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Abstract

Current routines for the monitoring of sleep require

many sensors attached to the patient during a nocturnal ob-

servational study, limiting mobility and causing stress and

discomfort. Cameras have shown promise in the remote

monitoring of pulse rate, respiration and oxygen saturation,

which potentially allows a reduction in the number of sen-

sors. Applying these techniques in a sleep setting is chal-

lenging, as it is unknown upfront which portion of the skin

will be visible, there is no unique skin-color outside the vis-

ible range, and the pulsatility is low in infrared. We present

a fully-automatic living tissue detection method to enable

continuous monitoring of pulse rate and oxygen saturation

during sleep. The system is validated on a dataset where

various typical sleep scenarios have been simulated. Re-

sults show the proposed method to outperform the current

state-of-the-art, especially for the estimation of oxygen sat-

uration.

1. Introduction

A third of US adults report that they often sleep less than

the recommended daily sleep time [15]. Insufficient sleep

on a regular basis is linked with many chronic diseases and

conditions such as diabetes, heart disease, obesity, and de-

pression. There are over 100 different types of sleep disor-

ders like e.g. difficulty falling asleep, staying asleep, or ex-

cessive day-time sleepiness. It is therefore critical to receive

the correct diagnosis and work with a qualified physician to

develop a treatment plan. Unfortunately, most sleep disor-

ders, estimated 95% [13], go undiagnosed and untreated,

simply because people do not realize they have a problem

or are unaware their problems can be reduced.

Polysomnography (PSG) is the current gold-standard

for the diagnosis of sleep disorders. This multi-parametric

diagnostic tool requires a large collection of sensors at-

tached to the skin of the patient to monitor sleep. After a

nocturnal observational study a trained clinician annotates

and scores the PSG data for events related to sleep disor-
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Figure 1: Overview of our approach: from the input frames

physiological features are calculated to create a weight map

for automatic living pixels detection. The video-frames

weighted with this map are used for the extraction of the

cardiac pulse signal and estimation of oxygen saturation

levels.

ders. Although informative to the clinician, PSG has several

drawbacks. The sensors attached to the subject not only are

cumbersome, but also often wired limiting the mobility of

the patient. This causes stress, discomfort and adds to the

sleep problem affecting the diagnostic value.

Various physiological parameters monitored during a

standard PSG could potentially also be monitored remotely

with a camera. Especially the vital signs extracted from

the optical detection of blood-induced skin color variations,

remote photoplethysmography (rPPG), have recently been

shown feasible in near-infrared (NIR) on healthy patients in

a lab setting [17, 19, 18, 20]. In one of the most common

sleep disorders, apnea, the patient frequently stops breath-

ing during so-called apnea-events, which tends to be visible

in a lowering of the heart rate. Involuntary reflexes cause the

person to startle awake at the end of such apnea-event caus-

ing a quick rise of the heart rate and blood-pressure. Besides

these variations in heart (pulse) rate, the deprivation of oxy-

gen also causes a desaturation of the arterial oxygenation to
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levels often lower than 80% [16]. It is therefore important

to monitor both parameters accurately and continuously for

the monitoring of sleep disorders in order to diagnose this

important sub-type.

In this paper we present a framework which: 1) can de-

tect living tissue from NIR recordings fully-automatically

during sleep, 2) can monitor the sleep-relevant parameters

pulse rate and oxygen saturation (SpO2) simultaneously,

and 3) combines living tissue detection with conventional

tracking allowing a fast recovery after substantial patient

movement, e.g. after a change in sleep position. Our method

relies on physiological features only for the detection of liv-

ing tissue because of the absence of discriminative color or

facial appearance features in NIR in combination with the

sleep setting, where it is unknown upfront which portion of

the skin will be visible.

The remainder of the paper is organized as follows: in

Section II the related work in skin detection for physiologi-

cal measurements is discussed. Details about the proposed

method are presented in Section III and the experimental

results in Section IV. Finally we draw our conclusions and

give our recommendations in Section V.

2. Related work

Most existing works in subject detection exploit appear-

ance features of human skin to discriminate between subject

and background in a supervised training mechanism. Some-

times these features are not unique, like color, or trained

classifiers may fail with samples not presented in the train-

ing data, like non-frontal faces for the Viola-Jones face-

detector [22]. Still they are useful in niche-application ar-

eas. Main problem for our application is that most solutions

are limited to the visible spectrum [22, 10, 2]. Although [2]

seems most promising it would require a large annotated

dataset for our field of use, with still a high chance of fail-

ure because of missing color features in NIR.

A unique discriminative feature of skin pixels is the pres-

ence of cardiac-synchronous color variations induced by

blood volume variations, which we refer to as ‘living-skin’,

which was first exploited by Jeanne et al. [9]. Elaborating

on this idea, most methods in living-skin detection [9, 5, 11,

21, 12, 1, 24, 25] use a common scheme consisting of three

steps: (1) segmenting the video into spatio-temporal regions

to extract locally independent rPPG-signals; (2) exploiting

intrinsic properties of the pulse signal to differentiate pulse

and noise from extracted rPPG signals; and (3) labeling the

regions containing pulse as skin. In this scheme, the core

function is step (2) that separates pulse and noise, which

is also the key component to distinguish different methods

in literature. Gibert et al. [5] used a pre-defined thresh-

old to select the regions with high spectrum energy within

the pulse rate band as skin, which is further used in [12].

Meanwhile, Lempe et al. [11] employed a relative pulse

amplitude mapping approach to find the Region of Interest

(ROI), which is closely related to PPG-imaging. However,

it relies on the facial landmark detection, and thus cannot

work fully-automatic as it is restricted to human face-like

objects. The methods in [5, 11, 12] have limited accuracy

since their pulse/noise classification is only based on a sin-

gle value (e.g. spectrum amplitude), as shown by the com-

parison in [24]. Van Luijtelaar et al. [21] constructed a

joint multi-dimensional feature space using different prop-

erties of pulse and skin, and applied a clustering method to

find skin. A similarity-based living-skin detection method

“Voxel-Pulse-Spectral” (VPS) has been proposed by Wang

et al. [24] to detect the regions sharing pulse similari-

ties (e.g. frequency and phase) as one human being, which

shows superior performance in dealing with practical chal-

lenges. Later they proposed a supervised method [25] for

living tissue detection. These methods however again in-

cludes color features as Wang et al. worked in the visible

spectrum.

Although good results have been reported in visible light

for pulse extraction, the performance in NIR is not up to par

and furthermore the adequacy of the proposed methods for

SpO2 estimation has not been demonstrated yet. In NIR the

much lower contrast between skin and background hampers

the creation of relevant spatio-temporal regions to extract

locally independent rPPG-signals (step (1)). Furthermore,

the much lower pulse strength in NIR renders it more dif-

ficult to differentiate between pulse (skin) and noise (back-

ground), step (3).

3. Method description

For our sleep monitoring application the three most impor-

tant criteria for ROI detection are: 1) the invariance to sleep

position, 2) the invariance to the environment (e.g. the color

of the pillow and sheets), and 3) the exclusion of non-skin

pixels within the ROI. This third criterion is very important

for the SpO2 estimation as will be explained later on in this

section. Movements for a longer period of time are unlikely

to occur for our scenario. We therefore make our design

decisions for the processing pipeline to primarily fulfil the

three main criteria. The proposed processing pipeline is vi-

sualized in Fig. 2, divided into five groups. In this section

we will describe the various processing processing steps se-

quentially.

3.1. Preprocessing

Gaussian smoothing

After acquisition, smoothing with a 2-D Gaussian kernel is

performed on the input frames with 968× 728 pixel resolu-

tion. This reduces the effect of sharp edges in the images,

e.g. the boundaries between skin/non-skin. The effect of the

Gaussian smoothing is shown in Fig. 2. The standard de-

viation of the Gaussian kernel, σ, is empirically determined
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Figure 2: rPPG-based living tissue detection processing pipeline for pulse extraction and SpO2 estimation in NIR.

to be σ = 5 for the evaluation of the dataset, based on its ef-

fect on the pulse extraction and consecutively the resulting

ROI-mask.

Temporal rigid blocks

For the segmentation and consequently initialization and

tracking of candidate regions, many state-of-the-art meth-

ods [24, 25] in visible light rely on the available color

information, which is absent in NIR, leading to non-

discriminative spatio-temporal clusters. Therefore, a rigid

block scheme as originally used by Gibert et al. [5] is used

to overcome this inability as this approach uses neither tem-

poral nor spatial information available in the frames for the

definition of the subregions.

Each frame of 968 × 728 pixels is downsampled into

blocks (subregions) of fixed size using a box-shaped ker-

nel. Each subregion represents the value of 29× 29 pixels,

yielding a total of 850 subregions. This downsampling fac-

tor is chosen as a trade-off between accuracy of the overall

subject-detection and runtime considerations. Additionally,

the subjects in the intended use-case are of a relatively fixed

size and distance such that the chosen granularity is consid-

ered sufficient. By employing a spatial averaging technique

the camera quantization error and sensor noise are reduced.

The values of the downsampled image are concatenated for

each frame and color channel, resulting in a data cube with

dimension 34×25×3xN , where N is the number of frames.

For the pulse extraction from the data in the cube we use a

temporal sliding window of 10 seconds (150 frames) with 8

seconds overlap. Due to the rigidness of the grid, it becomes

evident what influence sharp edges may have on the compu-

tation of the mean. Especially edges that appear both in and

out of a subregion (e.g. due to movements) over the course

of the temporal window can significantly affect the tempo-

ral signal. For our sleep monitoring application movements

are however limited, and the main challenge is to accurately

detect the living tissue with the unpredictable appearance of

the skin. Furthermore, we will present a hybrid approach

later on which allows tracking of the detected living tissue

to improve motion robustness.

3.2. Pulse extraction

For robust pulse extraction in NIR we use the PBV

method [4], as the other two state-of-art methods CHROM

[3] and POS [23] are based on assumed knowledge of the

main distortion directions in visible light, which requires

non-obvious adaptation for NIR-wavelengths, e.g. there is

no standardized skin-color in NIR. A possible drawback of

the PBV approach is the dependency of the pre-determined

pulse signature ~Pbv on the pulse quality. The optimal ~Pbv

varies according to camera specifications and light condi-

tions. For the intended setup (sleep scenarios) both these

influences are controlled and therefore the pulse signature

can be accurately determined. This method of pulse extrac-

tion is performed on each of the available subregions result-

ing in 850 signals of which, depending on the subject size

in the frame, a portion contain a pulse signal.

3.3. Similarity mapping

After extracting the pulse-signals Si,j , where i, j indi-

cates the row and column index of the specific subregion,

the next step is to effectively exploit the pulse-signal as fea-

ture to distinguish living and non-living tissue. It is previ-

ously noted by Wang et al. [24] that skin regions belong-

ing to the subject share pulse-similarities with each other in

terms of phase and frequency, whereas the ones extracted

from non-living tissue are uncorrelated. Spectral analysis

of the created signals therefore revolves around finding the

similarities between the available pulse signals to identify

living-tissue by computing a similarity matrix. The high
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computational load of the similarity matrix is reduced by

employing two pre-processing steps using the intrinsic sig-

nal characteristics. We will first summarize the calculation

of the similarity matrix and hereafter describe the proposed

pruning steps.

Similarity matrix

A reduced and modified version of a similarity matrix as

originally developed by Wang et al. [24] is used to iden-

tify similarities between the pulse signals of the subregions

using four similarity features:

1. Spectrum peak amplitude:

F = max
f∈[40,240]

(F (~SL
ij) ◦ F (~SL

i′j′)
∗), (1)

where f is the frequency in beats-per-minute (BPM), ◦
denotes the element-wise product, ∗ is the conjugation

and F (·) represents the Fourier transform.

2. Spectrum phase:

P = max(F−1(NCC)), (2)

with

NCC =
F (~SL

ij) ◦ F (~SL
i′j′)

∗

||F (~SL
ij) ◦ F (~SL

i′j′)
∗||2

, (3)

where || · ||2 is the L2-norm; F−1(·) denotes the in-

verse Fourier transform.

3. Spectrum entropy:

E =

240
∑

f=40

NCC(f)log(NCC(f))

log(240− 40)
(4)

4. Inner product:

I =<
~SL
ij

||~SL
ij ||2

,
~SL
i′j′

||~SL
i′j′ ||2

>, (5)

where <,> denotes the inner product operation.

These four measurements are normalized to the range [0, 1]
and fused together with a Gaussian kernel as:

Σ = 1− exp

(

−
(F ◦ P ◦ E ◦ I)2

2σ2
F,P,E,I

)

, (6)

where σF,P,E,I represents the entry-wise standard deviation

between four matrices. The similarity matrix Σ contains the

mutually connected subregions. In order to find the sub-

regions belonging to the subject, a matrix decomposition

technique is used to factorize Σ into multiple eigenvectors

and eigenvalues by using the singular value decomposition:

Figure 3: (left) Eigenvalues after decomposition of the sim-

ilarity matrix, (middle) projection of the first eigenvector

similarity matrix, and (right) weight map of intrinsic sig-

nals

Σ = UΛV T . (7)

The result is a set of eigenvectors U and eigenvalues Λ;

each eigenvector indicating the correlation between subre-

gions whereas the eigenvalues indicate the strength of this

correlation. By inspecting the values of the sorted eigen-

values as displayed in Fig. 3, the number of subjects can

be identified; for the intended scenario this mostly is one,

indicated by the large drop after the first eigenvalue. This

results in the first eigenvector U describing the correlation

within Si,j between the subregions.

While this similarity approach works well for estimation

of living-tissue, its runtime leaves to be desired due to the

calculation of the many similarity features as described ear-

lier; the runtime scales exponentially with the number of

subregions. Especially for our scenario where only a small

subset of the subregions contains skin, there are many re-

dundant calculations. In order to reduce the runtime for

the creation of the similarity matrix, a preprocessing step

was devised which already prunes many non-relevant sub-

regions prior to the similarity matrix calculation.

Pruning

The similarity matrix describes the correlation between sig-

nals, while the pruning is only based on the intrinsic proper-

ties of the pulse signals. By strictly focusing on the intrin-

sic signal properties, computations remain within bounds

while still being able to prune many non-skin pixels to re-

duce the number of calculations for the similarity matrix.

The pruning consists of two steps: 1) a pulse rate estimate

is made based on intrinsic signal properties, and 2) outliers

are pruned and signal quality is rated on signal-to-noise ra-

tio (SNR).

1. Pulse rate estimation (intrinsic) Si,j is evaluated in

order to estimate the pulse rate of the subject based on

the combination of two different methods: 1) Principal

Component Analysis (PCA) of Si,j , and 2) the average

pulse rate of the signals with the highest signal qual-

ity, where the selection of the principal component is

guided by the previous pulse rate estimates.
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2. Outlier pruning The estimated pulse rate (P̂R) serves

as the basis for the pruning stage. Subregions should

have a frequency peak at or close to P̂R (a small mar-

gin of 6 BPM is accepted to adjust for small inaccu-

racies) in order to qualify as a candidate for the sim-

ilarity matrix, all other subregions are removed. Ad-

ditionally, the signals Si,j get weighted based on the

SNR of the accepted subregions; resulting in an SNR-

based weight-map as shown in Fig. 3. The unpruned,

weighted, pulse-signals serve as the input to the simi-

larity matrix as described in the previous paragraph.

Binary mask

The similarity map provides a weight-map which indi-

cates the strength of correlation between subregions. This

weight-map is used for estimating the final pulse- and

SpO2-signal of the available living tissue later on, but for

now a binary mask is created from this mapping using an

automated threshold which maximizes intra-class variabil-

ity [14] to provide a proper indication of the living and non-

living tissue within the frame. A simple threshold and mor-

phological closing method is used for this:

simmapi,j = binarize(Ui,j)

simmapi,j = simmapi,j ⊕B

simmapi,j = simmapi,j ⊖B,

where Ui,j indicates the re-mapped first eigenvector of the

similarity matrix and B a 2x2 square structure element.

3.4. ROI selection

As mentioned before, motion robustness is limited when

using rigid blocks, whereas the commonly used detec-

tors/trackers cannot cope with the unpredictable appearance

of the skin during sleep. We therefore developed a novel

hybrid method combining the rPPG-based subject detection

with a tracker in which the tracker’s ROI is updated when

a valid region has been found. Vice versa, when the rPPG-

based subject detection temporarily fails, e.g. due to move-

ment, the tracker takes over for extracting the pulse signal

until a proper region has been recaptured by the rPPG-based

method. Firstly the tracker is briefly described, which is

followed by the description of the method used to define a

confidence metric for the ROI estimated by the similarity

matrix.

Tracker

A relatively simple tracker is employed based on Kernel-

ized Correlation Filters (KCF) [6]. This tracker provides

a reasonable trade-off between accuracy and runtime. The

tracker is initialized for each reliable ROI detected by the

rPPG-based method. Note that tracker is only used for the

extraction of the pulse signal during and just after the mo-

tion event and not for the estimation of the SpO2-levels

since SpO2 measurements are highly susceptible to track-

ing inaccuracies and inclusion of non-skin pixels due to the

rectangular bounding box.

Confidence metric

Similar to the pulse rate estimation used during the pruning

step of the similarity matrix, a combination of several met-

rics is used to define a confidence metric for the selection of

either the tracker or the rPPG-based estimated region. The

quality of the estimated region is determined by three met-

rics, all related to the binary mask created from the mapping

provided by the similarity matrix: 1) the SNR of the signal

from the remaining ROIs in the binary mask, 2) the size of

the largest cluster in the binary mask, and 3) the sparsity of

binary mask.

1. Should the detected region be inaccurate, chances are

that ROIs with lower SNR are selected. An empiri-

cally determined selected threshold-SNR value is se-

lected to indicate the quality of the signals in the bi-

nary mask. The signals are weighted according to the

binary mask simmapi,j and similarity mask Ui,j . The

SNR of the mean of its non-zero entries is calculated

and compared to the threshold-value (default: 4dB).

2. Living tissue is usually spatially clustered. The largest

cluster should be of reasonable size relative to the

total number of subregions (Nsubregions) and should

still be accepted when a part of the face is occluded

due to body rotations and/or sheets (default: 0.0075 ·
Nsubregions).

3. The sparsity of the binary mask is related to the pre-

vious metric in the sense that for one subject a good

rPPG-mask usually only contains one significant clus-

ter and not multiple smaller, more wide-spread clus-

ters. The total number of ROIs present in the binary

mask is compared to the largest available cluster and

used to decline the rPPG-based ROI when these two

quantities deviate too much (default: 0.75).

If all three criteria are satisfied the rPPG-based ROI is used

for pulse extraction and SpO2 estimation, otherwise the

tracker’s ROI is used.

3.5. Vital signs extraction

Pulse extraction

The presence of periodic pulse signal of the skin pixels is al-

ready extensively used to determine the presence of living-

tissue in frame. A final step is made to extract the subject’s

pulse signal by combining the pulse signals from the sub-

regions of the binary mask. This is achieved by using the
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previously calculated SNR-map to weight the pulse signals

within the binary mask. When the tracker is used, the pulse

signal is simply the signal extracted from the ROI of the

tracker. As mentioned in the subregion creation, a pulse

signal segment is obtained every 2 seconds based on a mov-

ing window of 10 seconds. This pulse signal segment is

overlap-added to its previous iterations to obtain the final

pulse signal.

3.6. SpO2 estimation

Compared to pulse-extraction, the requirements for the ROI

are significantly more strict for SpO2-estimation due to its

high susceptibility towards data pollution. Any inclusion

of non-skin affects the relative (DC-normalized) amplitudes

and hence the measurement. Therefore, the estimation

method differs from pulse-extraction on the following as-

pects:

• Only the binary mask simmapi.j and weight map Ui,j ,

created by the rPPG-based pipeline using the pulsatile

information serve as bases for the SpO2 estimation.

• The Gaussian smoothing is skipped as an initial step

where background inherently gets mixed in with the

PPG signal. Therefore the signals extracted from

the downsampled, unsmoothed, frames are fed to the

APBV method [18] for SpO2 estimation.

The reported SpO2 estimates in the results section are

“raw”, meaning that these are not post-processed, e.g. fil-

tered or any type of outlier-rejection.

4. Experiments

4.1. Experimental setup

Figure 4: Experimental setup.

The experimental setup consists of three identical

monochrome cameras, type Manta of Allied Vision Tech-

nologies GmbH, which capture the frames synchronously

at 15fps with a resolution of 968×728 pixels and with 8-bit

depth. Each camera is equipped with a 14mm lens and an

optical filter to capture a specific part of the light spectrum.

For our benchmark dataset filters with center-wavelengths

of 760, 800 and 890nm are used. The reasoning for this

wavelength selection is twofold: 1) the clinical desire to

measure the vital signs in darkness (i.e. sleep scenarios)

and 2) the wavelengths are sufficiently spaced to provide

enough amplitude and SpO2 contrast between the different

channels while remaining within the spectral sensitivity of

the camera sensor. The three cameras are placed perpen-

dicular to the subject and are located above the pillow. The

distance between the subject and cameras is 1.7m and is

selected such that the cameras cover the typical width of

a bed, as displayed in Fig. 4. The frames are registered

by an affine transformation. As reference, a pulse-oximeter

(Philips M1191B) is attached to the right index finger and

connected to a Philips MP50 patient monitor, which data is

stored synchronously with the video data. Two light units

with incandescent light bulbs placed at both sides of the

subject’s head at a distance of 1.6m are used to provide dif-

fuse, homogeneous illumination. Broadband light sources

are used as they cover the selected wavelengths and sources

limited to NIR which satisfy our requirements on homo-

geneity were not available at the time of the recordings.

4.2. Dataset

To simulate realistic sleep scenarios we asked five

healthy volunteers to sleep in different supine positions.

The three main sleep positions are side, back and stomach,

where side is by far the most common [7]. Since sleeping

on the stomach leads to occlusion of all skin pixels, it was

not included in the protocol. Besides the different sleep po-

sitions we asked the subjects to perform out-of-frame move-

ments, from supine position on the back to upright position,

to simulate a bed-exit event and verify the capability of the

methods to re-capture the ROI. Institutional Review Board

approval and informed consent were obtained prior to mea-

surements.

4.3. Benchmark methods

We compare the performance of our proposed “Hybrid”

and “rPPG-only” methods with four benchmark methods:

1) the “Voxel-Pulse-Spectral” (VPS) method of Wang et al.

[24], 2) the PPG-based method of Gibert et al. [5], 3) the

Viola-Jones face detector [22], and 4) a tracker [6] where

the rectangular ROI is manually initialized at the first frame.

4.4. Evaluation metrics

The performance of the different methods is evaluated

for each evaluation window of 150 samples with the fol-

lowing metrics for the cardiac pulse signal and oxygen sat-

uration:
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Pulse

• Signal-to-noise ratio (SNR) ⇒

SNR = 10 log10

( ∑
240

f=40
(U(f)Sf (f))

2

∑
240

f=40
(1−U(f)Sf (f))2

)

, where Sf

is the frequency spectrum of the pulse signal, S, f the

frequency in BPM and U is a binary template mask

with ones around the fundamental frequency and har-

monics, and zeros elsewhere.

• Mean absolute error (MAE) ⇒

MAE =
∑N

i=1
|PRcam(i)−PRref (i)|

N
, where PRcam,

PRref indicate the estimated pulse rate extracted from

the camera and reference PPG signal, respectively.

• Root-mean-square error (RMSE) ⇒

RMSE =
√

(PRcam(i)−PRref (i))2

N

• Coverage (C): the percentage where a ROI could be

detected.

SpO2

• MAE: see earlier description for pulse, where for SpO2

the pulse rates are replaced with oxygenation levels.

• MedAE: the median of the absolute error to reduce the

effect of outliers, e.g. during the change in sleep posi-

tion.

• PERC: the clinically acceptable accuracy criterion

is specified in the International Standard for pulse-

oximeter manufacture ISO 80601-2-61-2011 [8],

which requires an accuracy of ≤ 4% within the satura-

tion range 70−100%. PERC expresses the percentage

where the measurement satisfies this criterion.

5. Results and Discussion

An overview of the performance of our method is dis-

played in Fig. 5, whereas a comparison with the benchmark

methods is displayed in Fig. 6. We will now discuss the

pulse, SpO2 and runtime results separately.

Pulse The results of the pulse extraction are summarized

in Table 1. For the sleep positions scenario it can be ob-

served that although our proposed methods provide the best

results, also most of the benchmark methods are reason-

ably capable of extracting the pulse signal. The Viola-Jones

method fails during sleeping on the side leading to a cov-

erage of only 38%, which was expected because the detec-

tor is mostly trained with images of frontal faces. From

Fig. 6 the contribution of the tracker can be recognized dur-

ing the changes in sleep position; whereas the “rPPG-only”

method is temporarily unable to extract the pulse signal,

Sleep positions Out-of-frame

Method SNR (dB) MAE (BPM) RMSE (BPM) C (%) SNR (dB) MAE (BPM) RMSE (BPM)

Hybrid 5.74 1.85 3.28 100 6.13 1.85 2.75

rPPG-only 5.58 2.81 5.23 100 6.47 2.22 3.24

VPS [24] 4.24 3.33 5.75 100 4.14 2.02 3.14

Gibert [5] 4.40 3.32 5.51 100 3.52 2.86 5.31

Viola-Jones [22] 2.14 7.87 11.4 38.4 1.89 6.55 15.9

Tracker [6] 3.18 3.90 7.37 100 1.52 19.4 31.9

Table 1: Results pulse extraction.

Sleep positions Out-of-frame

Method MAE (pp) MedAE (pp) PERC (%) MAE (pp) MedAE (pp) PERC (%)

rPPG-only 4.11 1.67 79.3 2.55 1.60 87.2

VPS [24] 6.73 4.82 39.3 5.09 4.07 44.8

Gibert [5] 5.29 3.62 56 5.75 4.42 47.1

Viola-Jones [22] 10.1 9.43 9.78 7.71 6.66 28.7

Tracker [6] 5.06 3.37 60.9 5.28 3.24 58.6

Table 2: Results SpO2 estimation.

the “hybrid” method is capable to extract the signal dur-

ing the turning event. For the performance evaluation of the

“out-of-frame” scenario we discarded the moments where

the subject was absent. An example of the detected ROIs

with our proposed method is visualized in Fig. 7.

(1) (2)

(4)

(3)

(5)

(1) (2) (3) (4) (5)

Figure 7: The detected ROI during out-of-frame move-

ments.

SpO2 The results of the SpO2 estimations are summa-

rized in Table 2. It can be observed that our method out-

performs all benchmark methods for both scenarios, espe-

cially after a change in position. This likely results from the

much cleaner ROIs, i.e. ROIs which only contain skin pix-

els. For SpO2 any inclusion of non-skin pixels within the

ROI has a direct effect on the measurement because of the

DC-normalization. This effect is best demonstrated by the

results of the “tracker” method, visualized in Fig. 6; dur-

ing the first sleeping pose where the tracker is accurately

initialized the correspondence between the SpO2 estimates

and the reference is very good, after a change in position the

method renders inaccurate due to inclusion of non-skin pix-

els. When comparing the performance of the rPPG-based

methods VPS [24] and Gibert [5], it becomes evident that

the absence of relevant color features in NIR leads to non-

discriminative spatio-temporal regions.
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Figure 5: Overview of the results obtained with our proposed “hybrid” method on the recordings with three different sleep

positions. The first column is the downsampled input frame, the second column the pixel weight map used for the extraction

of the pulse signal and the estimation of the SpO2 value, as visualized in the third column.
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Hybrid rPPG-only VPS Gibert Viola-Jones Tracker

Figure 6: Overview of the results of all evaluated methods on the recordings with three different sleep positions. The top row

are spectrograms of the pulse signals and the bottom row the SpO2 estimates. The first figure on the bottom row indicates

when the tracker is used for the proposed hybrid method.

Evaluation Task Similarity matrix (pruned) Similarity matrix (full) VPS (K=20) [24] Gibert [5] Viola-Jones [22] Tracker [6]

Per frame Pre-processing 0.07s 0.07s 0.07s - 0.49s -

Per frame Detector/Tracker 0.11s 0.11s - 0.44s - 0.11s

Per interval (Parallel) pulse extraction 0.65s 0.65s 0.65s 0.01s 0.02s 0.01s

Per interval PR estimation 0.08s - - - - -

Per interval Pruning 0.04s - - - - -

Per interval Similarity matrix 2.0s 40s - - 0.02s -

Total 8.17s 46.17s 2.75s 13.5s 14.74s 3.31s

Table 3: Runtime overview of the evaluated methods.

Runtime We evaluated the runtime of our proposed

method(s) and the benchmark methods using a notebook

with an Intel Core 2.70GHz i5-6400 CPU, 8GB RAM and

an NVIDIA GeForce GTX 970 GPU. The results are dis-

played in Table 3.

6. Conclusions

In this paper, we presented a framework for fully-

automatic remote pulse rate and SpO2 estimation during

sleep. The limited color contrast in NIR and the unpre-

dictable appearance of the available skin-portion during

sleep negatively impacts the performance of current state-

of-the-art methods. We presented a method which combines

the benefits of rPPG-based features to find static “living pix-

els” with those of a tracker that can bridge relatively short

intervals where the subject moves. The framework has been

successfully validated on a dataset were realistic sleeping

conditions have been simulated by healthy subjects. Es-

pecially for the critical estimation of SpO2 our proposed

method outperforms the benchmark methods because of the

much cleaner ROI. The next step is to validate the system

in a clinical setting on patients with sleep disorders and ex-

pected associated SpO2 variations.
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