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Abstract

Two major deep learning methods for semantic seg-

mentation, i.e., patch-based convolutional neural network

(CNN) approaches and fully convolutional neural network

(FCNN) models, are studied in the context of classifica-

tion of regions in underwater images of coral reef ecosys-

tems into biologically meaningful categories. For the patch-

based CNN approaches, we use image data extracted from

underwater video accompanied by individual point-wise

ground truth annotations. We show that patch-based CNN

methods can outperform a previously proposed approach

that uses support vector machine (SVM)-based classifiers

in conjunction with texture-based features. We compare the

results of five different CNN architectures in our formula-

tion of patch-based CNN methods. The Resnet152 CNN ar-

chitecture is observed to perform the best on our annotated

dataset of underwater coral reef images. We also examine

and compare the results of four different FCNN models for

semantic segmentation of coral reef images. We develop

a tool for fast generation of segmentation maps to serve

as ground truth segmentations for our FCNN models. The

FCNN architecture Deeplab v2 is observed to yield the best

results for semantic segmentation of underwater coral reef

images.

1. Introduction

A fundamental issue limiting ecological studies in ma-

rine environments, such as coral reefs, is the difficulty of

generating accurate and repeatable maps of the underly-

ing ecosystems. Manual in situ mapping performed un-

derwater by human divers is extremely time consuming,

whereas aerial photography and satellite remote sensing are

both severely limited by the fact that seawater absorbs light

strongly, thereby limiting monitoring to very shallow ma-

rine ecosystems [9]. Acoustic methods are able to map the

ocean floor at a large spatial scale, but are not suitable for

mapping marine ecosystems at finer spatial scales.

This paper describes our ongoing work on the mapping

and monitoring of coral reef ecosystems. Coral reefs pro-

vide habitat to a wide diversity of organisms and also sub-

stantial economic and cultural benefits to the several million

people who live in adjacent coastal communities [5]. How-

ever, coral reefs worldwide are being increasingly threat-

ened by a variety of natural and anthropogenic stressors

such as global climate change, ocean acidification, sea

level rise, pollutant runoff, sedimentation, and overfish-

ing [3, 10]. These stressors have caused coral reef ecosys-

tems worldwide to suffer from massive, rapid declines over

the past three decades, resulting in a state of marine envi-

ronmental crisis [4]. Given their precarious state, improved

mapping and monitoring tools are urgently needed to detect

and quantify the changes in coral reef ecosystems at appro-

priate scales of temporal and spatial resolution.

Traditional reef surveys for mapping, classification, and

enumeration of underwater taxa have been performed in situ

by scuba divers trained in marine ecology. While accu-

rate, in situ surveys are time consuming, expensive, and

allow only limited coverage of the coral reef. With re-

cent advances in autonomous underwater vehicles (AUVs)

equipped with high-resolution cameras, in situ surveys are

being increasingly replaced by image/video-based robotic

surveys. In addition, computer vision, pattern recognition,

and machine learning techniques are enabling the genera-

tion of detailed, large-scale maps of underwater environ-

ments [11]. AUVs traveling systematically through the

coral reef environment are able to continuously acquire

high-quality images of small portions of the coral reef

ecosystem. Using computer vision algorithms, the individ-

ual images are then assembled into a large-scale, 3D recon-

struction (or map) of the coral reef ecosystem accompanied

by semantic classification of the various coral taxa, thereby

permitting one to estimate the spatial distribution of these

taxa on the coral reef. Figure 1 depicts the 3D reconstruc-

tion of a coral reef accompanied by the semantic classifica-

tion of its constituent taxa.
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Figure 1: 3D reconstruction and annotation of a coral reef ecosystem.

Recent advances in the field of deep learning have re-

sulted in significant progress in image object classification

and, more recently, in semantic image segmentation. The

advances in deep learning have given researchers in a vari-

ety of fields sufficient cause to reexamine traditional meth-

ods for image segmentation and object classification to de-

termine if deep learning approaches can indeed improve

performance. One such field is coral reef ecology, where

several approaches to assessing the ecological state of coral

reef ecosystems entail analysis of data on the spatial dis-

tribution of sessile organisms, including hard corals, soft

corals, and algae, and open space for settlement [13, 15].

This data is commonly obtained from underwater images

acquired in situ by human divers or by autonomous or re-

motely operated underwater robotic vehicles.

Traditionally, overhead images of coral reef sections are

manually annotated by domain experts. During the anno-

tation process, experts are presented with pseudorandomly

generated pixel positions in an image and are required to

provide a classification label for each of these pixels. Once

a large enough pixel sample is collected, it is possible to ro-

bustly estimate the abundance of each organism group in the

coral ecosystem. A significant shortcoming of this process

is that it is labor intensive, which in turn limits the scale and

frequency of coral ecosystem assessment.

In this paper, we first examine the annotation task and

show how it can be automated using known convolutional

neural network (CNN) architectures. We compare the an-

notation accuracy of known CNN architectures such as

VGG16 [14], InceptionV3 [17], InceptionResNetV2 [16],

Resnet50 and Resnet152 [8]. We further compare these

CNN architectures to previous work in the areas of seman-

tic segmentation and object classification in the context of

analysis of underwater coral reef images.

To localize the various coral taxa, we adopt a patch-

based CNN approach, which first segments the coral reef

images into uniform regions, often using well known algo-

rithms such as simple linear iterative clustering (SLIC) [1]

or graph cuts [7]. Patches from each region are then ex-

tracted and classified, resulting in a semantic segmenta-

tion map of the original image. The patch-based CNN

approaches are typically limited by the corresponding seg-

mentation algorithm used when trying to localize organisms

within the coral reef.

We also examine fully convolutional neural network

(FCNN) models, which are capable of performing simul-

taneous semantic segmentation and object classification by

generating a class prediction for each pixel in an image. We

compare the performance of the following FCNN models:

FCN8s [12], Dilation8 [20], DeepLab v2 [6], and Dilation-

Mod, which is a custom modification of the Dilation8 ar-

chitecture designed by us for the specific task of semantic

segmentation of underwater coral reef images. We show

that modern deep learning architectures are indeed capable

of outperforming conventional methods for semantic seg-

mentation and object classification in underwater coral reef

images.

2. Background

2.1. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) have seen enor-

mous success in a wide range of classification tasks. The

first CNN architecture that we consider for our implemen-

tation of a patch-based approach to semantic image seg-

mentation and object classification is the VGG16 architec-

ture [14]. This architecture was proposed in 2014 by Si-

monyan and Zisserman [14] of the Visual Geometry Group

for the purpose of image classification. The VGG16 archi-

tecture represents a significant improvement over previous

networks by its use of small 3 × 3 kernel filters instead of

the larger kernel filters common at the time. The VGG16
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CNN architecture is comprised of 13 convolutional layers

and three fully connected (FC) layers for a total of 16 weight

layers. We also consider the InceptionV3 architecture pro-

posed by Szegedy et al. [17]. The InceptionV3 architecture

works to improve upon previous CNN architectures through

its defining contribution – the inception module. The incep-

tion module tries to approximate an optimal sparse convo-

lutional neural network, allowing the InceptionV3 architec-

ture to deepen (i.e., add layers) while staying within com-

mon GPU memory constraints.

As the CNNs grow deeper, the gradient updates become

vanishingly small in the upper layers of the network, pre-

senting significant difficulties during the training process.

This phenomenon, termed the vanishing gradient problem,

is addressed by He et al. [8] in their formulation of the

ResNet CNN architecture. ResNet makes use of residual

blocks that attempt to estimate or fit a residual mapping as

opposed to a direct mapping. The ResNet residual blocks

make use of a skip connection that passes information di-

rectly from the first layer of the block to the last. The in-

termediate layers then learn a residual from the input layer.

This allows the gradient to be preserved across several CNN

layers. We consider both the 50-layer ResNet50 architec-

ture and the 152-layer ResNet152 architecture in this pa-

per [8]. Finally, we also consider the Inception-ResNetV2

architecture proposed by Szegedy et al. [16], which com-

bines the Inception architecture with the ResNet residual

block architecture.

2.2. Fully Convolutional Neural Network (FCNN)
Architectures

Among the fully convolutional neural network (FCNN)

models for simultaneous semantic image segmentation and

object classification, we first consider the FCN8s architec-

ture proposed by Shelhamer et al. [12]. The FCN8s archi-

tecture represents the first successful attempt to repurpose

an existing CNN architecture designed for image classifi-

cation for the task of semantic image segmentation. To

repurpose a CNN-based classifier for semantic image seg-

mentation, Shelhamer et al. [12] use the existing VGG16

classification architecture [14] as their base model. They

eliminate the fully connected CNN layers in the VGG16 ar-

chitecture, replacing them with 1-by-1 convolution layers

with an overall depth equal to the number of classes. This

results in an end-to-end trainable model for semantic image

segmentation, eliminating the need for separate segmenta-

tion and patch-wise classification phases. The FCN8s ar-

chitecture requires whole-image ground truth segmentation

maps for the purpose of training. The training loss is eval-

uated by comparing the network output against the ground

truth segmentation map. The segmentation map that results

from the FCN8s architecture is downsampled to 1/32 of the

original size. Simple bilinear interpolation can be used to

expand the image, but this results in poor segmentation lo-

calization. To address this problem Shelhamer et al. [12]

propose a scheme to feed information from previous layers

(where the feature maps are larger and hence of higher reso-

lution) and use transposed convolution to upsample the final

segmentation map.

Yu and Koltun [20] present a new FCNN architecture

termed Dilation8. They base Dilation8 on the FCN8s ar-

chitecture [12] and improve on its results. They contend

that CNN models designed specifically for classification,

such as VGG16, need to be rethought for the task of se-

mantic segmentation. Dilation8 removes some of the max

pooling layers in VGG16 in order to preserve spatial resolu-

tion. Rather than using iteratively larger kernels to maintain

a large receptive field, they modify the convolution operator

itself as shown in equation (1).

(F ∗l k) (p) =
∑

s+lt=p

F (s)k(t) (1)

Yu and Koltun [20] modify the standard equation for dis-

crete convolution where ∗ refers to the convolution opera-

tion, F represents a discrete function, and k represents a

discrete kernel. Yu and Koltun [20] use parameter l to effec-

tively dilate the convolution kernel by factor l. This means

that a one-dilated convolution would be equivalent to stan-

dard convolution. The use of dilation allows the receptive

field to grow while still maintaining the same number of

parameters. Furthermore, Yu and Koltun [20] also imple-

ment a context module that is layered after the network.

The context module supports an exponential expansion of

the receptive field, allowing the network to exploit contex-

tual information at multiple scales. The approach outlined

by Yu and Koltun only downsamples the image to 1/8 of its

original size, as opposed to 1/32 in the FCN8s architecture

proposed by Shelhamer et al. [12].

The final FCNN model that we consider in this paper is

Deeplab v2, proposed by Chen et al. [6]. Chen et al. re-

fine previously proposed FCNN models by employing the

ResNet [8] as their base architecture instead of VGG16.

Deeplab v2 uses dilated convolution instead of traditional

convolution in its Resnet implementation, in a manner sim-

ilar to Dilation8. Furthermore, Deeplab v2 adds a post-

processing step based on a conditional random field (CRF)

for refinement of the semantic segmentation map. We com-

pare the performance of the aforementioned FCNN models

including one based on a modification of Yu and Koltun’s

Dilation8 architecture [20] on our dataset of coral reef sur-

vey images.

2.3. Related Work

Beijbom et al. [4] investigated automated approaches to

determine the spatial distribution of the various organisms

in a coral reef ecosystem using survey images. They also
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outlined many of the obstacles unique to this task [4]. They

noted the various challenges faced by coral reef image anal-

ysis on account of the extreme variations in the size, color,

shape, and texture of each of the organism classes (i.e., taxa)

and the organic and ambiguous nature of the class bound-

aries. Furthermore, dramatic changes in water turbidity be-

tween sites due to ocean currents and the presence of plank-

ton and algal blooms could greatly alter the ambient lighting

and image colors, making the task of automated image anal-

ysis even more difficult [4]. Beijbom et al. [4] employed a

maximum response filter bank in conjunction with a multi-

scale patch and texton dictionary based approach to charac-

terize the features in an underwater coral reef image [19].

These features were then input to a support vector machine

(SVM) to classify the patches as belonging to the various

organism classes.

Treibitz et al. [18] present a wide field-of-view fluores-

cence imaging system called FluorIS based on a consumer-

grade RGB camera that is enhanced for greatly increased

sensitivity to chlorophyll-a fluorescence. Images acquired

using FluorIS are shown to exhibit high spectral correlation

with in situ spectrometer measurements. FluorIS is shown

to be capable of reliable image acquisition during day and

night under varying ambient illumination conditions. In

follow-up work, Alonso et al. [2] present a CNN-based

scheme for end-to-end semantic segmentation of coral reef

images given sparsely or weakly labeled training data. In

particular, they show how augmentation of RGB images

with fluorescence data (as done by FluorIS) can be used to

generate a dense semantic labeling by fine-tuning an exist-

ing encoder-decoder CNN model. However, their scheme

is restricted to a binary labeling of images as coral or non-

coral in contrast to our work, which entails fine-grained cat-

egorization of coral reef surfaces into multiple biological

classes.

In this paper, we compare the performance of the ap-

proach of Beijbom et al. [4] with that of various deep learn-

ing approaches on our coral reef image dataset. We show

the superiority of deep learning on coral reef survey im-

ages. Given the variance that can occur between different

locations as well as over time, we propose that deep CNN-

based approaches to semantic image segmentation and ob-

ject classification are particularly well suited for tasks in

this problem domain.

3. Evaluation of Patch-Based CNN Approaches

3.1. Data Collection

The coral reef underwater image dataset was collected

from coral reefs off the Florida Keys by a team of swim-

mers/divers. An underwater stereo camera rig (GoPro Dual

Hero system) was used to collect the underwater video data

while swimming over sections of the reef. The rig was car-

ried over the reef in a serpentine pattern in order to capture

the entire seafloor for a given region of the coral reef. Im-

ages were extracted from the video data at a rate of two

frames per second. A subset of the collected images were

then annotated by experts to provide ground truth pixel clas-

sifications. During the annotation process, an individual

pixel in an image is selected in a pseudorandom fashion.

The pixel is shown along with its spatial context to an ex-

pert who then assigns it to one of the following 10 classes:

(1) Acropora palmata, (2) Orbicella spp., (3) Siderastrea

siderea, (4) Porites astreoides, (5) Gorgonia ventalina, (6)

sea plumes, (7) sea rods, (8) algae, (9) rubble, and (10) sand.

The first four classes, i.e., A. palmata, Orbicella spp.,

Siderastrea siderea, and P. astreoides, represent the differ-

ent species of coral commonly found on reefs in the Florida

Keys. The remaining single-species class, i.e., Gorgonia

ventalina, represents the common sea fan. The remainder

of the classes are multi-species classes or general classes.

A total of 9,511 pixels were annotated among the collected

1,807 images. We extracted a square region centered around

each annotated pixel to create a dataset of 9,511 classified

images.

3.2. Methods

We compare five commonly used CNN architectures

known to perform well on patch classification tasks. We

compare the performance of well known CNN architec-

tures, such as VGG16 [14], InceptionResNetV2 [16], In-

ceptionV3 [17], Resnet50 and Resnet152 [8], to that of

the SVM-based and texton dictionary-based approach pro-

posed by Beijbom et al. [4]. We initialize the aforemen-

tioned CNN models using pretrained weights on the Ima-

genet dataset. The top fully connected layers of the CNNs

are removed and replaced with a customized layer, the out-

put of which matches the number of classes under consid-

eration.

We employ a bottleneck approach in which features from

the convolutional layers of the network are saved and used

to train the top layers of the CNN model before training

the entire CNN model. Training the top layers of the CNN

ensures that the pretrained weights are not significantly al-

tered via large gradient updates. The newly created top lay-

ers have a fully connected layer with ReLU activation func-

tions and dropout followed by a softmax activation layer

with 10 units (the number of classes). We use a batch size of

32 for all of the CNN models except Resnet152 (which re-

quires a smaller batch size of 16) in order to train them using

an Nvidia GTX 1080 GPU card. All the CNN models are

trained using stochastic gradient descent (SGD) to optimize

the pretrained weights. The top layer of each CNN model is

trained with a learning rate of 1× 10−3 and a weight decay

rate of 5 × 10−4, after which the entire network is trained

with a learning rate of 1 × 10−4 and weight decay rate of
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Table 1: Results of the patch-based CNN architectures. SGD refers to the stochastic gradient descent algorithm.

Architecture Accuracy Optimizer Batch Size

SVM and Texton Dict. 84.80

VGG16 87.34 SGD 32

InceptionResNetV2 84.79 SGD 32

InceptionV3 84.69 SGD 32

Resnet50 88.10 SGD 32

Resnet152 90.03 SGD 16

1 × 10−6. The networks are trained in increments of 50

epochs until the loss function is no longer observed to be

steadily decreasing.

We also replicate the support vector machine (SVM)-

based approach of Beijbom et al. [4] and test it on our

dataset. We use grid search to optimize the SVM hyper-

parameters. To ensure experimental validity, we separate

our dataset into two sets, a testing set and a training set. We

train our models with the training set and then report the

model performance on the unseen testing set. The overall

accuracy across all classes is reported.

3.3. Performance of the CNN Architectures

Table 1 summarizes the results of the comparison of the

five CNN models that were considered in our study. In gen-

eral, the performance of the CNNs was quite good with an

overall classification accuracy ≈ 85% or higher in all cases.

Of the CNNs that were considered, the InceptionV3 [17]

was observed to perform the worst, yielding a classification

accuracy of 84.69%. Resnet152 [8] was observed to yield

the best classification accuracy, outperforming VGG16 [14]

and Resnet50 [8] by almost 2%. These results underscore

the necessity of formulating deeper CNN architectures, es-

pecially when working in this domain.

The confusion matrix for each CNN architecture is pre-

sented in Figure 2. Most classes are classified with greater

than 80% accuracy and several classes exceed 95% accu-

racy. In all CNN models, there are errors when distinguish-

ing between the classes sand and rubble. These classes

share several features in common, and the correct class is in

some cases ambiguous. Fortunately, the distinction between

these two classes is not of great merit for our ultimate task

of determining production rates in the reef. All the classes

are classified correctly at least a majority of the time among

our top performing CNN models.

The SVM-based approach yields an overall accuracy of

84.8% on our dataset, lower than that of our best perform-

ing patch-based CNN models. The SVM-based approach

also tends to significantly underperform on minority classes

such as sea rods, Siderastrea siderea, sand, and Orbicella.

4. Fully Convolutional Neural Network

(FCNN) Models

We have shown that patch-based CNNs can estimate

the distribution of the various taxa within the coral reefs

with greater accuracy than traditional SVM-based ap-

proaches. We now focus on fully convolutional neural net-

work (FCNN) models, which represent modifications of the

traditional CNNs to provide full semantic segmentation of

the input image at the pixel level.

4.1. Data Collection

FCNN models for semantic segmentation generally re-

quire dense pixelwise ground truth segmentation maps for

training purposes. The process of creating ground truth seg-

mentation images for training is often very labor intensive.

This is especially true in the case of image data from un-

derwater environments, where corals often contain fine de-

tails and image regions are sometimes ambiguous due to

poor water clarity. To work around these problems, we cre-

ated a customized tool to expedite the process of generat-

ing ground truth training data. The custom annotation tool

segments a provided image and the user can then annotate

the segmented regions with their class labels. Our tool of-

fers two methods of image segmentation: one based on sim-

ple linear iterative clustering (SLIC) superpixels [1] and the

other based on efficient computation of graph cuts [7]. The

program also has a tunable parameter that allows the user to

either increase or decrease the level of segmentation, result-

ing in an oversegmented or undersegmented image. Typ-

ically, a user can oversegment the image, annotate its re-

gions, and quickly generate a segmentation map for training

purposes. As a user annotates a region, the annotations are

propagated to similar regions in its spatial proximity. For

instance, if the user annotates a region as sand the tool will

automatically propagate the label to other similar regions in

its spatial proximity. The tool uses simple RGB histograms

and Gabor filter features to measure region similarity and

propagates the labels using a k-means clustering algorithm.

Finally, the tool offers a manual mode for the user to en-

ter the annotations manually or to correct annotation errors.
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(a) VGG16 (b) InceptionResNetV2

(c) InceptionV3 (d) Resnet50

(e) Resnet152 (f) SVM and Texton Dictionary

Figure 2: Confusion matrices for various patch-based CNN architectures. We abbreviate Acropora palmata as A. palm,

Gorgonia ventalina as Gorg, Orbicella spp. as Orb, Porites astreoides as P. ast, and Siderastrea siderea as S. sid.
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Table 2: Results of the FCNN models. SGD refers to the stochastic gradient descent algorithm.

Architecture Pixelwise Accuracy Optimizer Momentum

FCN8s 50.45 SGD 0.9

Dilation8 62.84 SGD 0.9

DilationMod 64.90 SGD 0.9

DeepLab v2 67.70 SGD 0.9

This tool allowed us to quickly generate 413 dense classifi-

cation maps for use with our FCNN models [12].

4.2. DilationMod

We proposed and tested a modification to the Dila-

tion8 [20] architecture by removing a pooling layer from

the Dilation8 architecture. This means that the image is

only downsampled to 1/4 of its original size within the net-

work (the downsampling to 1/4 is on account of the remain-

ing two max pooling layers) as opposed to 1/8 in Yu and

Koltun’s Dilation8 model [20]. The removal of a pooling

layer allows the FCNN to preserve the finer details in the in-

put image. This approach requires more memory, but can be

accommodated within the memory on an 8GB Nvidia GTX

1080 GPU card when running experiments on our dataset.

Furthermore, we introduce dilated convolutions one block

earlier in the network (i.e., each convolution layer in the

block is dilated by two). Introducing dilated convolution

earlier in the network increases the receptive field, counter-

acting the increase in resolution arising from the removal of

a pooling layer. We do not make use of the context module

or skip connections. Instead, we upsample the FCNN re-

sults using bilinear interpolation. Since we do not use skip

connections or conditional random fields (CRFs) this archi-

tecture is very easy to implement.

4.3. Preprocessing

The collected data was preprocessed for use in the FCNN

models. Since the images in our dataset are quite large,

each image had to be split into four quarters to be used on

an Nvidia GTX 1080 GPU with a batch size of one. Since

the ground truth segmentation images generated by our tool

were in full color, they had to be converted so that each

color channel value corresponded to the class label number

at that pixel in the image. Since our dataset has 10 classes,

the preprocessing outputs images with values 0-9 in their re-

spective color channels. To normalize our data, we subtract

the mean RGB value of the training set from each image

before passing it to the FCNN.

4.4. Training the FCNN Models

We compare the performance of FCN8s [12],

Dilation8[20], DeepLab v2 [6], and our modified ver-

sion of the Dilation8 frontend (i.e., DilationMod) on the

task of semantic segmentation of underwater coral reef

images. The FCNN weights are initialized using the

Imagenet pretrained weights. To retain the benefit of

the pretraining, our FCNN models freeze the pretrained

weights and train on any additional layers initially with a

learning rate of 1 × 10−3. We use a batch size of one and

stochastic gradient descent with a Nesterov momentum

term as our optimization technique. We then train the entire

model using a learning rate of 1 × 10−4 and weight decay

of 1 × 10−6. Each FCNN model trains for 7,000 iterations

to ensure convergence, and the FCNN model with the

highest validation accuracy is selected.

4.5. Performance of the FCNN Models

Table 2 summarizes the results of our comparison of the

aforementioned four models. We report the pixelwise accu-

racy to compare the four methods. Corals contain fine de-

tails and consequently the corresponding image regions are

often very thin. Because of this, coral reef semantic seg-

mentation is far more sensitive to downsampling than many

other semantic segmentation tasks. The least accurate ar-

chitecture is FCN8s [12], which only has an accuracy of

50.45%. This result is not unexpected given the downsam-

pling that occurs in the network. While the model makes

use of transposed convolution to upsample the image, it can-

not adequately recover the fine details required for this task.

Dilation8 [20] reports far higher accuracy at 62.84%. Our

modified Dilation8 network gives a modest boost to accu-

racy over the previous two methods, with an overall accu-

racy of 64.9%. Deeplab v2 [6] is the best performing model

on our dataset with an accuracy of 67.7%.

We present the semantic segmentation results of the var-

ious FCNN architectures for one of our validation images in

Figure 3. There is a noticeable disparity between the level

of detail preserved by FCN8s and the models that make use

of dilated convolution. This is also reflected in the activa-

tion maps for each class on this image.

5. Conclusions

In this paper, we have shown the effectiveness of deep

learning approaches for semantic segmentation of coral reef

survey images. This research serves to automate the pro-

cess of determining the distribution of organisms and sub-
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(a) Original Image (b) Ground Truth (c) FCN8s (d) Dilation8 (e) DilationMod (f) DeepLab v2

Figure 3: Outputs of multiple FCNN architectures for a given sample image.

strates on coral reefs. We have detailed and contrasted

two main classes of semantic segmentation based on patch-

based CNN models and FCNN models.

We first compared standard CNN architectures for patch-

based classification from individual point-based ground

truth annotations of training images. The patch-based clas-

sification methods can be used for the common task of de-

termining the abundance or paucity of organisms on reefs

by leveraging existing segmentation techniques and per-

forming patch-wise classification of each resulting segment.

Our best performing CNN model for this task was the

ResNet152 [8] architecture, which yielded an accuracy of

90.03%. The previous work of Beijbom et al. [4] using

SVMs and texton dictionaries yielded an accuracy of 84.8%

on our dataset for this task.

It is important to note that the granularity of classifica-

tion is much coarser with a patch-based CNN model since

it provides a single class label for an entire patch within

an image, whereas the FCNN models provide a classifica-

tion for each individual pixel within an image. The patch-

based CNN approaches yield a higher classification accu-

racy overall. They are, however, limited by the corre-

sponding segmentation algorithm when attempting to lo-

calize specific taxa within the coral reef image. Long et

al. [12] addressed this tradeoff when proposing the FCN8s

architecture, stating that semantic segmentation poses an

inherent dilemma between semantics and location in that

global information resolves the question of identity, i.e.,

what, whereas local information resolves where.

Next, we examined FCNN models, which perform si-

multaneous segmentation and classification by providing a

class prediction at each pixel within an image. We com-

pared four different FCNN models, the best performing of

which was the Deeplab v2 architecture, yielding an accu-

racy of 67.7% on our dense classification dataset. Unlike

patch-based CNN approaches, FCNN models do not pose

limitations on localization accuracy. Due to the fine granu-

larity of classification, however, the classification accuracy

in our tests was below that of the patch-based CNN ap-

proaches.

6. Future Work and Applications

Since our image data is collected in a serpentine fash-

ion, often from multiple angles so as to capture the entire

seafloor, we are able to create semantic maps of entire re-

gions of the coral reef. To create two-dimensional semantic

maps of the coral reef regions, each new image can be regis-

tered with the result of all previously registered images until

all images from a region are processed/registered. The re-

sulting mosaicked image can then be segmented into super-

pixels. Patches can be extracted from each superpixel and

classified using a patch-based CNN architecture. In the case

of the FCNN models, the transformation matrices of each

image registration can be saved and can then be applied to

the corresponding FCNN output for that image. This will

result in a mosaicked semantic map for the entire coral reef

region.

Currently, we are examining photogrammetric tech-

niques to create a three-dimensional mesh of coral reef re-

gions. We classify mesh faces using the patch-based CNN

approaches. The FCNN models presented in this paper use

VGG16 [14] as a base architecture that is further enhanced

or modified. Future extensions of this work could include

applying similar modifications to other network architec-

tures, such as Resnet152 [8]. Finally, since the image data

was collected with stereo cameras, future work could look

at incorporating disparity information as a channel in the in-

put image. Additionally, deep learning architectures could

be developed for leveraging multiple viewpoints to improve

classification.
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