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Abstract

Automatic target recognition involves detecting and rec-

ognizing potential targets automatically, which is widely

used in civilian and military applications today. Quadratic

correlation filters were introduced as two-class recognition

classifiers for quickly detecting targets in cluttered scene

environments. In this paper, we introduce two methods that

integrate the discrimination capability of quadratic correla-

tion filters with the multi-class recognition ability of multi-

layer neural networks. For mid-wave infrared imagery, the

proposed methods are demonstrated to be multi-class target

recognition classifiers with very high accuracy.

1. Introduction

Automatic target recognition (ATR) involves detecting

and recognizing potential targets automatically in digitized

video data [22]. ATR was first introduced in the 1980s with

aircraft-mounted targeting pods for military aircraft [21, 8].

Numerous ATR algorithms have been proposed during the

last few decades [22, 21, 3, 2, 1], and it is still a crucial el-

ement to many military applications today [22, 8]. An ATR

system can be divided into four parts [3, 9]: detection, clut-

ter rejection, feature extraction and classification. In this pa-

per, we consider the latter two items together by introducing

a quadratic correlation filter (QCF) coupled with a convolu-

tional neural network (CNN).

QCFs were introduced by Mahalanobis el al. in [13]

to perform target detection. The original QCF is based

on the Fukunaga-Koontz Transform (FKT), which keeps

the eigenvectors corresponding to the largest and smallest

eigenvalues. A single-layer perceptron QCF was introduced

in [14] and shown to be effective for two-class target de-

tection. In many military mid-wave infrared (MWIR) ap-

plications, multi-class target recognition is required. This

suggests the modification of the two-class target detection

methods to support multi-class target recognition.

CNNs were introduced by LeCun et al [10, 11] to

build networks that are invariant to certain transforma-

tions of the inputs. Rather than performing the feature ex-

traction manually, it is built into the network and learned

through the training process [4]. A typical CNN has cor-

relation and pooling layers followed by fully-connected

layers for performing the feature extraction and classifi-

cation. Neural network approaches are broadly catego-

rized as learning-based ATR [22]. In [9], one learning-

based ATR approach uses K-means to cluster dense His-

togram of Gradient (HOG) features for infrared (IR) targets,

where similar visual words are grouped together in a Bag-

of-Words (BoW) classification style. Another proposed

method is the maximum margin correlation filter (MMCF),

which uses a correlation filter coupled with a support vector

machine (SVM) to classify targets [19, 20].

In this paper, we introduce a couple of learning-based

ATR approaches by extending the two-class target detection

method in [14] to a quadratic multi-layer perceptron and in-

tegrating a quadratic correlation filter (QCF) into a CNN

for target recognition. We will show that the addition of the

quadratic layer not only improves the classification accu-

racy, but also assists in target localization. We demonstrate

the performance of our methods using the ATR Algorithm

Image Database [23] mid-wave infrared (MWIR) dataset.

2. Quadratic Correlation Filters

The quadratic correlation filter (QCF) was developed

in [13] to efficiently detect targets in a cluttered scene. In

their paper, a couple of methods are proposed to find a QCF

H to perform target detection. The filter H = FFT −GGT

can be a composite matrix consisting of a filter F to detect

targets and a filter G to detect the background [13, 14]. It

can be applied efficiently to evaluate a scene at every loca-

tion s in the image. If a region of the image x at location s

is rearranged in vectorized form denoted as xs which is of

dimension R
rc for an r × c region, then the application of

the QCF H ∈ R
rc×rc is ϕ(xs) = xT

s Hxs, which can be
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(a) (b)

Figure 1: Target detection using a quadratic correlation filter (QCF) learned from a single-layer perceptron neural net-

work (SLPNN): (a) Original image with an armoured personnel carrier (BMP2), (b) correlation output. We observe that the

BMP2 can be detected, but not recognized or identified, using this method.

performed efficiently using a 2D cross-correlation:

ϕ(x) =
∑

i

|x⊗ fi|
2
−
∑

j

|x⊗ gj |
2

(1)

where i is the index of column vectors fi of F ∈ R
rc×rc

and j index of column vectors gj of G ∈ R
rc×rc both rear-

ranged as r × c matrices.

A design of QCFs H proposed in [14] minimizes the sum

of the squared error between the output statistic ϕ and the

true label d for all training samples. It is based on the back

propagation training algorithm for kernel neurons to gener-

ate the filter [25]. Denote the statistic of an image patch xn

by

ϕ(xn) = xT
nHxn, 1 ≤ n ≤ Ne,

where Ne = 2NS is the total number of training images.

We expect that xn is a target when ϕ(xn) is positive and

large, it is the background when ϕ(xn) is negative and

small.

Denote the output of the single-layer perception dn ∈
{−1, 1} by 1 when the training image is a target and by

−1 when it is the background. To meet the expectation,

we use a differentiable squashing function, σ(ϕ(xn)) =
tanh(ϕ(xn)), to force the output of ϕ(xn) to be between

−1 and +1, and minimize the objective function

J(H) =
1

2

Ne
∑

n=1

|dn−σ(ϕ(xn))|
2 =

1

2

Ne
∑

n=1

|dn−σ(xT
nHxn)|

2.

(2)

We can iteratively solve for H using the gradient descent

algorithm

Ht+1 = Ht − η∇J(Ht), t ≥ 0, (3)

and H0 = 0, where the gradient ∇J(H) is given by

∇J(H) = −

Ne
∑

n=1

|dn−σ(ϕ(xn))|
(

1− σ2(ϕ(xn))
)

xnx
T
n .

(4)

We denote the solution to (3) as H∗ which occurs after

the convergence criterion has been met or T iterations have

occurred. Given a test image patch x, we can classify it as a

target or the background by examining σ(ϕ(x)) which will

be between 0 and 1 for a target and between −1 and 0 for

background, see Figure 1.

3. Proposed Methods

In Section 2, we recalled a single-layer perceptron QCF

for two-class target detection. However, target recogni-

tion requires a multi-class discriminator. Therefore, in this

section we propose a multi-layer perceptron neural net-

work with a quadratic filter input layer for multi-class target

recognition. Since multi-layer perceptron neural networks

are fully-connected networks, the input size must match

the training input patch size. This means that this network

must be applied multiple times in a sliding window type

approach to perform classification for an entire image. To

remedy this, we propose an all-convolutional CNN with a

QCF layer for multi-class target recognition and take advan-

tage of the invariance properties of the CNN [4]. In addi-

tion, an all-convolutional CNN offers the ability to perform

pixel-wise image classification using only image patches for

training [17]. This makes this type of CNN ideal for ATR

applications.

1336



Figure 2: Quadratic multi-layer perceptron neural net-

work (QMLPNN) for target recognition. The first layer is

composed of a quadratic filter which requires a 3D weight

tensor. The rest of the network forms a standard MLPNN.

3.1. Quadratic Multi-layer Perceptron Neural Net-
work for Target Recognition

In this subsection, we introduce a quadratic multi-layer

perceptron neural network (QMLPNN) for multi-class tar-

get recognition, see Figure 2. Given an input patch xn, 1 ≤
n ≤ N of size m, the output of the first hidden layer is

a quadratic function, which is learned during the network

training, of the form

z(2)n =
(

σ(xT
nH

(1)
k xn + b

(1)
k )
)

1≤k≤K1

, (5)

where K1 is the number of hidden nodes in the first layer,

H(1) =
(

H
(1)
k

)

1≤k≤K1
is a three-dimensional weight ten-

sor of dimension m×m×K1, b(1) =
(

b
(1)
k

)

1≤k≤K1
forms

a bias vector and σ is a non-linear activation function. The

other hidden layers are composed of conventional activation

functions,

z(ℓ+1)
n =

(

σ(〈h
(ℓ)
k , z(ℓ)n 〉+ b

(ℓ)
k )
)

1≤k≤Kℓ

, 2 ≤ ℓ ≤ L− 1,

(6)

where Kℓ is the number of hidden nodes, H(ℓ) =
(

h
(ℓ)
k

)

1≤k≤Kℓ

forms the weight matrix of dimension Kℓ ×

Kℓ−1, bℓ =
(

b
(ℓ)
k

)

1≤k≤Kℓ

forms the bias vector for the ℓ-th

layer, and L is the total number of layers [4, 15].

We denote the set of all target class types by C and label

each input pattern by dn ∈ C , 1 ≤ n ≤ N . We note that the

last layer has KL hidden nodes which is equal to the number

of classes in C . Given this, we write H(L) =
(

h
(L)
c

)

c∈C

for convenience. The objective function En(H,b) for the

input patch xn is defined as

En(H,b) =

−
∑

c∈C

[dn = c] log

(

exp (〈h
(L)
c , z

(L)
n 〉+ b

(L)
c )

∑

j∈C
exp (〈h

(L)
j , z

(L)
n 〉+ b

(L)
j )

)

(7)

where [i = j] is the Iverson bracket notation for the Kro-

necker delta function, H = {H(1),H(2), ...,H(L)} and

b = {b(1),b(2), ...,b(L)}.

Training is accomplished using gradient descent with

gradients determined by the backpropagation algorithm. All

layers will result in a weight matrix with the exception of

the first layer, which is a three-dimensional tensor. The er-

ror term is

δ(L) = −
(

[dn = c]− P
[

dn = c|z(L)
n ;H(L),b(L)

] )

c∈C

(8)

for the last layer, and

δ(ℓ) =
(

H(ℓ)
)T

δ(ℓ+1) ◦
(

σ′(〈h
(ℓ)
k , z(ℓ)n 〉+ b

(ℓ)
k )
)

1≤k≤Kℓ

(9)

for internal layers 2 ≤ ℓ ≤ L − 1, where we use the

notation ◦ to represent the element-wise Hadamard prod-

uct [15]. The internal layers in the network have standard

fully-connected nodes. As in [4, 15], the gradient associated

with error term δ(ℓ+1) is

∇H(ℓ)En(H,b) = δ(ℓ+1)(z(ℓ)n )T . (10)

However, the framework in the first layer (5) is specifically

designed for multi-target recognition networks. The gra-

dient associated with the objective function En(H,b), is

defined by

∇
H

(1)
k

En(H,b) = δ
(2)
k xnx

T
n , 1 ≤ k ≤ K1. (11)

3.2. Quadratic Correlation Filter Convolutional
Neural Network for Target Recognition

In this section, we introduce a quadratic correlation filter

convolutional neural network (QCFCNN) for automatic tar-

get recognition. The weight matrix H(1) =
(

H
(1)
k

)

1≤k≤K1

for the first layer, illustrated in Figure 3, contains multiple

QCFs H(1) of size M1 × M1 that are applied to the input

image. To apply the weight matrix in the first layer, we de-

fine

Θ
(1)
k = H

(1)
k +

(

H
(1)
k

)T

, (12)
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Figure 3: First layer of a quadratic correlation filter convo-

lutional neural network (QCFCNN) for target recognition.

The input is correlated with a learned weight eigenvector,

squared, multiplied by the eigenvalue and summed together.

The rest of the QCFCNN is a standard fully convolutional

neural network.

and perform its eigendecomposition

Θ
(1)
k Vk = VkΛk (13)

where the diagonal matrix Λk has real eigenvalues λk,M1 ≥
λk,M1−1 ≥ · · · ≥ λk,1 as its diagonal entries and orthonor-

mal matrix Vk = [vk,1, · · · ,vk,M1
] contains the corre-

sponding eigenvectors. The first layer is

z(2)n =
(

σ
(

M1
∑

i=1

λk,i|xn ⊗ vk,i|
2 + b

(1)
k

)

)

1≤k≤K1

(14)

for every location in the image x of height M and width

K, where the symbol ⊗ indicates the 2D cross-correlation

operation. The internal layers are standard convolutional

layers,

z(ℓ+1)
n =

(

σ
(

Kℓ−1
∑

i=1

h
(ℓ)
k,i⊗z

(ℓ)
n,i+b

(ℓ)
k

)

)

1≤k≤Kℓ

, 2 ≤ ℓ ≤ L−1,

(15)

where L is the total number of layers in the CNN.

Training is accomplished by standard backpropagation

for convolutional neural networks. The standard error func-

tion for CNN network internal layers is

δ
(ℓ)
k = upsample

(

Kℓ+1
∑

i=1

h
(ℓ+1)
k,i ⊗f δ

(ℓ+1)
k

)

◦σ′
(

Kℓ−1
∑

i=1

h
(ℓ)
k,i ⊗ z

(ℓ)
n,i + b

(ℓ)
k

)

(16)

which can be used to define the gradient, where 2 ≤ ℓ ≤
L − 1, 1 ≤ k ≤ Kℓ and the notation ⊗f denotes a full

2D cross-correlation operation. However, for the gradient

definition, we must first define the vectorization of a d × d

subimage X
(n)
l,m,

vec
(

X
(n)
l,m

)

= [x
(n)
l,m, · · · , x

(n)
l,m+d−1, x

(n)
l+1,m, · · · ,

x
(n)
l+1,m+d−1, · · · , x

(n)
l+d−1,m, · · · , x

(n)
l+d−1,m+d−1]

T .
(17)

Finally, we can evaluate the gradient for the first layer by

∇
H

(1)
k

En(H,b) =
∂En

∂H
(1)
k

=
∂En

∂Θ
(1)
k

∂Θ
(1)
k

∂H
(1)
k

=
∑

l,m

δ
(2)
k vec

(

X
(n)
l,m

)

vec
(

X
(n)
l,m

)T

,

(18)

where 1 ≤ k ≤ K1.

4. Numerical Experiments

We conducted our simulations using the SENSIAC ATR

Algorithm Image Database [23]. This database is a mid-

wave infrared (MWIR) dataset from the U.S. Army Night

Vision and Electronic Sensors Directorate (NVESD). It

contains 207GB of MWIR data which includes 10 vehi-

cle target types and 2 scenarios of humans. As shown

in Figure 4, we considered all 10 vehicle target types,

which include a Pickup Truck (PICKUP), Sport Utility

Vehicle (SUV), Armored Personnel Carriers (BTR70 and

BMP2), an Infantry Scout Vehicle (BRDM2), a Main Battle

Tank (T72), an Anti-Aircraft Weapon (ZSU23-4), a Self-

Propelled Howitzer (2S3), an Armoured Reconnaissance

Vehicle (MTLB), and a Towed Howitzer (D20). A 40× 80
bounding box is formed around each target using the ground

truth data to generate a target image patch, x, for training.

In our simulations, we select images that contain targets

less than 3000 meters in range from the camera at any time

of day. We train a single neural network (NN) using a differ-

ent class of targets within each range of aspect angles. For

instance, we may divide up a 360◦aspect angle range into

4 separate classes for each target category. For a 10 target

set, this will yield a total of 40 classes. All of these factors

make this a difficult dataset to classify. In our simulations,

a misclassification is only counted if a target is classified

outside of its target category (i.e. aspect angle is ignored).

In order to compare the performance of each classification

method, we train and test using image patches with the tar-

get centered in the patch. For the QCFCNN, we also train

with example background image patches to segment target

areas from background using the embedded QCF. Since this

network is built using all convolutional layers, we can train

1338



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Target images in the visible spectrum: (a) civilian pickup truck (PICKUP), (b) civilian sport utility vehicle (SUV),

(c) armoured personnel carrier (BMP2), (d) armoured personnel carrier (BTR70), (e) main battle tank (T72), (f) infantry scout

vehicle (BRDM2), (g) towed howitzer (D20), (h) armoured reconnaissance vehicle (MTLB), (i) anti-aircraft weapon (ZSU23-

4), and (j) self-propelled howitzer (2S3). We observe that many of the vehicles are very similar in appearance which makes

the target recognition task more difficult.

with image patches and subsequently use it to perform clas-

sification on full images giving a weakly-supervised net-

work, see [17].

In our simulations, we apply the QCFCNN in Section 3.2

for target recognition. Shown in Figure 5 are some exam-

ples of correctly classified targets containing labeled im-

ages and class label maps created from the output of the

QCFCNN. These examples are created from targets that are

less than 1500 meters from the camera. It is assumed that

target detection has been accomplished and that a window

has been created surrounding the detection. The target class

is determined by taking the mode of a window around the

centroid of the connected components in the QCFCNN out-

put. Some misclassification can occur for the QCFCNN,

see Figure 6 for some examples of misclassification. We

observe that most of the misclassifications occur when there

is similarity between the target types.

In our simulations, we train the QMLPNN with

the quasi-Newton limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) optimization algo-

rithm [16, 12], and the QCFCNN with stochastic gradient

descent and an adaptive gradient algorithm (AdaGrad)

[7, 18]. Their performance for target recognition could be

evaluated by a confusion matrix, see Figure 7. As seen

from their bottom right corners, there is a low probability

to misclassify MTLB and D20 targets, (cf. Figure 6), while

there is a very high accuracy to recognize other targets.

For our simulations, the MLPNN has an input layer, two

hidden layers and an output layer. The QMLPNN is iden-

tical to the MLPNN, but with the first layer replaced with

quadratic function. We used a nine layer CNN with con-

volution, ReLU and pooling layers followed by a softmax

layer. The QCFCNN is identical to the CNN, but with the

first convolution layer replaced with a QCF.

Table 1: Comparison of target recognition classifiers. The

QMLPNN with quadratic layer has 7.3% increase in accu-

racy over the basic MLPNN. Similarly, the QCFCNN with

quadratic correlation filter layer has an increase in accuracy

of 2.32%. The QMLPNN has a 39.46% increase in accu-

racy and the QCFCNN has a 40.03% increase in accuracy

over the baseline linear SVM (without retraining).

Method Training Iter/Tol Accuracy

QMLPNN L-BFGS 1000 iter 0.9813

MLPNN [24] L-BFGS 1000 iter 0.9083

QCFCNN AdaGrad 4680 iter 0.9870

CNN [4] AdaGrad 4680 iter 0.9638

SVM [6] C-SVC 0.001 tol 0.5867

We conducted experiments to compare our methods for

target recognition with the standard convolutional neural

network (CNN) [4], a conventional MLPNN [24] and a lin-

ear support vector machine (SVM) [6]. Table 1 shows the

results from our simulations, where we use 1000 iterations

for QMLPNN and MLPNN, 4680 iterations (or 20 epochs)

for QCFCNN and CNN, and a tolerance of 0.001 in the lib-

svm MATLAB software package for the linear SVM [5].

From Table 1, we learn that substitution of a quadratic layer

causes an increase in accuracy from 90.8% for the standard

MLPNN to 98.1% for the QMLPNN, and a jump in accu-

racy from 96.38% for the standard CNN to 98.7% for the

QCFCNN.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5: Some correctly classified examples: QCFCNN output class label map and labeled image for (a)-(b) main bat-

tle tank (T72); (c)-(d) pickup truck (PKP); (e)-(f) self-propelled howitzer (2S3); (g)-(h) sport utility vehicle (SUV); (i)-(l)

armoured personnel carrier (BMP2); (m)-(p) infantry scout vehicle (BRDM2); (q)-(t) armoured personnel carrier (BTR70).

1340



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Some mislabeled Examples: QCFCNN output class label map and labeled image for (a)-(b) BRDM2 labeled as

BTR70; (c)-(d) BMP2 labeled as BRDM2; (e)-(f) BTR70 labeled as BRDM2; (g)-(h) BTR70 labeled as BMP2; (i)-(j) SUV

labeled as PKP; Most misclassifications are due to the similarity between target classes.

(a) (b)

Figure 7: (a) Quadratic multi-layer perceptron neural network (QMLPNN) and (b) Quadratic correlation filter convolutional

neural network (QCFCNN) confusion matrices for target recognition with the ATR Algorithm Image Database [23] dataset.

As can be seen in both matrices, the target recognition accuracy is very high. However, in both matrices, there is some

probability of misclassification of the D20 and MTB (MTLB) target types as seen in the lower right corner.
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5. Conclusions

The single-layer perceptron QCF has satisfactory per-

formance for two-target discrimination as demonstrated

in [14]. The proposed QCFCNN and QMLPNN, that inte-

grate QCF with multi-layer neural networks, have very high

multi-target recognition rate for mid-wave infrared images.

Multiple applications of the QMLPNN or a single appli-

cation of the QCFCNN can be used for image classifica-

tion. The quadratic filter layer in each helps with separating

target areas from background and localization, whereas the

top-most layers assist with classification. This makes these

networks ideal for ATR applications.

In this work we have restricted the target range to 3000
meters. It would be interesting to see how the embedded

QCF handles targets of different scales. Another area for

research would be to evaluate these methods on other types

of sensor data (e.g. long-wave infraed (LWIR), short-wave

infrared (SWIR), synthetic aperture radar (SAR)).
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