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Abstract

In this paper, we present an object detection method that
tackles the stingray detection problem based on aerial im-
ages. In this problem, the images are aerially captured on
a sea-surface area by using an Unmanned Aerial Vehicle
(UAV), and the stingrays swimming under (but close to) the
sea surface are the target we want to detect and locate.
To this end, we use a deep object detection method, faster
RCNN, to train a stingray detector based on a limited train-
ing set of images. To boost the performance, we develop a
new generative approach, conditional GLO, to increase the
training samples of stingray, which is an extension of the
Generative Latent Optimization (GLO) approach. Unlike
traditional data augmentation methods that generate new
data only for image classification, our proposed method
that mixes foreground and background together can gener-
ate new data for an object detection task, and thus improve
the training efficacy of a CNN detector. Experimental re-
sults show that satisfiable performance can be obtained by
using our approach on stingray detection in aerial images.

1. Introduction

Detecting specific animals in aerial images captured by
an UAV is a crucial research topic. In this research direc-
tion, computer vision techniques are beneficial to the de-
velopment of popular tools for biological researches. In
this paper, a stingray detection approach is introduced.
Stingrays are common in coastal tropical and subtropical
marine waters. They usually appear in surface water so that
a common UAV can capture them. In this work, the scenario
we focus on is the automatic detection of stingray from the
aerial images recorded on a sea-surface area.

To monitor the behaviors and understand the distribution
of a certain animal, biologists collect aerial photos or videos

by an UAV. After obtaining the materials, they have to man-
ually annotate the position, number, and size of the target
animal from the image scene. This step is extremely tedious
and time-consuming. Besides, the collected photos could
be partially useless because the target animal may be miss-
ing in the scene. Therefore, using an automatic, computer-
based method to recognize the target animal is necessary for
the kind of research.

However, automaticly recognizing the stingray is de-
manding due to the following issues. First, the color of
stingrays is similar to that of the rocks/reefs under the wa-
ter, and the stingrays could be occluded by the dust when
swimming. Second, the aerial images are usually filled
with light reflection of water ripples; Third, the shape of
stingray is not always consistent, and is hard to define. Un-
der such circumstances, traditional machine learning meth-
ods accompanied with hand-craft features often fail for the
detection task on the sea-surface images aerially taken. Fig-
ure 1 demonstrates the difficulty of this problem.

As the rapid progress of deep learning (DL), it has been
a popular approach to many image classification and ob-
ject detection tasks. In recent years, a breakthrough of im-
age recognition has been made via deep convolution neu-
ral networks (CNN) [12]. Deep CNN enforces end-to-
end training, so that feature extraction and classification
are integrated in a single framework. Besides handing
the case where only one concept is contained in an im-
age [12, 19, 10], deep CNN has been extended for object
detection [17, 13, 16], where not only the objects contained
in an image are recognized but their sites are marked by
tight bounding boxes. In our case, the problem to be tackled
belongs to 2-class object detection, where the foreground
(or positive) class consists of stingrays and the background
(or negative) class consists of sea-surface patches. We em-
ploy deep CNN detectors to fulfill our goal, where faster
RCNN [17] is used in our work. The performance obtained
is far more satisfied than that of using hand-craft features in
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Figure 1. A typical aerial sea-surface image, which contains four stingrays in the scene. The stingray detection problem is demanding
because of the similar rocks/reefs under the water and the aerial images are filled with light reflection of water ripples.

our experience.

Nevertheless, DL usually requires a large set of training
samples to learn the network weights, while the biological
image materials are sometimes insufficient to fulfill the de-
mand. There are two main difficulties encountered when
using deep-learning object detector in our work.

o Insufficient training data: The amount of training data
is limited by the few number of UAV flights, and the
image quality is inconsistent by weather condition, en-
vironmental change, capturing location and latitude. It
results in the lack of effective training images and data
diversity.

e Background transparency: Because the sea surface is
translucent, the stingray image is actually embedded
into water but not explanted on the water. Thus, the
color of stingray is blended that of water. The conven-
tional data augmentation approaches could not gener-
ate this type of images.

Our stingray detection problem has 2 classes (foreground
and background). To tackle this problem, we introduce a
mixed background and foreground (bg-fg) data augmenta-
tion approach to handle the problem. Our approach, namely,
conditional GLO (C-GLO), can learn a generator network
that produces a foreground object given a specified back-
ground patch. C-GLO can learn the distribution of fore-
ground (w/ stingray) and background (w/o stingray) images
simultaneously in the latent space with a single network.

Once the generator is learned, we can freely generate the
synthetic stingray images respect to any sea-surface back-
ground to enrich the amount and the diversity of the train-
ing dataset. For the detection, we used Faster R-CNN as the
CNN-detector for the evaluation. The experimental results
show that using the C-GLO augmented samples for training
can satisfiedly improve the detection performance. Such an
augmentation approach could be potentially applied to other
analogous applications.

2. Related Work

In this section, we briefly review works related to our
study on two folds: deep-CNN object detection and gener-
ative networks.

2.1. Deep CNNs for Object Detection

Object detection methods have been made great progress
recently with the resurgence of CNNs. In the past, re-
searches focus on the design of useful hand-crafted features,
such as HOG and DPM. Currently, it shifts to the design
of a good CNN architecture that can automatically capture
high-level features for detection.

DL-based detection approaches started with R-CNN [7]
that adopts an additional selective search procedure. Later,
this kind of method evolved to an approximate end-to-
end model with using reginal proposal network (RPN) in
Faster R-CNN [17]. Many follow-up studies successively
improve the performance such as R-FCN[5] and Mask R-
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Figure 2. Mixed Bg-Fg Syntheses. Given sea-surface patches cropped in the original training images, we generate a stingray inside each
patch and put the patch back to the original image. The augmented images obtained therefore contain more stingrays. In this way,
the training set of images is re-generated such that each image has sufficient many stingrays and the number of stingrays per image is

approximately the same.

CNN [9], or accelerate the computation such as SSD [13]
and YOLO2 [16].

2.2. Generative Models

Nature images generation has been investigated by the
work of Variational Autoencoders (VAE) [11]. Later, Good-
fellow et al. proposed Generative Adversarial Networks
(GAN) [8] that trains a generator and a discriminator simul-
taneously via an iteratively adversarial process. GAN has
demonstrated the capability of generating more convincing
images than VAE.

Although GANs provide sharper images, a main draw-
back lies in the difficulty of converging to an equilibrium
state during training. Recently, numerous GAN-related
studies have been proposed [15, 2, 3, 18], and most of them
focus on resolving the problems of model instability and
mode collapse [0, 14, 1]. Nevertheless, training of GAN is
still more demanding and relatively unstable compared to
pure supervised training.

To avoid challenging adversarial training protocol in
GAN, Bojanowski et al. proposed Generative Latent Op-
timization (GLO) [4]. GLO removes the discriminator in
GAN and learns the mapping from images to noise vectors
by minimizing the reconstruction loss. It provides a stable
training process while enjoys many of the desirable prop-

erties of GAN, such as synthesizing appealing images and
interpolating meaningfully between samples.

3. Our Method

Data augmentation (such as cropping and flipping the
images) has been widely used for the training of image clas-
sifiers, where the labels are provided for the entire image.
However, the task of object detection requires bounding-
box outputs, while augmenting the training images with
bounding-box samples of the objects is more difficult.

In object detection, the positive patches are often far
fewer than the negative ones. For example, in our data,
sometimes only one stingray is contained in a training im-
age, which makes a CNN detector demanding to train. We
introduce a method that performs data augmentation in the
learning phase for object detection. Considering that the sea
surface is translucent, we propose to use a generator that
produces foreground objects mixed with the background
patches selected from the image. Given some background
(i.e., sea-surface) patches randomly cropped from the orig-
inal image (as shown in the upper half of Figure 2), we use
the C-GLO approach to synthesize a foreground object (i.e.,
stingray) per each background patch, and put them back to
the original sites in the image (as shown in the lower half of
Figure 2).
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Figure 3. Conditional GLO (C-GLO) introduced in this work.

In the following, we introduce C-GLO at first in Section
3.1, and then the mixed bg-fg synthesis and the CNN detec-
tor in Section 3.2.

3.1. Conditional GLO and Architecture Adopted

GLO [4] is a generative method introduced by Bo-
janowski et al. Given unsupervised training images I =
{I,---,In}, GLO trains a generator ® (with the input z
and network weights W), such that the following objective
is minimized:

N
e(W,z) = Zloss({)(W; zi) — I;), (1)
i=1

where z = {21, 22, -+, 2N }. A two-stage iterative method
is introduced for the minimization:

1. Fixing z, find W to reduce e(W,z) via back-
propagation;

2. Fixing W, find z; to reduce loss(®(W;2;) — I;) via
back-propagation, Vi, with an uni-model normaliza-
tion to z.

The above two steps are iterated to refine W and z alterna-
tively. GLO holds the following advantages.

e Direct training: First, GLO learns a generative net-
work directly with no needs of other complemented
networks. In GAN, a discriminant networks is fur-
ther used to form a two-player game for the generator
leraning. However, GANS easily suffer from the prob-
lem of instable training. Though many modification
of GANSs [2, 3, 18] have been proposed to address this

issue, the training process of GANSs is still relatively
unstable compared to supervised training. On the con-
trary, GLO’s training process is more alike supervised
training and thus it is easier to get stable results in our
experience. Besides GAN, VAE also requires an ad-
ditional encoder for the generator training. GLO can
train the generator directly and thus consumes fewer
training resources.

o Inverse mapping: A second advantage of GLO is its re-
construction capability. Assume that the generator has
been trained, and thus W is known. Given an image
I;, the latent codes z; that exactly generates I; can be
found via iterating step 2 of the above training process
(with I fixed). Hence, the inverse mapping of the im-
age I; is available, which is unlike GAN that can gen-
erate novel images but do not provide the codes that re-
cover the original images. Although some approaches
combining GAN and autoencoder (such as [3]) can
find the latent codes via the encoder subnetwork of
the autoencoder, the codes are obtained via a forward
mapping indirectly and thus the recovery performance
is not guaranteed. With the reconstruction capability,
given an image patch cropped from sea surface, GLO
can thus find the latent code z that produces the same
patch that can be seamlessly put back to the sea sur-
face, which suits our data-augmentation approach in-
troduced later.

We extend GLO to C-GLO as follows. Unlike GLO, the
latent space input is generalized to (z, ¢) in C-GLO, where
z € R%is the latent code and ¢ € R™ is a set of “on-off”
labels. In this study, m = 1 since only a single condition
(Fg or Bg) is required. The training images thus become
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Figure 4. Switch the condition in the latent space to convert a background patch to a mixed bg-fg patch via C-GLO with the dimension of
latent code d = 256; upper: the original background patch; bottom: the synthetic patch.

c={{1,c1), -+ ,(In,cn)}, where ¢; € {0, 1} represents
background and foreground, respectively.

The training process of C-GLO is similar to that of GLO
as follows:

1. Given z,c, find W to reduce the total reconstruction
loss of I.

2. Given W, ¢;, find z; to reduce the reconstruction loss
of I;, Vi.

The above two steps are executed iteratively.

Figure 3 shows the architecture of the C-GLO adopted.
Without loss of generality, we use the same de-convolution
network in DCGAN [15] as the architecture of our C-GLO
in this work. C-GLO inherits the characteristics of GLO:
easy to train and provides explicit latent codes for image
reconstruction. The learned C-GLO can then be used to
generate novel images of stingray (or sea-surface) via the
condition ¢ = 1 (or ¢ = 0) and the respective codes of z.

3.2. Mixed Bg-Fg Syntheses and object detector

To convert a given background patch to a mixed bg-fg
one, we disentangle the condition label of the latent repre-
sentation. Let ® be a trained generator (with the weights
W). Consider a background (¢ = 0) image patch, say I;,;
let z;, be its inverse mapping (i.e., ®(W; z;,;¢) = I;,). We
then switch the condition label from ¢ = O to ¢ = 1 and
keep the other parameters W, z;, unchanged. By doing so,
the sea surface patch specified by the latent code z;, is pro-
vided with a positive condition ¢ = 1. It results in the effect
that the sea surface patch I;, contains a stingray image in-
side it. The disentangled patch (with a synthesized stingray
in it) can thus be put back to the entire sea-surface scene
without noticeable artifact. The sea surface image are then
augmented with more stingrays for training. Figure 2 gives
some examples of the augmented samples. More examples
can be found in Figure 4.

We apply the augmented data to train an existing CNN
detector, Faster R-CNN. Faster R-CNN contains three parts

of networks, the feature-extration network, region proposal
network, and classification network. The architecture of
the feature-extraction network can be flexibly chosen. In
this work, we use two network models, ZF model [20]
and VGG-16 model [19], as the architecture of the feature-
extraction network. The two Faster R-CNNs are evalu-
ated on our dataset with or without our data augmentation
method for comparison. An overview of our approach is
given in Figure 5.

4. Experiments

In this section, we apply our mixed bg-fg synthesis ap-
proach to stingray detection and present the results.

4.1. Dataset and Experimental Settings

We have gotten a total of 36 labeled videos taken in
the day time, recorded at 4k (3840x2160) resolution. The
stingray images are sampled from the videos at 1fps or 4fps.
Those images are composed of various components such
as rocks, ripples, dust, and light reflections, and thus the
stingrays are difficult to be detected even by human. We
select 3245 images (from 16 videos) for training and 3147
images (from the rest 20 videos) for testing. All the im-
ages are re-scaled to 1920x1080 for learning because of
the limited GPU memory (a single Nvidia Titan-X GPU is
used in our experiment). In those images, there is only one
object class (stingray) with the size within 30 to 350 pix-
els. Hence, the anchor-box parameters in Faster R-CNN are
set to reflect the scales accordingly, while the other settings
follow the default of Faster R-CNN. To train the C-GLO
model, L loss is used and the output size is 64 x 64 pixels.
For each training image, we crop the stingray patches as
the positive samples and randomly crop sea-surface patches
as the negative ones. After further augmentation via ro-
tation and flipping of the stingrays, we finally use 30496
stingray patches and 7664 sea-surface patches for training
the C-GLO model.
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Figure 5. An overview of our approach.

Table 1. Average precision (AP) obtained via our augmentation
method (d = 128, 256, 512) compared to the Faster R-CNN with-
out augmentation

Network Baseline Ours-128  Ours-256  Ours-512

ZF 78.89 82.75 82.42 83.04

VGG-16  84.59 86.14 86.61 86.43

4.2. Data Augmentation Results

We switch the condition of the trained GLO to generated
the mixed bg-fg patches for data augmentation, as described
in Section 3.2. Figure 4 shows several of our mixed bg-
fg synthetic patches. It can be seen that our method can
generate new stingray of various colors and shapes while
keeping the same surroundings of the original patches.

4.3. Detection Results

We expect the detection capability of Faster R-CNN can
be benefited from the data augmented by C-GLO. The de-
tection results are reported in Table 1. It can be seen that the
Average Precision (AP) can be improved by 4.15 and 2.02
percents when using ZF and VGG-16 as the base models
for feature extraction in Faster R-CNN, respectively. In ad-
dition, there is only a slight difference on the performance
by changing the dimension of z. It reveals that the detec-
tion capability of our approach is insensitive to the size of
the latent space. Also, our approach is capable of generat-
ing diverse patches to augment the training dataset, which
enforces a more effective training of object detectors and
improves the performance.

5. Conclusions

In this paper, we present a method to detect stingrays in
aerial images. We introduce a data augmentation method
called mixed bg-fg synthesis to fuse background patches
and foreground objects without apparent artifacts, which is
achieved by a new generative network C-GLO. The exper-
imental results reveal that the object detection performance
can be improved via our data augmentation method. The
system developed in this work can help biologists to track
and annotate stingrays automatically.

Currently, our approach is based on images. In the fu-
ture, we plan to extend our approach to video-based data
augmentation and objection detection.
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