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Abstract 

Synthetic aperture radar (SAR) is a remote sensing 

technology that can truly operate 24/7. It’s an all-weather 

system that can operate at any time except in the most 

extreme conditions. Coherent change detection (CCD) in 

SAR can identify minute changes such as vehicle tracks 

that occur between images taken at different times. From 

polarimetric SAR capabilities, researchers have developed 

decompositions that allow one to automatically classify 

the scattering type in a single polarimetric SAR (PolSAR) 

image set. We extend that work to CCD in PolSAR images 

to identify the type change. Such as change caused by no 

return regions, trees, or ground. This work could then be 

used as a preprocessor for algorithms to automatically 

detect tracks. 

1. Introduction 

1.1. Synthetic aperture radar and change detection 

Synthetic aperture radar (SAR) [4] is a remote sensing 

technology that provides its own illumination. Thus SAR 

is an all-weather system that can image at any time except 

in the most extreme conditions. It can operate either day or 

night and has a long standoff. SAR combines multiple 

results from different viewing angles to create a high-

resolution image of an area. For example, Figure 1a shows 

a SAR image of a golf course containing roads, trees, sand 

traps, grass, and buildings. 

For the area it is illuminating, SAR is a coherent imager 

that measures both phase and magnitude of the return. 

Using two registered images taken at different times, one 

can use coherent change detection (CCD) [4] to detect 

minute changes from one collection to the next, such as 

tracks left by a vehicle driving through the scene. Figure 

1b shows the corresponding CCD image with examples of 

different types of change.  Detection of tracks is useful for 

surveillance and search and rescue applications [18]. 

However, automatic detection of vehicle tracks in SAR 

CCD is difficult due to various sources of low coherence 

other than the vehicle track change we wish to detect, such 

as ground surface change due to weather effects and 

vegetation, registration errors, and radar shadows. Figure 

1b shows not only low coherence for the vehicle tracks but 

also for trees and shadows. 

 

 
Figure 1: Example SAR and corresponding CCD image. (a) SAR 

image of golf course. (b) CCD image from two SAR images 

taken at different times. 
 

1.2. Polarimetric SAR (PolSAR) 

The radar cross section (RCS) of the scattering 

mechanisms in a scene for a selected polarization state, can 

be conveyed by a calibrated single-polarization SAR 

image Examples of polarization states include: VV, HH, 

HV, and VH. Here, XY indicates that a Y oriented EM 

field was transmitted and an X oriented EM field was 

received. Figure 2 shows four polarimetric images taken at 

different transmit and receive orientations. 

Using second order statistical characterization of the 

polarmetric return, multiple decompositions [23] have 

been developed to extract the responsible scattering 

mechanism. Because of it’s information-theoretic 

properites, we use the H/A/  polarimetric decomposition 

[1]. Here H represents the entropy or randomness of the 

scatter, A the  anisotropy or the direction of scatter, and   

the scattering mechanism. Figure 3 shows the H/  

classification plane. For this classification plane, Cloude 

and Pottier have identified eight zones that correspond to 

different SAR scattering mechinisms and one zone (Z3) 

that corresponds to an infeasible region indicated by gray 
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area. For example, a low H and middle value of    would 

be in zone Z8 and indicates a single dipole scatterer. As H 

increases to moderate values such as in zone Z5, this would 

indicate scattering mechanisms from vegatation, and then 

even higher values such as in zone Z2 would indicate 

scatters from tree canopies. See [1] for a complete 

description. These zones are not as crisp as indicated by 

the Figure. Different classes can straddle the boundaries 

and the boundaries can change with collection geometry 

and system noise [14]. 

 

 
Figure 2. Illustration of (a) an HH polarization image, (b) an HV 

polarization image, (c) a VH polarization image, and (d) a VV 

polarization image.  

 

Figure 4 shows the H/A/  decomposition of two passes 

of a scene. The colorspace of the image is defined in HSV 

space where the scattering mechanism parameter controls 

the hue in the image, a mixture of entropy and anisotropy 

control the saturation, and the quarter-power span image 

controls the value. The span is the total magnitude of the 

pixel across the four images with polarimeteric image set. 

 
Figure 3. H/α classification plane 

2. Track detection using Polarimetric Data 

     Automatic track segmentation can be view as a two step 

process. The first step is to identify CCD pixels that could 

be on a track called tracklets. Whereas the second step 

involves linking these tracklets together to create longer 

tracks and remove false tracks. In single pol imagery, 

tracks have been identified using thresholding [16], a 

radon transform [11], ridge features [18], and MR8 filters 

[19]. Currently, the most successful tracklet linking 

method is based on a 6-layer convolutional neural network 

(CNN) trained to find natural tracks where each 

succeeding layer has a larger receptive field to link tracks 

over a larger area [17]. 

     In this paper we concentrate on finding tracklets. Past 

work, on using polarimetric data, has concentrated on 

discriminating different terrain types in SAR imagery, but 

here we extend this work and use polarimetric data to 

discriminate and classify different types of change and 

thereby identify tracklets. From Figure 1b, one can see that 

automatically detecting vehicle tracks is hampered by the 

fact that low coherence appears also in shadow and tree 

areas.  

     In the next section we will discuss the processing of the 

polarimetric imagery and the extraction of the tracklet 

feature vector. In Section 4, we discuss the classifier and in 

the last sections we discuss the data we use for training and 

testing and the performance of the system.  

 

 
Figure 4. H/A/α images from (a) pass 1 and (b) pass 2. The 
images are defined in the HSV colorspace where α controls the 
hue, a mixture of H and A control the saturation, and the quarter-

power span image controls the value. 

3. Polarimetric SAR 

Measured PolSAR data at each pixel can be written as a 

scattering matrix:  













VVVH

HVHH
~~

~~

=
SS

SS
S  (1) 

where 
XY

~
S  is a complex-valued measurement. Since the 

observations were performed in a monostatic manner we 

assume that 
VHHV

~~
SS  .  

     The total power of scattering observations from all of 

the polarization channels can also be combined into a span 

magnitude image:  
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3.1. Pauli feature vector 

     The objective of a polarimetric decomposition is to 

map raw observations into different types of scattering 

mechanisms. One mapping is called the Pauli feature 

vector, which is constructed by projecting the 22  

scattering matrix onto the Pauli-spin matrix bases [1]. 

The 13  Pauli feature vector has the following form:  

TSSSSS ]
~

,
~~

,
~~

[
2

1
= CXVVHHVVHH k . (3) 

where )/2
~~

(=
~

VHHVCX SSS  .  

     For the first entry of the Pauli feature vector, the 

physical phenomenon is an odd-bounce scattering 

mechanisms such as trihedral corner reflectors or spheres. 

The second entry represents even-bounce scattering 

mechanisms such as horizontally or vertically or rotated 

diplanes, while the third entry represents even-bounces 

from dihedrals rotated 
45 .  

3.2. The H/A/  polarimetric decomposition 

     The polarimetric coherency matrix can be formed by 

computing the spatial average of the outer-product of the 

Pauli feature vectors:  

,>=< N

H
kkT  (4) 

where ><   denotes a spatial ensemble average over a 

neighborhood of subscript N  pixels.  

     The H/A/  decomposition utilizes the 

eigendecomposition of the polarimetric coherency matrix,  

,==
3

1=

1 H

iii

i

uuUUT   (5) 

where U  is the matrix of eigenvectors and   is a diagonal 

matrix of the corresponding eigenvalues. The H/A/  

decomposition computes the following quantities from the 

set of eigenvectors and ordered eigenvalues  

( 0321   ):  

1,0,log=
3

3

1=

 HPPH ii

i

 (6) 

1,0)/()(= 3232  AA   (7) 

  ,900,(1)cos= 1
3

1=

   ii

i

P u  (8) 

where 10,/=
3

1=

 ii

i

ii PP  .  The description of 

parameters is as follows:  

1.   is the scattering mechanism 

parameter and indicates the average scattering 

mechanism 

2. H  is the entropy parameter and 

indicates the purity of the  scattering mechanism 

3. A  is the anisotropy parameter and 

gives the relative significance of the second and 

third eigenstates. 

3.3. Polarimetric coherence 

     Two complex-valued SAR images with similar 

observation geometries can be co-registered at the sub-

pixel level, and then interfered to produce a corresponding 

complex-valued coherence map. For observations 

seperated in time, the magnitude of the resulting coherence 

estimate conveys the degree to which scattering 

observations in the scene have maintained coherence. 

     Over the past couple of decades, researchers have 

developed various methodologies for producing coherence 

estimates from PolSAR image sets [1][24][27]. One 

method is called optimum coherence (OC). Here, the 

resulting coherence estimation is maximized by 

determining the appropriate weighting vectors informed by 

underlying scattering processes, and provides improved 

quality interferograms over what can be produced with just 

a single-polarization observation [2][9]. 

     The fully-polarimetric coherence estimation can be 

computed from the equation:  

,
))((

=~

22221111

2121
Opt

wTwwTw

wΩw

HH

H

  (9) 

where 
N

H >=< 2112 kkΩ , 
N

H >=< 1111 kkT , 

N

H >=< 2222 kkT , and the iw  vectors are complex-valued 

weighting vectors. The weighting vectors  create the 

maximum indicated coherence that the observations can 

support. These weighting vectors utilize the same bases as 

the input Pauli feature vectors, and hence corresponding to 

equivalent scattering mechanism definitions. 

     To estimate the iw  vectors, equation (9) is recast as 

the following unconstrained Lagrangian maximization 

problem: 

   111111212121 =, CL HH  wTwwΩwww  + 

 ,222222 CH  wTw  
(10) 

where the objective is to maximize the first term, subject 

to the constraints given in the next two terms.  

     Computing gradients, with respect to the weighting 

vectors, gives the following coupled eigenvalue problem:  

21=   (11) 

1112

1

2212

1

11  = wwΩTΩT H  (12) 

, = 2212

1

1112

1

22 wwΩTΩT  H  (13) 

where the vectors 1w  and 2w  are the eigenvectors of 
H

12

1

2212

1

11 ΩTΩT
  and 12

1

1112

1

22 ΩTΩT
 H , respectively. Since the 
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matrices have dimension 33 , there are a total of three 

ordered eigenvalues ( 1||||||0 123   ), and two 

corresponding sets of 13  eigenvector triplets:  

(  1,31,21,1 www  and  2,32,22,1 www ). Through algebraic 

operations, it can be shown that the maximum supported 

observation coherence estimation magnitude can be 

calculated via |||=~| 1Opt  . 

     These weighting vectors not only get us the OC maps, 

but in fact they contain information that enables 

categorization of underlying mechanisms for observed 

variations in temporal coherence. 

3.4. Change detection feature vector  

     The change discrimination feature vector uses the 

H/A/  decomposition parameters, as well as the optimum 

coherence values and the steering vectors from the OC 

algorithm [25]. Here, H, A,   values can be produced for 

each of the six weighting vectors and the two original 

image sets. The H/A/  parameters can be stacked into a 

three-element vector as follows,  

 ,= AHT

Xd  (14) 

where X  represents the data processed through the 

H/A/  decomposition ( i.e. 1k , 
1,1w , etc.). A 29-

dimensional feature vector can be formed by vertically 

concatenating the H/A/  vectors computed from the 

original image sets and the weighting vectors from the OC 

algorithm, along with the optimum coherence values and 

the two square-root span values computed from the two 

image sets. To be explicit, the feature vector has the form,  ,= ,
2,32,22,11,31,21,121

TTTTTTTTTT

kγwwwwwwkk eddddddddd  (15) 

where  

 .||||||||~~~= 2221.,3.,2.,1, kke kγ OptOptOpt

T   (16) 

Figure 5 illustrates the processing steps to form the 29-

dimensional feature vectors. 

 
Figure 5. Illustration of the processing steps required to form the 

29-dimensional feature vectors used for change discrimination 

4. Hyperparameter-free open-set classifier 

     There are two main components to the change 

discrimination framework: 1) determining a prototype 

feature vector for a given type of change, and 2) a distance 

metric that can discriminate between the prototype and 

feature vectors. We use a data driven approach and derive 

the prototype feature vectors from hand annotated training 

data derived from observations of change types of interest. 

     The behavior of the discriminating function can be 

stated as:  

 


 

,otherwise1,

||<||if,
=,=

0

0ChangeD




dd
ddf  (17) 

where   is a selected coherence map and 0d  is a feature 

vector prototype that defines a particular type of change 

and ||<||   is some measure of “closeness” to the feature 
vector . This is known as a goodness-of-fit classifier or 

an open-set classifer (for more details see next section). 

We also use a hyperparameter free classifier. This prevents 

overtraining, because the designer has no parameters to 

“tweak” in order to improve the classifier performance. 

4.1. Open-set classifier 

One can view a feature vector as a point in 
D  where  is 

the dimension of the signature in the feature space. Figure 

6 shows an example of a 2D features space . The 

red circles represent signatures from class 1 and the green 

triangles represent signatures from class 2. The blue 

squares are the unknown class. Figure 6a shows a linear 

decision boundary for the discriminator, but similar 

problems occur with nonlinear ones. This linear decision 

boundary separates the two classes and performs great if 

we are in a constrained environment with a closed set of 

classes [21]. But if there is an unknown class like the blue 

squares then the classifier will make errors and assign it to 

class 1 or 2. The solution is to use what was called one-

class [7] [12][13] or goodness-of-fit [5] classifiers before 

around 2010, but now are referred to as open set classifiers 

[21]. These classifiers have closed decision boundary and 

allow the classifier to reject the unknown class as shown in 

Figure 6b. To handle multiple classes an open set classifier 

is designed for each class. 

  
(a) (b) 

Figure 6. Classifier examples. (a) Closed set. (b) Open set. 
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4.2. Feature quantization 

In this paper, we use feature quantization for creating a 

compressed feature vector and giving a hyperparameter-

free classifier. Here, we create a feature vector that 

captures the essential information and clusters similar 

classes with high probability, but still discriminates 

between the various classes. Let  and  represent 

components of the feature vector d in equation (15). Let  

represent the compressed feature vector with components 

. Then 

ji
dd

y
ji

k 


 

 for   ,
otherwise1

 if2
. (18) 

Even though  has 406 components the components are 

binary so that 32 components can be packed into a small 

number of 32 bit words. Figure 7 shows an example of a 

quantized feature vector where yellow represents a 2 and 

blue represents a 1. Only the upper half of the comparison 

matrix is shown, since both halves are redundant. 

 

 
Figure 7. Quantized feature vector where yellow represents a 

2 and blue represents a 1. 

 

     We use t-distributed stochastic neighbor embedding (t-

SNE) [10] to visualize the raw and quantized feature 

space. The t-SNE approach is an unsupervised algorithm 

for dimensionality reduction and for visualizing high-

dimensional data on a 2 or 3-dimensional manifold. It 

works by embedding the high-dimensional points in a low 

dimension such that the similarities between points are 

respected. Here, nearby points in the high-dimensional 

space correspond to nearby embedded low-dimensional 

points and distant points in high-dimensional space 

correspond to distant embedded low-dimensional points. 

Figure 8a shows the t-SNE results for the raw feature 

vector with the points color coded by class. Figure 8b 

shows the t-SNE plot for the quantized feature space. Both 

plots show similar separation and groupings of the classes, 

so we conclude that we do not lose very much information 

in going to the quantized representation. 

4.3. Multinomial pattern matching 

          An ideal open-set classifier for a quantized feature 

vector is multinomial pattern matching (MPM) [22][6]. 

The MPM test statistic uses a multinomial indexing 

transform  : ,  },...,2,1{ Q , that maps the feature 

vector into a discrete index representing group 

membership. In our case 2Q  and uses (18) for the 

mapping , but the following mathematics applies for any 

.  

 

   
(a) (b) 

Figure 8. The t-SNE visualization of the feature space. (a) 

Raw feature vector. (b) Quantized feature vector. 

 

     Using the training data from each class, we estimate a 

class prototype ( 0d in equation (17)) of the quantile 

probabilities bqP̂ . Here, the probabilities bqP̂  represent the 

observed proportion of changed detection training 

signatures for which quantized feature component b in the 

class signature maps to quantile q. Thus, the template TM  

is a QB  matrix of quantile probabilities bqP̂ . Equation 

(19) gives the MPM test statistic for quantized feature 

vector component by :  













1

0

2

)(,

ˆ

ˆ)ˆ1(B

k
k

kyk

MPM

VC

EP
Z k . (19) 

Here, the quantities 
kÊ  and 

kV̂  represent the estimated 

expected value and variance of the quadratic 

penalty
2

)(, )ˆ1(
kykP  , and C  accounts for the correlations 

between feature vector components. Low MPMZ  scores are 

consistent with a good match to the class. Using the central 

limit theorem [15], as the number of components in the 

quantized feature vector   increases, we can show that 

MPMZ  approximates a normal distribution with zero mean 

and unit variance ( )1,0(N ) conditioned on the target data. 

     The estimates of the mean and variance of the quadratic 

penalty  2ˆ1 kqP  are: 







1

0

2)ˆ1(
~ˆ

Q

q

kqkqk PPE  (20) 

and 

2
1

0

4 ˆ)ˆ1(
~ˆ

k

Q

q

kqkqk EPPV 




 (21) 
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Here, bqP
~

estimates the quadratic penalty probabilities for 

component b and quantile q. To compute bqP
~

, we use a 

Bayes estimator of the form [20]: 

bqbqbq PpP ˆ)1(
~ 0    (22) 

where 10   represents a weight, bqP̂  represents the 

maximum likelihood estimation of the probability bqp , and 

0

bqp represents a-priori information about bqp  and satisfies 

the properties of a probability. The Bayes estimator 

prevents the case of estimating a zero probability for a 

specific feature component b  and quantile q . For the 

multinomial distribution, the Dirichlet distribution is the 

conjugate prior [26]. Using a symmetric Dirichlet prior 

gives Qpbq 10  , and )(  QnQ   [20], where n  

represents the number of training signatures and   is a 

single user specified parameter for the Dirichlet 

distribution. Thus, the Bayes estimation equation (22) for 

the quantile probabilities becomes [20][22][6]: 

)()ˆ(
~  QnPnP bqbq  . (23) 

As n , the Bayes estimate bqP
~

 approaches the 

maximum likelihood estimate bqP̂ . We estimate bqP̂  and 

  using the training data and a leave-one-out (LOO) 

estimation technique. The   parameter is selected to give 

the LOO MPMZ  scores a zero mean. With an automated 

approach for selecting   we have a hyperparameter free 

classifier. 

5. Data selection 

     In this paper, a data driven approach is taken to 

estimate the change-discrimination functions for three 

different types of change by selecting training feature 

vectors, for each change type, from homogeneous regions 

within a variety of image sets. 

     Both training and test feature vectors were collected for 

different change-types from a variety of coherent, fully-

polarimetric image sets; the training data were collected 

from nine different image sets and the test data were 

collected from six different image sets, separate from the 

training image sets. Within each image set, training and 

test feature vectors were collected for three different 

change types: tree (Tree), low-return (Low), and ground 

(Grnd). 

6. Results 

In this section, we show performance results of the training 

and testing data using receiver operating characteristic 

(ROC) curves, confusion matrices and then a CCD image 

color coded by the detected classes.  

6.1. ROC curves and confusion matrices 

Figure 9 shows the receiver operating characteristic (ROC) 

curves for the training and testing data. Here we plot the 

probability of false alarm (PFA) vs. probability of 

detection (PD). Each point on the ROC is determined by a 

threshold  on the score . If  then we 

decide that the pixel belongs to the class of the associated 

MPM classifier. If  then we decide the pixel 

does not belong to that class.  

  

(a) (b) 

Figure 9. ROCs. (a) Training data. (b) Test data. 

 

Table 1 and 

 

Table 2 show the confusion matrices for all MPM 

classifiers working together for the training and test data, 

respectively. The thresholds were selected to give 90% PD 

for the classifiers working independently. If multiple MPM 

classifiers have a score less than  then we assign the pixel 

to the class with the lowest MPM score. If all MPM 

classifiers have a score greater than  then we assign the 

pixel to an unknown change class. The rows of the 

confusion give actual change types and the columns give 

the change types declared by MPM. Again, if none of the 

classifier outputs surpass the threshold then the unknown 

class is decided (last column). From the confusion results 

one can see that Grnd classifier has difficulty 

distinguishing ground from trees. This is illustrated more 

in the test confusion matrix. Since the classifier is 

hyperparameter free we know that this is an inherent 

anomaly in the data and not in the parameter selection for 

the classifier. 

 
Table 1. Confusion matrix for training data 

 

Grnd Low Tree UNK 

Grnd 93% 0% 6% 1% 

Low 0% 97% 0% 3% 

Tree 2% 0% 96% 3% 
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Table 2. Confusion matrix for test data 

 

Grnd Low Tree UNK 

Grnd 74% 0% 17% 9% 

Low 0% 96% 0% 4% 

Tree 0% 0% 99% 1% 

6.2. Confusion image 

     Figure 10 shows the CCD image created from two 

polarmetric images taken at different times. The values in 

the CCD image range from 0 to 1 where 0 indicates low 

coherence and 1 indicates high coherence. One can see a 

lot of false change due to the trees and shadow. From the 

OC and H/A/α decomposition of it’s parent images we can 
create at feature vector (15). This vector is then quantized 

(18) and then processed by the three MPM classifiers, one 

classifer for each class of interest. The output of the three 

MPM classifiers can be compared across classes to make 

decisions about what type of change is contained within a 

pixel. Furthermore, only the pixels that have a low-

coherence value are evaluated. We consider a low-

coherence value to be  <0.7. For a given pixel with low-

coherence, the change type is declared by the minimum of 

the classifiers except when all the outputs are greater than 

the decision threshold, then the unknown class is declared. 

Figure 11 illustrates the confusion image. The gray/white 

regions in the Figure are the no change CCD values for  

0.7, the red, green, and blue regions represent the 

classes: Grnd, Tree, and Low classes respectively. The 

unknown class is given by the cyan color. 

 

 
Figure 10. CCD image. Darker values indicate change or no 

return. 

 

    Note the transition regions between the trees and the 

radar shadows they cast. The MPM model declares much 

of these transition regions as unknown.  

7. Conclusion  

As more SAR radars become available with polarimetric 

capabilities it’s important to be able to exploit these data 

to their full advantage. Many researchers have shown how 

to use polarimetric SAR to determine the scattering type in 

a single polarimetric image set. We have extended the 

H/A/α polarimetric decomposition to detect the type of 

change in an optimal coherence image. We can sucessfully 

identify three different types of low coherence: low return 

areas, ground and trees. We stress the importance of 

developing an open-set classifier, so that we do not have to 

train with all possible changes that produce low coherence. 

This gives rise to an unknown class which represents low 

coherence types that were not part of the training 

processes.  

 

 

 
Figure 11. CCD image in Figure 10 color coded by change type 

detected by MPM. The classes are Tree (green), Low (blue) and 

Grnd (red). If the largest selected value is greater than the 

associated change-type threshold, then it is labeled as unknown 

(UNK) and is colored cyan. No change is shown as grayscale. 
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