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Abstract

In this paper, we present an object detection method that

tackles the stingray detection problem based on aerial im-

ages. In this problem, the images are aerially captured on

a sea-surface area by using an Unmanned Aerial Vehicle

(UAV), and the stingrays swimming under (but close to) the

sea surface are the target we want to detect and locate.

To this end, we use a deep object detection method, faster

RCNN, to train a stingray detector based on a limited train-

ing set of images. To boost the performance, we develop a

new generative approach, conditional GLO, to increase the

training samples of stingray, which is an extension of the

Generative Latent Optimization (GLO) approach. Unlike

traditional data augmentation methods that generate new

data only for image classification, our proposed method

that mixes foreground and background together can gener-

ate new data for an object detection task, and thus improve

the training efficacy of a CNN detector. Experimental re-

sults show that satisfiable performance can be obtained by

using our approach on stingray detection in aerial images.

1. Introduction

Detecting specific animals in aerial images captured by

an UAV is a crucial research topic. In this research direc-

tion, computer vision techniques are beneficial to the de-

velopment of popular tools for biological researches. In

this paper, a stingray detection approach is introduced.

Stingrays are common in coastal tropical and subtropical

marine waters. They usually appear in surface water so that

a common UAV can capture them. In this work, the scenario

we focus on is the automatic detection of stingray from the

aerial images recorded on a sea-surface area.

To monitor the behaviors and understand the distribution

of a certain animal, biologists collect aerial photos or videos

by an UAV. After obtaining the materials, they have to man-

ually annotate the position, number, and size of the target

animal from the image scene. This step is extremely tedious

and time-consuming. Besides, the collected photos could

be partially useless because the target animal may be miss-

ing in the scene. Therefore, using an automatic, computer-

based method to recognize the target animal is necessary for

the kind of research.

However, automaticly recognizing the stingray is de-

manding due to the following issues. First, the color of

stingrays is similar to that of the rocks/reefs under the wa-

ter, and the stingrays could be occluded by the dust when

swimming. Second, the aerial images are usually filled

with light reflection of water ripples; Third, the shape of

stingray is not always consistent, and is hard to define. Un-

der such circumstances, traditional machine learning meth-

ods accompanied with hand-craft features often fail for the

detection task on the sea-surface images aerially taken. Fig-

ure 1 demonstrates the difficulty of this problem.

As the rapid progress of deep learning (DL), it has been

a popular approach to many image classification and ob-

ject detection tasks. In recent years, a breakthrough of im-

age recognition has been made via deep convolution neu-

ral networks (CNN) [12]. Deep CNN enforces end-to-

end training, so that feature extraction and classification

are integrated in a single framework. Besides handing

the case where only one concept is contained in an im-

age [12, 19, 10], deep CNN has been extended for object

detection [17, 13, 16], where not only the objects contained

in an image are recognized but their sites are marked by

tight bounding boxes. In our case, the problem to be tackled

belongs to 2-class object detection, where the foreground

(or positive) class consists of stingrays and the background

(or negative) class consists of sea-surface patches. We em-

ploy deep CNN detectors to fulfill our goal, where faster

RCNN [17] is used in our work. The performance obtained

is far more satisfied than that of using hand-craft features in
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Figure 1. A typical aerial sea-surface image, which contains four stingrays in the scene. The stingray detection problem is demanding

because of the similar rocks/reefs under the water and the aerial images are filled with light reflection of water ripples.

our experience.

Nevertheless, DL usually requires a large set of training

samples to learn the network weights, while the biological

image materials are sometimes insufficient to fulfill the de-

mand. There are two main difficulties encountered when

using deep-learning object detector in our work.

• Insufficient training data: The amount of training data

is limited by the few number of UAV flights, and the

image quality is inconsistent by weather condition, en-

vironmental change, capturing location and latitude. It

results in the lack of effective training images and data

diversity.

• Background transparency: Because the sea surface is

translucent, the stingray image is actually embedded

into water but not explanted on the water. Thus, the

color of stingray is blended that of water. The conven-

tional data augmentation approaches could not gener-

ate this type of images.

Our stingray detection problem has 2 classes (foreground

and background). To tackle this problem, we introduce a

mixed background and foreground (bg-fg) data augmenta-

tion approach to handle the problem. Our approach, namely,

conditional GLO (C-GLO), can learn a generator network

that produces a foreground object given a specified back-

ground patch. C-GLO can learn the distribution of fore-

ground (w/ stingray) and background (w/o stingray) images

simultaneously in the latent space with a single network.

Once the generator is learned, we can freely generate the

synthetic stingray images respect to any sea-surface back-

ground to enrich the amount and the diversity of the train-

ing dataset. For the detection, we used Faster R-CNN as the

CNN-detector for the evaluation. The experimental results

show that using the C-GLO augmented samples for training

can satisfiedly improve the detection performance. Such an

augmentation approach could be potentially applied to other

analogous applications.

2. Related Work

In this section, we briefly review works related to our

study on two folds: deep-CNN object detection and gener-

ative networks.

2.1. Deep CNNs for Object Detection

Object detection methods have been made great progress

recently with the resurgence of CNNs. In the past, re-

searches focus on the design of useful hand-crafted features,

such as HOG and DPM. Currently, it shifts to the design

of a good CNN architecture that can automatically capture

high-level features for detection.

DL-based detection approaches started with R-CNN [7]

that adopts an additional selective search procedure. Later,

this kind of method evolved to an approximate end-to-

end model with using reginal proposal network (RPN) in

Faster R-CNN [17]. Many follow-up studies successively

improve the performance such as R-FCN[5] and Mask R-
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Figure 2. Mixed Bg-Fg Syntheses. Given sea-surface patches cropped in the original training images, we generate a stingray inside each

patch and put the patch back to the original image. The augmented images obtained therefore contain more stingrays. In this way,

the training set of images is re-generated such that each image has sufficient many stingrays and the number of stingrays per image is

approximately the same.

CNN [9], or accelerate the computation such as SSD [13]

and YOLO2 [16].

2.2. Generative Models

Nature images generation has been investigated by the

work of Variational Autoencoders (VAE) [11]. Later, Good-

fellow et al. proposed Generative Adversarial Networks

(GAN) [8] that trains a generator and a discriminator simul-

taneously via an iteratively adversarial process. GAN has

demonstrated the capability of generating more convincing

images than VAE.

Although GANs provide sharper images, a main draw-

back lies in the difficulty of converging to an equilibrium

state during training. Recently, numerous GAN-related

studies have been proposed [15, 2, 3, 18], and most of them

focus on resolving the problems of model instability and

mode collapse [6, 14, 1]. Nevertheless, training of GAN is

still more demanding and relatively unstable compared to

pure supervised training.

To avoid challenging adversarial training protocol in

GAN, Bojanowski et al. proposed Generative Latent Op-

timization (GLO) [4]. GLO removes the discriminator in

GAN and learns the mapping from images to noise vectors

by minimizing the reconstruction loss. It provides a stable

training process while enjoys many of the desirable prop-

erties of GAN, such as synthesizing appealing images and

interpolating meaningfully between samples.

3. Our Method

Data augmentation (such as cropping and flipping the

images) has been widely used for the training of image clas-

sifiers, where the labels are provided for the entire image.

However, the task of object detection requires bounding-

box outputs, while augmenting the training images with

bounding-box samples of the objects is more difficult.

In object detection, the positive patches are often far

fewer than the negative ones. For example, in our data,

sometimes only one stingray is contained in a training im-

age, which makes a CNN detector demanding to train. We

introduce a method that performs data augmentation in the

learning phase for object detection. Considering that the sea

surface is translucent, we propose to use a generator that

produces foreground objects mixed with the background

patches selected from the image. Given some background

(i.e., sea-surface) patches randomly cropped from the orig-

inal image (as shown in the upper half of Figure 2), we use

the C-GLO approach to synthesize a foreground object (i.e.,

stingray) per each background patch, and put them back to

the original sites in the image (as shown in the lower half of

Figure 2).
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Figure 3. Conditional GLO (C-GLO) introduced in this work.

In the following, we introduce C-GLO at first in Section

3.1, and then the mixed bg-fg synthesis and the CNN detec-

tor in Section 3.2.

3.1. Conditional GLO and Architecture Adopted

GLO [4] is a generative method introduced by Bo-

janowski et al. Given unsupervised training images I =
{I1, · · · , IN}, GLO trains a generator Φ (with the input z

and network weights W ), such that the following objective

is minimized:

e(W, z) =

N∑

i=1

loss(Φ(W ; zi)− Ii), (1)

where z = {z1, z2, · · · , zN}. A two-stage iterative method

is introduced for the minimization:

1. Fixing z, find W to reduce e(W, z) via back-

propagation;

2. Fixing W , find zi to reduce loss(Φ(W ; zi) − Ii) via

back-propagation, ∀i, with an uni-model normaliza-

tion to z.

The above two steps are iterated to refine W and z alterna-

tively. GLO holds the following advantages.

• Direct training: First, GLO learns a generative net-

work directly with no needs of other complemented

networks. In GAN, a discriminant networks is fur-

ther used to form a two-player game for the generator

leraning. However, GANs easily suffer from the prob-

lem of instable training. Though many modification

of GANs [2, 3, 18] have been proposed to address this

issue, the training process of GANs is still relatively

unstable compared to supervised training. On the con-

trary, GLO’s training process is more alike supervised

training and thus it is easier to get stable results in our

experience. Besides GAN, VAE also requires an ad-

ditional encoder for the generator training. GLO can

train the generator directly and thus consumes fewer

training resources.

• Inverse mapping: A second advantage of GLO is its re-

construction capability. Assume that the generator has

been trained, and thus W is known. Given an image

Ii, the latent codes zi that exactly generates Ii can be

found via iterating step 2 of the above training process

(with W fixed). Hence, the inverse mapping of the im-

age Ii is available, which is unlike GAN that can gen-

erate novel images but do not provide the codes that re-

cover the original images. Although some approaches

combining GAN and autoencoder (such as [3]) can

find the latent codes via the encoder subnetwork of

the autoencoder, the codes are obtained via a forward

mapping indirectly and thus the recovery performance

is not guaranteed. With the reconstruction capability,

given an image patch cropped from sea surface, GLO

can thus find the latent code z that produces the same

patch that can be seamlessly put back to the sea sur-

face, which suits our data-augmentation approach in-

troduced later.

We extend GLO to C-GLO as follows. Unlike GLO, the

latent space input is generalized to (z, c) in C-GLO, where

z ∈ Rd is the latent code and c ∈ Rm is a set of “on-off”

labels. In this study, m = 1 since only a single condition

(Fg or Bg) is required. The training images thus become
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Figure 4. Switch the condition in the latent space to convert a background patch to a mixed bg-fg patch via C-GLO with the dimension of

latent code d = 256; upper: the original background patch; bottom: the synthetic patch.

c = {(I1, c1), · · · , (IN , cN )}, where ci ∈ {0, 1} represents

background and foreground, respectively.

The training process of C-GLO is similar to that of GLO

as follows:

1. Given z, c, find W to reduce the total reconstruction

loss of I.

2. Given W, ci, find zi to reduce the reconstruction loss

of Ii, ∀i.

The above two steps are executed iteratively.

Figure 3 shows the architecture of the C-GLO adopted.

Without loss of generality, we use the same de-convolution

network in DCGAN [15] as the architecture of our C-GLO

in this work. C-GLO inherits the characteristics of GLO:

easy to train and provides explicit latent codes for image

reconstruction. The learned C-GLO can then be used to

generate novel images of stingray (or sea-surface) via the

condition c = 1 (or c = 0) and the respective codes of z.

3.2. Mixed Bg-Fg Syntheses and object detector

To convert a given background patch to a mixed bg-fg

one, we disentangle the condition label of the latent repre-

sentation. Let Φ be a trained generator (with the weights

W ). Consider a background (c = 0) image patch, say Iib ;

let zib be its inverse mapping (i.e., Φ(W ; zib ; c) = Iib ). We

then switch the condition label from c = 0 to c = 1 and

keep the other parameters W, zib unchanged. By doing so,

the sea surface patch specified by the latent code zib is pro-

vided with a positive condition c = 1. It results in the effect

that the sea surface patch Iib contains a stingray image in-

side it. The disentangled patch (with a synthesized stingray

in it) can thus be put back to the entire sea-surface scene

without noticeable artifact. The sea surface image are then

augmented with more stingrays for training. Figure 2 gives

some examples of the augmented samples. More examples

can be found in Figure 4.

We apply the augmented data to train an existing CNN

detector, Faster R-CNN. Faster R-CNN contains three parts

of networks, the feature-extration network, region proposal

network, and classification network. The architecture of

the feature-extraction network can be flexibly chosen. In

this work, we use two network models, ZF model [20]

and VGG-16 model [19], as the architecture of the feature-

extraction network. The two Faster R-CNNs are evalu-

ated on our dataset with or without our data augmentation

method for comparison. An overview of our approach is

given in Figure 5.

4. Experiments

In this section, we apply our mixed bg-fg synthesis ap-

proach to stingray detection and present the results.

4.1. Dataset and Experimental Settings

We have gotten a total of 36 labeled videos taken in

the day time, recorded at 4k (3840×2160) resolution. The

stingray images are sampled from the videos at 1fps or 4fps.

Those images are composed of various components such

as rocks, ripples, dust, and light reflections, and thus the

stingrays are difficult to be detected even by human. We

select 3245 images (from 16 videos) for training and 3147

images (from the rest 20 videos) for testing. All the im-

ages are re-scaled to 1920×1080 for learning because of

the limited GPU memory (a single Nvidia Titan-X GPU is

used in our experiment). In those images, there is only one

object class (stingray) with the size within 30 to 350 pix-

els. Hence, the anchor-box parameters in Faster R-CNN are

set to reflect the scales accordingly, while the other settings

follow the default of Faster R-CNN. To train the C-GLO

model, L1 loss is used and the output size is 64×64 pixels.

For each training image, we crop the stingray patches as

the positive samples and randomly crop sea-surface patches

as the negative ones. After further augmentation via ro-

tation and flipping of the stingrays, we finally use 30496

stingray patches and 7664 sea-surface patches for training

the C-GLO model.
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Figure 5. An overview of our approach.

Table 1. Average precision (AP) obtained via our augmentation

method (d = 128, 256, 512) compared to the Faster R-CNN with-

out augmentation

Network Baseline Ours-128 Ours-256 Ours-512

ZF 78.89 82.75 82.42 83.04

VGG-16 84.59 86.14 86.61 86.43

4.2. Data Augmentation Results

We switch the condition of the trained GLO to generated

the mixed bg-fg patches for data augmentation, as described

in Section 3.2. Figure 4 shows several of our mixed bg-

fg synthetic patches. It can be seen that our method can

generate new stingray of various colors and shapes while

keeping the same surroundings of the original patches.

4.3. Detection Results

We expect the detection capability of Faster R-CNN can

be benefited from the data augmented by C-GLO. The de-

tection results are reported in Table 1. It can be seen that the

Average Precision (AP) can be improved by 4.15 and 2.02

percents when using ZF and VGG-16 as the base models

for feature extraction in Faster R-CNN, respectively. In ad-

dition, there is only a slight difference on the performance

by changing the dimension of z. It reveals that the detec-

tion capability of our approach is insensitive to the size of

the latent space. Also, our approach is capable of generat-

ing diverse patches to augment the training dataset, which

enforces a more effective training of object detectors and

improves the performance.

5. Conclusions

In this paper, we present a method to detect stingrays in

aerial images. We introduce a data augmentation method

called mixed bg-fg synthesis to fuse background patches

and foreground objects without apparent artifacts, which is

achieved by a new generative network C-GLO. The exper-

imental results reveal that the object detection performance

can be improved via our data augmentation method. The

system developed in this work can help biologists to track

and annotate stingrays automatically.

Currently, our approach is based on images. In the fu-

ture, we plan to extend our approach to video-based data

augmentation and objection detection.
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