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Abstract

Depth cues are essential to achieving high-level scene

understanding, and in particular to determining geomet-

ric relations between objects. The ability to reason about

depth information in scene analysis tasks can often result

in improved decision-making capabilities. Unfortunately,

depth-capable sensors are not as ubiquitous as traditional

RGB cameras, which limits the availability of depth-related

cues. In this work, we investigate data-driven approaches

for depth estimation from images or videos captured with

monocular cameras. We propose three different approaches

and demonstrate their efficacy through extensive experi-

mental validation. The proposed methods rely on process-

ing of (i) a single 3-channel RGB image frame, (ii) a se-

quence of RGB frames, and (iii) a single RGB frame plus the

optical flow field computed between the frame and a neigh-

boring frame in the video stream, and map the respective

inputs to an estimated depth map representation. In con-

trast to existing literature, the input-output mapping is not

directly regressed; rather, it is learned through adversarial

techniques that leverage conditional generative adversarial

networks (cGANs).

1. Introduction

By some estimates [1], depth sensing is poised to pen-

etrate the automotive sensor market as the lead technology

behind safety and autonomy. Depth cues are essential for

high-level scene understanding, as well as to determine the

geometric relations between objects in the scene. The abil-

ity to reason about depth information in scene analysis tasks

can often result in improved decision-making capabilities.

Unfortunately, depth-capable sensors are far less ubiquitous

as traditional RGB cameras, which in turn limits the avail-

ability of depth-related cues.

Literature introducing techniques that leverage stereo-

scopic images to estimate the depth map of a scene is plen-

tiful. In contrast, we investigate approaches for depth map

estimation from images or videos captured with monocu-

lar cameras which has significant value given the popularity

and low-cost of traditional RGB cameras. Indeed, while

stereoscopic images are relatively scarce due to the need

for specialized equipment, monocular images and video

frames are widely available in the internet, particularly on

social media and video-sharing platforms. In addition, the

ability to accurately estimate depth from monocular visual

data may be useful to improve understanding of historical

data available for existing scientific and industrial applica-

tions. In some instances, depth maps can be obtained via

the use of LiDAR sensors, which measure the distance to

a target by determining the time it takes pulses of emitted

light to reflect off the target and return to the sensor. Li-

DAR technologies, however, may suffer from low data ac-

quisition rates; also, LiDAR sensors have a certain degree

of sophistication which has prevented them from becoming

widespread commodities, unlike consumer-grade cameras.

Being able to close the depth-sensing performance gap be-

tween the two technologies while leveraging the ubiquity of

traditional imaging systems would prove to be impactful to

the wide range of applications that benefit from knowledge

of depth information.

In this paper, we investigate data-driven approaches for

depth estimation from images or videos captured from

monocular cameras. We propose three different approaches

and demonstrate their efficacy through extensive experi-

mental validation. The proposed methods rely on process-

ing of (i) a single 3-channel RGB image frame, (ii) a se-

quence of RGB frames, and (iii) a single RGB frame plus

the optical flow field computed between the frame and a

neighboring frame in the video stream, and map these inputs

to an estimated depth map representation. In contrast to ex-

isting literature, the input-output mapping is not directly re-

gressed; rather, it is learned through adversarial techniques

that leverage conditional generative adversarial networks

(cGANs), which have the ability to generalize from smaller

training sets.

The paper is organized as follows: in Sec. 2, related work
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on technologies mapping from RGB images to depth maps

is discussed. Specific details on the methodologies intro-

duced in this paper, including the algorithm descriptions,

problem formulation, datasets, and data preparation are pre-

sented in Sec. 3. Popular evaluation metrics are outlined

in Sec. 4, along with discussions on the main results ob-

tained from our experiments, before concluding the paper

in Sec. 5.

2. Related work

Techniques for depth estimation from a single image via

supervised learning are plentiful. For instance, [15] imple-

mented a framework using Markov Random Fields (MRF)

that incorporates multiscale local- and global-image fea-

tures and models the relation between depth and visual val-

ues at different points. Later, [16] extended the same frame-

work to capture both 3D location and 3D orientation of the

scene. However, the approach required some effort in craft-

ing convolutional filters for computation of texture energies

and gradients. In [4], the authors construct 3D models from

planar RGB images by computing superpixels to harvest the

statistics of the geometric classes defined by the orientations

of objects in the scene. Lastly, [9] incorporated class labels

into the analysis to improve model performance.

A number of machine learning techniques have been ex-

plored for depth estimation from stereo imagery [8, 12, 21,

17]. Much of the existing work in this area relies on the use

of hand-crafted features including texton features, GIST,

SIFT, PHOG, and object banks. The explosion of deep

learning techniques has resulted in the enhanced ability to

automatically extract features without the need for feature

handcrafting. The authors of [11, 20] explored the joint use

of deep convolutional neural networks (CNN) and contin-

uous conditional random fields (CRF) to learn depth esti-

mation without relying on geometric priors. The technique

in [2] performs depth estimation from a single image using

two deep network stacks, with one specializing in coarse

global predictions and the other in charge of performing lo-

cal predictions, while [6] also explored modular CNN ar-

chitectures for joint depth prediction and semantic segmen-

tation. More recently, [10] proposed a fully convolutional

architecture with residual learning to model the ambiguous

mapping between monocular images and depth maps.

3. Proposed Approach

This section outlines the proposed data-driven approach

for depth map estimation from monocular imagery; train-

ing methods and data preprocessing steps are described in

detail.

3.1. Conditional GANs

Tne introduction of Generative Adversarial Networks

(GANs) [3] represented a significant breakthrough in the

field of unsupervised learning. A GAN consists of two

modules, a generator and a discriminator, which are usually

implemented in the form of neural networks. The genera-

tive module captures the distribution of the data, while the

discriminative module estimates the probability that a sam-

ple to which it is exposed comes from the training data or

is synthetically generated. Specifically, generator G(z; θg)
builds a mapping function from a noise distribution pz(z) to

the data space, while discriminator D(x; θd) produces a sin-

gle scalar output representing the probability that observed

sample x comes from the actual training data distribution

rather than from the learned pg .

G and D are trained simultaneously. The parameters for

G are learned through gradient descent and error backprop-

agation to minimize loss function log(1−D(G(z))). At the

same time, the parameters for D are learned by minimizing

logD(X). Optimizing both networks can be posed as a

two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G)

= Ex∼pdata(x) [logD(x)] + Ez∼px(z) [1−D(G(z))]
(1)

GANs can be naturally extended to learn conditional dis-

tributions by having the generator and discriminator condi-

tioned on additional information y, rather than on the noise

vector z; the networks that result by following this formu-

lation are known as conditional generative adversarial net-

works (cGANs). y can be any auxiliary information such as

class labels, actual images, or any data from other modali-

ties. In cGANs, the prior input noise pz(z) is combined with

y to form joint hidden layer representations, which results in

a generative model that is capable of transforming samples

from one domain into another domain. Applications of such

domain transformations include image-to-image translation

[5].

The objective function of the conditional two-player

minimax game is:

min
G

max
D

V (D,G)

= Ex∼pdata(x|y) [logD(x)]+Ez∼px(z) [1−D(G(z|y))]
(2)

3.2. Problem formulation

In this paper, we formulate the task of estimating a depth

map from monocular inputs as an image translation task.

Since the input and the output lie in different domains, we
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can perform a pixel-to-pixel mapping between the input and

the output, assuming that both have the same spatial dimen-

sions. The three different formulations being proposed are

described below and illustrated in Fig. 1.

RGB SeqRGB RGBUV 

Depth Map 

Inputs 

Outputs 

Single RGB frame Temporal RGB frames RGB Frame and Optical Flow 

Figure 1. Three formulations of the task at hand. We estimate

the depth map of a scene using individual frames (left), sequential

frames (center), and optical flow (right) from the video data and

attempt to estimate the depth map of the scene as the output. Note

that each image frame contains three color channels.

Single RGB Frame to depth mapping. In this for-

mulation, a single RGB frame is directly mapped to a

grayscale pixel intensity representation of its corresponding

LiDAR depth map. To this end, the architecture outlined in

pix2pix [5] is modified to accept an 8-bit 3-channel frame

(i.e., red, green, and blue channels) of width w and height h
to a single intensity map of the same image dimension with

8-bit values.

Sequential RGB Frames to depth mapping. This ap-

proach attempts to leverage video data to infer the depth

map. According to this formulation, a sequence of 3 RGB

frames at time t, t− 1, and t− 2 are fed as the input to get

a single-channel output representing the depth map at time

t. In other words, the input is a concatenation of the 3 RGB

frames along the color dimension, producing a total of 9

channels as the input and a single channel as the output. We

hypothesize that frames in succession can capture the tem-

poral motion of the objects and aid in inferring depth from

motion as well as the nature of the objects. For instance, ob-

jects traversing the field of view of a front-facing camera at

high speed might most likely be passing traffic, trees while

making a turn at an intersection, or crossing pedestrians.

RGB Frame and optical flow to to depth mapping.

Similar to the sequential RGB approach, the optical flow

field between two successive frames at time t and t − 1 is

used to infer the depth map at time t. The RGB data for time

t is retained and concatenated with the optical flow compo-

nents U and V represented as two distinct image channels.

As a result, there are 5 input channels (RGB+UV ) and a

single output channel.

Outputs 
Refined outputs 

 

Actual Target 
for training the 
discriminator 

Intermediate Outputs Primary 
inputs 

Inputs 
Concatenate intermediate 
outputs with primary input 

 

Skip connections 

Primary cGAN 

Skip connections 

Secondary cGAN 

Figure 2. An illustration of cascaded refinement by training multi-

ple GANs in stages. The first stage produces a coarse estimate of

the depth map, while the second stage refines the first estimate by

processing a fused version of it with the original inputs.

Cascaded model refinement. Additional GANs can be

further utilized to refine the outputs in a staged manner.

Using the single RGB frame formulation as an example, a

GAN is trained to map an RGB frame to a depth map. Next,

we introduce a secondary GAN that maps the concatenation

of the RGB frame and depth map estimate to a more refined

depth map. In other words, the secondary GAN is trained

on the concatenation of the inputs and the outputs from the

primary GAN.

3.3. Data description

Experiments were performed on both the Ford Campus

Vision and LiDAR Data Set [14]. The imagery in the dataset

was collected by an autonomous ground vehicle testbed on

a Ford pickup truck equipped with multiple sensors includ-

ing inertial measuring units (IMU), LiDAR scanners, and

omnidirectional camera systems. Captured data has times-

tamps which allows establishing temporal correspondences

between the acquired images and LiDAR depth maps. Be-

fore feeding the training data into the framework, several

additional preprocessing steps on the data had to be per-

formed which will be outlined below.

We compare the performance of our frameworks with

other methods on the NYU Depth v2 dataset [13]. This

dataset consists of indoor scenes captured using the Mi-

crosoft Kinect camera.
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3.4. Data preparation

3.4.1 Ford Campus Vision and Lidar dataset

In this section, we discuss the details on how the dataset

is prepared for training and testing. The number of frames

used for training is 1480.

(i) Vehicle trajectory 1 for training (ii) Vehicle trajectory 2 for testing 

Figure 3. The vehicle trajectory is used to determine the members

of the training and testing datasets. Doing so guarantees a clean

separation of data and minimizes data leakage.

Train-test partition. The dataset contains two sets of

data collected from two different routes taken by the vehi-

cle: one around downtown Dearborn and the other around

the Ford Research Complex in Dearborn (Fig. 3). In order

to minimize the effects of possible data leakage, the data

partition is done based on the vehicle trajectory.

Camera selection. There are five cameras available in

the dataset, each pointing towards a different orientation

(e.g., front of vehicle, side of vehicle, back of vehicle). In

all cases, only the first forward-facing camera is selected

for training. Later in the section, we will discuss the prob-

lem formulation utilizing optical flow and sequential frames

where the flow of optical features has an impact on efficient

learning of features.

Gamma correction on depth map representation. In

the LiDAR data, pixels with low (resp. higher) values rep-

resent nearer (resp. further) objects. In a typical depth map,

the lower two-thirds of the image tend to be very dark due

to most regions (e.g., road and objects on the road) falling

within the camera’s field of view. On the other hand, the

upper third of the image contains more variation due to the

presence of different objects within vicinity of the vehicle.

Hence, the lower two-third tends to have low pixel values

that are tightly distributed, whereas the values of the pixels

in the upper third of the image are more widely spread. As

a form of equalization, gamma correction is performed on

the image to magnify (resp. compress) variations in the near

(resp. far) regions.

Prior to gamma correction, the depth values d are first

normalized using the following expression:

d̃ =
d− dlb
dub − dlb

where dub is the upper bound and dlb is the lower bound of

the depth values in the data. Then, the depth map is pro-

cessed pixel-wise according to the following equation for

gamma correction d̃out = Ad̃γin, where d̃out ∈ [0, 1] is the

normalized intensity of the output pixels, d̃in ∈ [0, 1] is the

intensity of the input pixels, A is typically a constant with

value 1, and γ is the parameter of interest. When γ > 1,

the image is darkened. Therefore, we select values where

γ < 1 (specifically, γ = 1/3 in our experiments) to make

dark regions lighter. An example of the processed data is

visualized in Fig. 4.

(i) Non-gamma 
corrected map 

(ii) Gamma 
corrected map 

(i) RGB Frame 

Figure 4. Gamma correction on the LiDAR depth map amplifies

darker regions to bring out more details.

Temporal registration between acquired video

frames and LiDAR data. The on-board video is captured

at 30 fps and LiDAR data is captured in 10 Hz. During the

training process, only video frames for which LiDAR data

is available were used.

Stationary data pruning. A significant portion of the

data (about 40%) was acquired while the vehicle was sta-

tionary; consequently, many frames were found to have

similar content. This may cause issues with the learning

because the dataset can become imbalanced. We removed

redundant frames by computing a similarity metric between

the current video frame at time t and the previous video

frame at time t−1, and discarding frames for which the sim-

ilarity metric does not exceed a certain threshold. Specifi-

cally, consider an image frame that is represented by a vec-

tor y ∈ Rwhc, where w, h, and c are the width, height, and

number of channels of the image, respectively. Formally:

∆ =

(

1
whc

∑whc
i=0 (yt,i − yt−1,i)

2
)1/2

1
whc

∑whc
i=0 yt,i

The pruning algorithm preserves frames for which ∆ ex-

ceeds 0.05. Note that when the vehicle is stationary in front

of the road intersection, passing vehicles may enter the up-

per regions of the field of view. Therefore, the pruning crite-

ria is only done based on the computation on the lower-half

of the image.

Training data augmentation. Affine transformations

such as flipping are performed. Since we wish to tailor

the framework to the estimation of depth maps of roads,
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we only perform horizontal flipping (without vertical flip-

ping) to preserve contextual information. As with other

data-driven approaches, computing an accurate estimate of

the prior distribution of the data is vital. Through vertical

flips, objects such as cars and trees will appear upside down

and negatively affect the estimate of the distribution.

3.4.2 NYU Depth v2 dataset

Methods in common. Preprocessing methods similar to

those described above were applied to this dataset. In par-

ticular, we performed gamma correction on the target depth

map. During test time, the outputs of the network were

reverted back into actual depth values, in meters. During

training, the same data augmentation techniques were ap-

plied.

Train-test separation. Among the 1449 images from

the subset of NYU Depth v2 dataset, we used the first 1000

images for training, with the majority of the scenes hav-

ing been acquired in kitchens, offices, and classrooms. For

testing, we evaluated the performance on the remaining 449

images, where the majority of the scenes were acquired in

living rooms and bedrooms. This clear separation between

training and testing minimizes data leakage and forces to

model to generalize to unseen settings.

3.5. Training procedure

The input and output data were processed based on the

methods outlined above. We base the fundamental cGAN

building block of our framework on that described in [5].

As the original architecture is designed for image-to-image

translation, each image is expected to have 3 channels

(RGB). Therefore, we made modifications to the architec-

ture to support ingestion of images with an arbitrary number

of input channels and output channels. In all experiments,

the number of filters are kept the same, with input sizes of

(256 × 256 × C), where C denotes the number of chan-

nels (which depend on the specific formulation being im-

plemented, as outlined in Sec. 3.2). A separate model is

trained for each experiment, with 3 variants of problem for-

mulation, 2 variants to study the effects of data pruning, and

2 variants to study the effects of gamma correction. Thus,

the results correspond to a total of 12 model evaluations.

Regardless of the varying number of channels, we limit the

maximum number of training epochs to 50. Training was

performed on an NVIDIA GeForce GTX Titan Black and

took 5 hours for each experiment.

Additionally, we chose the top-performing model among

the 12 experiments performed on the Ford Campus Vision

dataset and extended it into the cascaded refinement formu-

lation described in Sec. 3.2. For the NYU Depth v2 dataset,

we only tested the RGB to depth map formulation without

considering temporal correlations due to the nature of the

dataset.

4. Results and Discussion

In this section, report the performance of the different

frameworks.

4.1. Evaluation metrics

We employed multiple evaluation metrics to evaluate the

quality of the depth map reconstruction. All evaluation met-

rics are computed by treating the 8-bit integers as a floating

point value without normalizing into a range from 0 to 1.

Error-based metrics. The L2 norm has been a pop-

ular metric to measure errors between estimated data and

ground truth data. In this context, the root mean-squared

error (RMSE) between the reconstructed single-channel li-

dar depth map ŷ and the ground truth y is computed via:

RMSE(y, ŷ) =

(

1

wh

wh
∑

i=0

(ŷi − yi)
2

)1/2

Normalizing the RMSE facilitates the comparison be-

tween datasets or models with different scales. Nor-

malization yields the normalized root mean-squared error

(NRMSE), which is computed via:

NRMSE(y, ŷ) =
RMSE

maxi(ŷ ⊕ y)i −mini(ŷ ⊕ y)i

where ⊕ is the concatenation operator. In other words, the

normalized RMSE is computed by dividing the RMSE by

the difference between the global maximum and the global

minimum of the image pair. Usually, NRMSE is reported

as a percentage where lower values indicate less residual

variance. In many cases, especially for smaller samples, the

sample range is likely to be affected by the size of sample

which would hamper comparisons.

Relative errors. We used a scale-invariant error (SIE)

to measure the relationships between points in the scene,

irrespective of the absolute global scale as in [2]. The scale-

invariant mean squared error (in log scale) is expressed as:

SIE(y, ŷ) =
1

2wh

wh
∑

i=1

(log ŷi − log yi + α(ŷ, y))
2

where α(ŷ, y) = 1
wh

∑

i(log ŷi − log yi) is the value of α
that minimizes the error for a given (ŷ, y). For a prediction

ŷ, eα is the scale that best aligns it to the ground truth. All

scalar multiples of ŷ yield the same error, hence the scale

invariance.
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We also employed metrics that are widely used in the

literature, such as the average log10 error:

log10 error(y, ŷ) =
1

wh

wh
∑

i=1

| log10 yi − log10 ŷi|

and the average relative error:

rel(y, ŷ) =
1

wh

wh
∑

i=1

|yi − ŷi|

yi

Structural similarity index (SSIM). While metrics

such as MSE estimate absolute errors, SSIM is a perception-

based metric that considers image degradation as perceived

change in structural information, while also incorporat-

ing important perceptual phenomena, including both lu-

minance masking and contrast masking terms. Struc-

tural information is the idea that the pixels have strong

inter-dependencies especially when they are spatially close.

These dependencies carry important information about the

structure of the objects in a visual rendering of a scene. Note

that by using this metric, we retain the original 2D structure

of the image (as opposed to using a vector notation) since

SSIM is computed on windows of images. For more infor-

mation, we redirect the readers to [19].

4.2. Performance evaluation

The quality of the depth map reconstruction as effected

by the proposed frameworks is presented next. Table 1

shows the reconstruction metrics for the different experi-

mental setups. The SSIM for all approaches are very similar

indicating that both the reconstruction and the actual depth

maps are very similar in terms of the presence of local struc-

tures. However, the ability to reconstruct object structures

does not necessarily imply high accuracy in terms of depth

map reconstruction. It is equally important for the estimated

values to be as close to the target values as possible. This ca-

pability is better captured by the rest of metrics. While each

one of these metrics is designed to address a shortcoming

exhibited by another metric, we found their difference esti-

mates to be highly correlated. Consequently, only the box

plots of the SSIM metric (see Fig. 6) and of the log10 error

(see Fig. 7) are visualized for the sake of brevity.

4.2.1 Ford Campus Vision and Lidar dataset

Temporal information is beneficial. In all cases, it is ob-

served that using optical flow information generally results

in the best per-model performance in terms of reconstruc-

tion quality measured in SSIM and all error-based metrics,

regardless of whether the data has been pruned or gamma

corrected. The next best performance is achieved by using

a sequence of frames, while using a single frame resulted

RGB Frame Single Sequential Single+OF GT 

Figure 5. Output samples resulting from the implementation of dif-

ferent formulations. (i) Single: Using a single RGB frame. (ii)

Sequential: Using 3 consecutive RGB frames. (iii) Single+OF:

Single RGB frame with optical flow. (iv) GT: Ground truth. Out-

puts have been gamma-corrected for visualization purposes. The

first two rows are sample outputs from the training set, whereas

the rest are outputs from the testing set. While artifacts around the

objects are visible, we note the learning task itself is challenging

due to the noise present in the ground truth. An interesting result

(see third row from the top) shows an accurately reconstructed ap-

proaching car that is not captured by the LiDAR measurements.

in the least accurate reconstructions. This is in line with

our expectations, where leveraging the temporal correlation

between frames boosts performance. In practical applica-

tions, storing a sequence of recent RGB frames may be less

computationally expensive than computing the optical flow

between frames at every step.

Data pruning improves performance. Generally, prun-

ing stationary data for training results in better performance.

As stated, the full dataset contains many frames with sim-

ilar appearance due them having been captured while the

vehicle was stationary. Consequently, the estimate of the

prior distribution is skewed and affects the generalization

capabilities of the model.

Gamma correction aids learning. It is unclear how

gamma correction on the target affects the structural sim-

ilarity measure between the target depth map and the recon-

struction. The difference is, however, apparent if we look
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Table 1. Reconstruction performance on the Ford Campus Vision and LiDAR test sets in terms of SSIM (higher is better) and other metrics

(for which lower is better). The non-perceptual error metrics are highly correlated. Computed errors are based on the distance between the

pixel intensities of the target image map and those of the input image map.

No Gamma Adjustment Dataset SSIM RMSE NRMSE SIE rel log
10

Single Frame Full 0.8768 23.2945 0.0916 0.0754 0.2331 0.0984

Pruned 0.8799 23.6085 0.0928 0.0820 0.2445 0.0973

Sequential Frames Full 0.8758 23.1657 0.0911 0.0880 0.2490 0.0979

Pruned 0.8816 22.8471 0.0898 0.0830 0.2307 0.0933

Single Frame + Optical Flow Full 0.8854 22.3090 0.0877 0.0792 0.2255 0.0876

Pruned 0.8818 22.2951 0.0876 0.0796 0.2378 0.0907

With Gamma Adjustment Dataset SSIM RMSE NRMSE SIE rel log
10

Single Frame Full 0.8729 10.9335 0.0485 0.0274 0.0940 0.0320

Pruned 0.8670 11.6861 0.0514 0.0270 0.0904 0.0312

Sequential Frames Full 0.8654 11.6509 0.0470 0.0370 0.1014 0.0367

Pruned 0.8834 10.2161 0.0447 0.0258 0.0829 0.0277

Single Frame + Optical Flow Full 0.8748 11.5128 0.0515 0.0266 0.0910 0.0317

Pruned 0.8858 9.6548 0.0425 0.0252 0.0817 0.0275

With Gamma Adjustment Dataset SSIM RMSE NRMSE SIE rel log
10

Best from above + Cascaded Refinement Pruned 0.8739 12.1008 0.0535 0.0371 0.2003 0.0404

Table 2. Reconstruction performance on NYU Depth V2. For consistent comparison with other literatures, computed errors are based on

the depth values recovered from inverse gamma correction where the 255 × 255-pixel output is resized back into its original size using

nearest neighbor interpolation. RMSE errors are computed based on depth values in meters. The list is sorted from highest to lowest RMSE

with an asterisk (*) denoting our method.

Evaluation on NYU Depth v2 Method Modalities RMSE NRMSE SIE rel log
10

Karsch et al. [7] Non-parametric sampling Depth only 1.200

Eigen et al. [2] Multi-scale deep network Depth only 0.907 0.219 0.215

*Ours - Single Frame cGAN Conditional GAN Depth only 0.875 0.179 0.063 0.255 0.102

*Ours - Cascaded Refinement cGAN Conditional GAN Depth only 0.862 0.173 0.064 0.235 0.100

Liu et al. [11] Deep conditional neural field Depth only 0.824 0.230 0.095

Wang et al. [18] Hierarchical conditional random field Depth + Semantic 0.745 0.220 0.094

Jafari et al. [6] Joint refinement network Depth + Semantic 0.673 0.157 0.068

at the log10 error. While there are larger variances of pixel

intensity in the target data, the model is able to produce re-

constructions over a high dynamic range while maintaining

small errors. This is largely related to the training of neural

networks where it is more desirable where each update step

during backpropagation can result in an impactful decrease

in losses. As the training samples is considered limited,

scaling the values also helped the model to converge faster.

4.2.2 NYU Depth v2 dataset and comparison to exist-

ing methods

Results are shown in Table 2. While our method is shown

to outperform traditional non-parametric sampling meth-

ods [7] and deep networks [2], the current cGAN model

which performs pixel-to-pixel image translation is still be-

hind advanced techniques that use superpixels for con-

text [11] or that incorporate semantic segmentation for

depth estimation [18, 6]. (See Limitations in this section.)

On cascaded refinement: For the Ford Campus Vision

and Lidar dataset, we observed that using temporal infor-

mation, data pruning, and gamma correction resulted in the

best performance among all experiments. Hence, we used

the same training scheme and trained another GAN as the

second stage to refine the outputs from the first stage. From

our observations in Table 1, we find no improvement in

the application of cascaded refinement. However, the op-

posite is true when cascaded refinement is applied on the

NYU Dataset. This is perhaps due to the NYU Dataset hav-

ing better (i.e., cleaner) ground truth maps compared to the

jittery depth values present in the Ford dataset.

Limitations. Using only 1000 images for training, the

model can sufficiently generalize to the unseen test set with

comparable performance. Using cGANs has its shortcom-

ings, however; as a generative model, cGANs are prone to

the issue where they learn mappings to generate realistic-

looking images instead of generating accurate images. This

artifact is most likely seen in the last row, last column exam-

ple given in Fig. 8. While the ground truth contains a desk in

the foreground, the trained cGAN hallucinated the flat sur-

face of the desk as the floor. Interestingly, due to contextual

cues, this ‘floor’ leads up to a hallucinated doorway when in

fact the actual object is a window. We believe that the model

can be improved with more data, in addition to allowing

some mixture in environmental settings that are common to

both the training and testing set instead of performing train-

test split over different environments. This hallucinating

behavior contributed to larger RMSE which penalized the

performance of the GAN-based approach against regression
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Figure 6. Box plot of the SSIM visualizing the distribution of reconstruction error for each frame in the FORD test set. P indicates that

the dataset has been pruned to remove stationary data as opposed to using the full dataset. G indicates that the depth map has been gamma

corrected. PG means that both processing techniques have been applied. The abbreviation OF means optical flow. Higher scores are

better. An SSIM of 1 is the highest possible score indicating perfect reconstruction.

Figure 7. Box plot of the log
10

error visualizing the distribution of reconstruction error for each frame in the FORD test set. The meaning

of the abbreviations is the same as in Table 7. Lower scores are better.

methods.

RGB Output GT RGB Output GT 

Figure 8. Outputs from the cascade refinement framework on the

NYU Depth v2 dataset. Left: RGB input. Middle: Outputs from

the proposed cascade refinement framework. Right: ground truth

map.

5. Conclusion

The task of estimating a depth map from a single image

is an area of active research. By using generative adversar-

ial networks to learn the input-output mapping between two

domains, we were able to construct a generative model that

generalizes well to unseen test data. In this work, we used

cGANs to map RGB images, as well as sequences of frames

and optical flow information to the depth map of the scene,

where the ground truth is measured using LiDAR. We found

that using temporal information improves the model perfor-

mance, while comparison with state-of-the-art yields com-

parable performance with many potential areas of improve-

ments. Taking inspiration from works that performed better,

our future research directions include:

• Using GPS data to infer vehicle velocity to intelli-

gently sample frames for optical flow computations;

• Extending the framework to ingest auxiliary sensor in-

formation; and

• Incorporating semantic segmantation and object recog-

nition in the cGAN model for depth estimation.
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