push something

to the left/right”.

5. Conclusion

We presented experiments using architectures that com-

bine convolutional and recurrent units to process videos on

two large scale datasets: Kinetics and 20BN Something-

Something. We observe that in tasks that require us to pre-

form temporal reasoning to correctly classify videos, the

hidden state of the recurrent unit encodes rich represen-

tations of time-varying object states. While we have pre-

sented qualitative results of state transitions, we plan to use

these representations for downstream tasks, which will also

enable us to evaluate them quantitatively.
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