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Abstract

In order to track all persons in a scene, the tracking-by-

detection paradigm has proven to be a very effective ap-

proach. Yet, relying solely on a single detector is also a

major limitation, as useful image information might be ig-

nored. Consequently, this work demonstrates how to fuse

two detectors into a tracking system. To obtain the tra-

jectories, we propose to formulate tracking as a weighted

graph labeling problem, resulting in a binary quadratic pro-

gram. As such problems are NP-hard, the solution can only

be approximated. Based on the Frank-Wolfe algorithm, we

present a new solver that is crucial to handle such difficult

problems. Evaluation on pedestrian tracking is provided

for multiple scenarios, showing superior results over sin-

gle detector tracking and standard QP-solvers. Finally, our

tracker ranks 2nd on the MOT16 benchmark and 1st on the

new MOT17 benchmark, outperforming over 90 trackers.

1. Introduction

Multiple object tracking, and in particular people track-

ing, is one of the key problems in computer vision with po-

tential impact for many applications such as video surveil-

lance or crowd analysis [1]. A common approach to gen-

erate the trajectories of multiple people is tracking-by-

detection: first a person detector is applied to each indi-

vidual frame to find the putative locations of people. Then,

these hypotheses are linked across frames to form trajecto-

ries. By building on the advances in person detection over

the last decade, tracking-by-detection has been very suc-

cessful [15, 16, 37, 57]. However, the dependence on detec-

tion results, typically bounding boxes, is also a major lim-

itation. A lot of potentially useful information is lost dur-

ing the non-maxima suppression. A tracker typically does

not use direct image data, except in the form of appearance

models in order to discriminate different people. Recently,

a number of approaches [14, 21, 44] have proposed to use

other image features aside from full-body detections, with

the main goal of recovering partially occluded pedestrians.

In this paper, we present a framework for offline multi-

ple object tracking using two detector types, namely, full-

body detections together with head detections, since heads

can be detected very accurately, as they are barely prone to

pose variations or occlusions. This is especially useful in

crowded scenarios: Fig. 1 shows a heavily occluded pedes-

trian. While the full-body detector is unable to detect that

person, due to the occlusion, its head is still visible so that

our tracker localizes that pedestrian correctly.

Our tracking formulation ensures long-term temporal

consistency by taking all detections assigned to a person

(we denote detection to person assignments as labelings)

into account. Therefore, our clustering concept shares sim-

ilarities to correlation clustering approaches [16,56,57,63],

but we propose a very efficient labeling formulation that

avoids the exponential growth in the constraints. Due to our

powerful solver, we are able to optimize our problem glob-

ally on the input detections without the need of potentially

error-prone tracklets.

We compute the best labeling by solving a Binary

Quadratic Problem (BQP). A straightforward approach to

solve that BQP would thus be to optimize an equivalent Bi-

nary Linear Program (BLP) using branch&bound. How-

ever, due to the high dimensionality of the problem, such a

BLP is computationally expensive and memory demanding.

We propose to use the Frank-Wolfe algorithm (FW) to

solve the relaxation of the BQP. By using a standard im-

plementation of FW, the result is often far away from the

binary optimal solution. Therefore, we propose several cru-

cial improvements that lead in practice to a much better so-

lution in terms of the objective value and the tracking per-

formance, as we show in Section 4.2. At the same time,

the proposed algorithm is much faster than the standard

branch&bound approach. Finally, an analysis on the effect

of the fusion of head detections with full-body detections

shows that the best tracking accuracy is obtained by using

both input sources. The fusion helps especially to remove

false positive full-body detections that are not consistent

with the head detections and to recover heavily occluded

persons.
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Figure 1. MOT16-09 sequence (from left to right: frame 10,12,15).

Top row: Body detections (orange) and head detections (red). The

body detector misses the person depicted by the arrow until frame

15. Bottom row: The result of our tracker. The false positive

is removed as it does not have a corresponding head detection.

The tracker recovers the heavily occluded pedestrian due to the

presence of head detections.

1.1. Contributions

To summarize, our contribution is three-fold:

• We propose a novel detector fusion multi-object track-

ing system, which solves a graph labeling problem and

is represented by a BQP with very few constraints.

• We propose a new solver that significantly improves

over standard BQP solvers when applied to our dis-

crete optimization problem.

• We present detailed evaluations on the improvements

due to our solver as well as the detector fusion. Our

framework sets a new state-of-the-art in tracking.

1.2. Related Work

Data association models. Tracking-by-detection has be-

come the standard paradigm for multi-object tracking. It

splits the problem into two steps: object detection and data

association. In crowded environments, where occlusions

are common, even state-of-the-art detectors [18, 19, 48, 62]

are prone to false alarms and missed detections. The goal

of the data association step is then to fill in the gaps be-

tween detections and filter out false positives. In order

to do this robustly, data association is mostly performed

for all frames and all trajectories simultaneously. This is

usually done in discrete space, using graph based meth-

ods [5, 9, 25, 47, 54, 64], or BLPs [12, 28].

Most of these trackers were derived from a Markov chain

model [64]. Recent systems utilize correlation clustering

based formulations that ensure consistency within all links

of a trajectory [16,44,56,57,58,59,63]. Thereby, simplified

models were used initially, which created trajectories itera-

tively, computing one best clique [63] or dominant set [59]

corresponding to exactly one person and then removing the

respective detections from the loop. This concept has been

extended [16, 44] to obtain trajectories in a global manner,

for all persons at the same time. However, the inference

relies on potentially error-prone initial tracklets to keep the

approach computationally feasible. In contrast, our solver

is fast and accurate enough to optimize directly on the de-

tections, thereby avoiding error propagation that might have

been introduced by the tracklets. Further progress has been

made by computing the correlation clustering directly on

the input detections [56,57], using a huge set of clique con-

straints in a BLP, that has exponential growth. Accordingly,

a heuristic solver has to be applied. In contrast, our formu-

lation needs only very few constraints, making it capable

for the usage of many detections.

BQP Optimization. Tracking methods that need to solve a

BQP have been rare so far, due to the computational chal-

lenge, although many advanced tracking models are natu-

rally expressed as a BQP. For instance, the Markov model

[64] can be augmented by one additional detector [12], re-

sulting in a BQP. While this problem can be solved by

rewriting the BQP as an equivalent BLP, we show in our

experiments, that this simple trick is not applicable to our

more demanding correlation clustering based model, due to

the problem size of our BQP. Another work [17] formulates

online tracking via a BQP and solves it using the Frank-

Wolfe algorithm, which is also the basis for our solver.

While [17] shows good performance, we propose a hierar-

chical solving scheme that can be easily integrated into their

formulation, thereby further improving their result. Further-

more, during the Frank-Wolfe algorithm, the step size for

an iterate update has to be computed. We derive an opti-

mal, algebraic computation, that is cheap to compute and

improves over existing methods [2, 17, 35]. Note that our

improvements may be applied to methods of other fields in

computer vision as well, such as person re-identification [2],

co-localization [29] or object segmentation [53].

Incorporating different features. Limiting the input of the

tracker to a single detector has clearly several drawbacks,

since much of the information of the image is not taken into

account, potentially ignoring semi-occluded objects. In re-

cent literature, several works have started incorporating dif-

ferent image features for the task of multi-target tracking.

Few works use supervoxels as input for tracking, obtaining

as a byproduct a silhouette of the pedestrian. In [14], the

optimization is done via greedy propagation, while in [44],

supervoxel labeling is formulated as CRF.

There are several works that use dense point tracks

(DPT) [10] or KLT [42, 60] together with detections to im-

prove tracking performance. In [4], corner features are

tracked using KLT to obtain a motion model between de-

tections. In [20], multi-target tracking is tackled by cluster-

ing DPTs and further combined with detection-based track-
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lets in a two-step approach in [21]. Further improvement is

achieved using a globally optimal fusion formulation [26].

In [12], a BQP fuses head and body detections to track

pedestrians, modeling non-maxima suppression as well as

overlap consistency between features. In contrast to our

model, only co-occurrences of active features are consid-

ered, while we directly model the grouping of features to

different persons, allowing to ensure consistency within

each cluster over long time periods. Also in the exten-

sion [53] to motion segmentation using superpixels, the per-

person consistency is not considered.

2. Detector Fusion for Multi-Target Tracking

In this section, we describe the data association that cou-

ples multiple detectors and detections in a correlation clus-

tering fashion to ensure long-term temporal consistency.

As correlation clustering is NP-Complete [3], we rely on

finding a good approximation to the solution. We propose to

use a BQP formulation for the clustering problem that can

be well approximated using the Frank-Wolfe [22] solver.

In particular, we compute the relaxed solution of the BQP

first, and perform a rounding step afterwards. Frank-Wolfe

is well suited for continuous quadratic problems with linear

constraints, as each iteration step involves solving a compu-

tationally efficient linear optimization problem. The binary

solution is then obtained by an efficient rounding step.

When applied to a non-convex problem, like our model,

the Frank-Wolfe algorithm delivers only a local optimum

[33]. Hence, simply applying the standard algorithm will

result in a solution that is far away from the global optimum.

We thus focus on enhancing the solution of Frank-Wolfe by:

(i) regularizing the cost function, (ii) computing the optimal

step size within the solver’s algorithm algebraically and (iii)

introducing a hierarchical solving scheme that enhances the

solution produced by the Frank-Wolfe algorithm.

Our regularizer prevents the Frank-Wolfe algorithm from

falling to quickly into a local optimum. The hierarchical

solving scheme gains the improvement by revoking or con-

necting clusters of the discretized solution, while having the

guarantee of operating optimally. The presented approach

is not specific to the Frank-Wolfe solver. It can be applied

after any approximating algorithm. It further allows to cor-

rect errors introduced by the initial solver.

Experiments in Sect. 4 show that our proposed solver

provides good solutions close to the estimated bound,

while being considerably faster than the commercial solver

Gurobi [23], which uses the branch-and-bound/cut algo-

rithm [36, 45] to find the globally optimal solution.

2.1. Joint Data Association

We cast the data association using two detectors as a

graph labeling problem: Consider a weighted complete

graph G = (V, E , c), where the vertex set V consists of all

input detections. We set n = |V|. Each node v ∈ V has

costs cv ∈ R reflecting the likelihood of v being a correct

detection. An edge e = {u, v} ∈ E encodes a possible link-

ing of two detections to the same person. The nodes u, v are

labeled k, if u and v belong to person k. Likewise, qu,v ∈ R

reflects how likely u and v belong to the same person.

Finally, the goal of the data association problem is then

to find the labeling for all detection nodes that minimizes

the total costs.

Hence, for each node v ∈ V , consider a decision variable

xk
v that equals 1, if node v has label k, and 0 otherwise.

For P being an upper bound on the number of persons, let

[P ] := {1, . . . , P}. Then, the vector x ∈ [0, 1]nP stacks all

decision variables in a vector.

Given the unary and pairwise potentials

unG(x) :=
∑

v∈V,k∈[P ]

cvx
k
v (1)

and

paG(x) :=
∑

{u,v}∈E,k∈[P ]

qu,vx
k
ux

k
v , (2)

we define the cost function

fG(x) = unG(x) + paG(x). (3)

Finally, our tracking model BQP(G, P ) is described by the

labeling problem:

BQP(G, P ) := argmin
x∈Cb(G,P )

fG(x), (4)

where Cb(G, P ) := {0, 1}nP ∩ C(G, P ) and

C(G, P ) := {x ∈ [0, 1]nP |
∑

k∈[P ]

xk
v ≤ 1, ∀v ∈ V}. (5)

The constraints (5) ensure that each detection is assigned to

at most one label k ∈ [P ], i.e. to at most one person. Note

that BQP(G, P ) has only n linear constraints.

We model the binomial distribution for the selection

of nodes v and edges e using logistic regression. Then,

finding the most likely selection is equivalent to solving

BQP(G, P ), if the costs are defined via the logit function,

see [56]. Therefore, we set the unary costs as

cv := log
(
(1− pv)p

−1
v )

)
(6)

with pv denoting the probability of detection v (inferred

from the detection’s score). For the pairwise costs, we learn

model parameters θ to obtain probabilities

pu,v := p(xk
u = 1 ∧ xk

v = 1|F , θ), (7)

given θ and a feature vector F . Since we model pu,v using

logistic regression, the pairwise costs are

qu,v := log((1− pu,v)p
−1
u,v). (8)

31543



In Sect. 3, we describe the model features F used for the

classifier.

Detections, which are temporally too far apart can nei-

ther be compared reliably nor meaningful. For such edges

{u, v}, we set their weight to qu,v := 0. This strategy ef-

fectively sparsifies the graph G and keeps the proposed ap-

proach memory and computationally efficient.

2.2. FrankWolfe Optimization

Solving BQP(G, P ) is a challenging task due to the fact

that it belongs to the NP-hard problems [51] and that our

domain space is very high-dimensional. We thus follow a

common practice and consider the relaxed problem:

QP(G, P ) := argmin
x∈C(G,P )

fG(x). (9)

However, even the relaxation is still NP-hard to solve [46],

as fG is non-convex, in general. Thus even for commercial

quadratic solvers like Gurobi [23], solving BQP(G, P ) or

QP(G, P ) is computationally very expensive.

This paper proposes to use the Frank-Wolfe algorithm to

approximate QP(G, P ), and points out ways to further im-

prove the solution. We present a pseudo-code of the stan-

dard Frank-Wolfe algorithm, together with a discretization

step, in Alg. 1 and its evaluation, as a baseline, in Sect. 4.

Algorithm 1: Frank-Wolfe Algorithm

Data: Costs fG , feasible point x(0), IMAX,ǫ

Result: Solution vector xFW

1 fmin = ∞;

2 j = −1;

3 repeat

4 j = j + 1 ;

5 a(j) = argmin
a∈C(G,P ) a

⊺∇fG
(

x(j)
)

;

6 γ(j) = argminγ∈[0,1] fG (x(j) + γ(a(j)− x(j))) ;

7 if fG(a(j)) < fmin then

8 fmin = fG(s(j));
9 xFW = a(j) ;

10 end

11 xb(j) = BINARIZE(x(j)) ;

12 if fG(xb(j)) < fmin then

13 fmin = fG(xb(j)) ;

14 xFW = xb(j) ;

15 end

16 x(j + 1) = x(j) + γ(j)(a(j)− x(j));

17 until [(a(j)− x(j)⊺(−∇fG(x(j))) < ǫ] ∨ [j > IMAX];

Frank-Wolfe minimizes the linear approximation of fG
at the current solution x(j) (Ln. 5 of Alg. 1), resulting in

a(j). The next iterate x(j + 1) is the vector between x(j)
and a(j) that minimizes fG (Ln. 6 and Ln. 16). For the

optimal step size γ(j) in Ln. 6, we present an efficient alge-

braic description in Sect. 2.3. The algorithm is stopped in

case of a small duality gap (a(j) − x(j))⊺(−∇fG(x(j)))
or a maximal number of iterations IMAX.

The binary solution xFW equals either a binarized iterate

x(j) (Ln. 11-15), or, a(j) (Ln. 7-10), as the constraint ma-

trix corresponding to our set C(G, P ) is totally unimodular,

so that a(j) is already binary and thus feasible [29, 52].

In order to enhance the convergence rate, we use in

our implementation a slightly improved variant of the al-

gorithm, that adds so-called away-steps. We refer the inter-

ested reader to [34] for further details.

Using Qpa = (qu,v)u,v∈V ∈ R
n×n and cun =

(cv)v∈V ∈ R
n, we define

Q = diag(Qpa, . . . ,Qpa
︸ ︷︷ ︸

P times

), c = (c⊺un, . . . , c
⊺

un
︸ ︷︷ ︸

P times

)⊺. (10)

Then, we obtain fG in matrix-vector form:

fG(x) = 0.5x⊺Qx+ c⊺x. (11)

Due to design of our problem BQP(G, P ), we can run Alg. 1

without the need of storing the huge Q matrix or the c vec-

tor. Instead, all computations of Alg.1 can be deduced from

the upper triangle matrix of Qpa and from cun. Therefore,

our approach is memory efficient.

BINARIZE: In order to obtain feasible, binary vectors, we

discretize an iterate x(j) by selecting the closest feasible

point xb(j) in Cb(G, P ) w.r.t. euclidean distance. To this

end, let 1 be the vector with all entries equal to 1. It is

straightforward to show that

xb(j) = argmin
x∈Cb(G,P )

||x(j)− x||22 (12)

= argmin
x∈Cb(G,P )

(−2x(j) + 1)⊺x. (13)

Now problem (13) is linear in x and the constraint matrix

corresponding to C(G, P ) is totally unimodular. Thus, we

can efficiently solve the relaxation of (13) and obtain the

exact solution of (12), see, e.g. [52, Chapter 19].

2.3. Computing the Optimal Step Size γ

The step size γ in Ln. 6 of Alg.1 can be computed via

line search [7]. However, we derive a new algebraic com-

putation, being faster and still optimal.

Let d(j) := a(j)−x(j) and Ω(γ) := fG(x(j)+γd(j)).
Then, since fG is a quadratic, the only root of Ω′ is γ∗, with

γ∗ := [−d(j)⊺∇fG(x(j))][d(j)
⊺Qd(j)]−1

and δ := Ω′′(γ∗) = d(j)⊺Qd(j). Now if δ 6= 0, the mini-
mum γ(j) = argminγ∈[0,1] Ω(γ) is given by

γ(j) =



























γ∗, if δ > 0 and γ∗ ∈ [0, 1],

0, if (δ > 0 and γ∗ ≤ 0) or (δ < 0 and γ∗ ≥ 1),

1, if (δ > 0 and γ∗ ≥ 1) or (δ < 0 and γ∗ ≤ 0),

argmin
γ∈{0,1}

Ω(γ), if δ < 0 and γ∗ ∈ (0, 1).
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Labeling ContractionCorrection Labeling

Figure 2. One iteration of our hierarchical solver. We present an illustrative example with pairwise costs on the edges. Left: A labeling,

computed by Alg. 1. Dotted edges indicate removed links. Nodes connected by edges of the same color are grouped, resulting in two

clusters. Dashed edges indicate wrong connections. Middle: Wrongly connected nodes (the men’s node has positive costs of +4 to

its connected nodes) are separated. Then, each cluster is replaced by a new node (blue circles). The green edge indicates the correct

assignment, whereas red edges indicate that clusters do not belong together. Right: The problem BQP(Gt+1, J) is solved w.r.t. Gt+1 and

J = {1, 2, 3} labels. Since J is small, we can solve BQP(Gt+1, J) quickly and optimal, using Gurobi.

A line search is needed only if δ = 0, making the execution

of Ln. 6 very efficient. In contrast to previous works [17,

35], our solution to Ln. 6 contains all cases that may occur.

2.4. Regularization of the Objective Function

Since our cost function is non-convex, Frank-Wolfe de-

livers only a local optimum [33]. Given r 6= 0, our next

proposed improvement is to replace the objective function

fG by

fr(x) = fG(x) + r
∑

i

(x2
i − xi). (14)

For x ∈ {0, 1}nP , we have fr(x) = fG(x). Using r < 0
has the effect of pushing the FW algorithm towards discrete

solutions, as −(x2
i −xi) has its minimum at 0 and 1, within

[0, 1]. For r > 0, we observed better behavior in staying

out of local optima, as for a value r sufficiently large, fr
becomes convex [8, 11, 24]. On the other hand, a high r

value brings the optimal solution too close to the constant

( 12 ) vector. For ω := max{∑j |Qi,j | : i ∈ [nP ]}, we

set r0 =
√
ω and ri = 2−ir0. Starting with r = r0, we

compute QP(G, P ), using fr in Alg. 1. Empirically, we

observed that a short number of iterations of Alg. 1 corre-

sponds to a too strong convexification term, resulting in a

bad local optimum. Thus, if Alg. 1 terminates in too few

steps (which we set to 10), we set i = i+ 1, r = ri and run

Alg. 1 again with the updated function fr. In all our exper-

iments, an appropriate r was found in at most two calls of

Alg. 1. In Sect. 4, we demonstrate the impact of using the

modified cost function, with the solver we call FW + r.

2.5. Hierarchical Solving Scheme

Since FW + r delivers only a local optimum, we pro-

pose a new hierarchical solving scheme that enhances the

solution of FW + r by removing, correcting and connect-

ing clusters, thus resulting in an improved objective value.

Our approach is computationally efficient and continues op-

timizing problem BQP(G, P ). Compared to other hierar-

chical approaches like [27] that define specific parameter

changes in each iteration, our formulation is generic and can

be applied to many clustering problems without the need of

heuristically set parameter update rules.

In the following, we present all parts of our proposed

solving scheme and present a pseudo-code in Alg. 2.

CorrectionContraction: Let x(t) ∈ R
nP be the current

best labeling of G. Initially, we obtain x(0) using FW + r.

We apply a relabeling strategy that corrects obvious errors

within the clusters that may have been introduced due to the

rounding or local optimality. For v ∈ V , let N (v,x(t)) be

the set of all adjacent nodes that have the same label as v. If
∑

u∈N (v,x(t)) qu,v > 0, or, if cv > 0 and (x(t))jv = 0, ∀j ∈
[P ], we assign a new and unique label to v (see Fig.2 mid-

dle). Let v(k) be the set comprising all nodes labeled k.

We build a contracted graph Gt+1 = (Vt+1, Et+1) by using

these virtual, new nodes: We set Vt+1 := {v(k) | k ∈ [P ]}
and Et+1 connects any two different vertices. Accordingly,

we obtain the stacked decisions variables xcontr for the cur-

rent labeling of Gt+1.

LabelExpand: Let the current labeling result in J clus-

ters. To compute the optimal labeling on Gt+1 according to

BQP(Gt+1, J), we define the unary costs

cv(k) :=
∑

v∈v(k)

cv +
∑

{u,v}∈E∩v(k)×v(k)

qu,v (15)

and pairwise costs

qv(k),v(k′) :=
∑

{u,v}∈E∩v(k)×v(k′)

qu,v. (16)

Consider the stacked decision variables x̂ ∈ {0, 1}JJ where

x̂s
v(k) equals 1, if s = k (and thus (xcontr)

s
v(k) = 1) and if

v(k) was not a rejected node by x(t); and 0 otherwise. Then,

x̂ assigns each node of Gt+1 a unique label, except for nodes

that have been rejected by x(t). Therefore, fGt+1(x̂) sums

up only the unary costs (15), which equal fG(x
(t)) or are

improved by the refinement, implying

fGt+1(x̂) ≤ fG(x
(t)). (17)

Furthermore, solving BQP(Gt+1, J) results in a solution
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Algorithm 2: Hierarchical solving scheme

Data: Graph labeling x
(0), graph G

Result: Solution vector x(t)

1 repeat

2 fmin = fG(x
(t));

3 (Gt+1,xcontr) = CorrectionContraction(x(t),G);

4 x
(t+1) = LabelExpand(Gt+1,xcontr);

5 t = t+ 1;

6 until fG(x
(t)) = fmin;

xH ∈ Cb(Gt+1, J) with

fGt+1
(xH) ≤ fGt+1

(x̂) ≤ fG(x
(t)). (18)

The result xH is converted to a labeling x(t+1) ∈ Cb(G, P )
by graph expansion: All nodes v ∈ v(k) are assigned the

new label of v(k), according to xH, see also Fig. 2. Thus,

the hierarchical step can improve the last solution, since

fG(x
(t+1)) = fGt+1

(xH) ≤ fG(x
(t)). (19)

The graph contraction reduces the dimensionality signif-

icantly: There are J ≪ n nodes to be labeled using at most

J labels, w.r.t. BQP(Gt+1, J). If J is small enough, we

can solve BQP(Gt+1, J) quickly to optimality using Gurobi

[23]. Otherwise we use the FW+r solver. The algorithm is

stopped once no new clusters are merged. We demonstrate

the effect of the hierarchical solving scheme FW + r+ h

in Sect. 4.

3. Regression Training

In the following, we introduce spatial and temporal costs,

which describe how likely two detections within the same

and between different frames belong to the same person, re-

spectively. For each cost type, we train a logistic regression

model to obtain weights θ, as described in Sect. 2.1.

For our tracking system, we consider two input sources:

(i) head and (ii) full-body detections (see also Fig. 1).

Head detections. To obtain accurate head detections, we

employ [55] based on Convolutional Neural Networks and

fine-tune it on the MOT16 training set [43].

Full-body detections. We use the full-body detections [19]

as provided by the MOT16 challenge [43].

Relative positioning. In order to obtain meaningful fea-

tures between differently sized boxes, features have to be

formulated respecting the different scales.

To this end, consider a person detection box d with the

positions of lower left, upper left and upper right corners

dll,dul and dur, respectively and ∆(d) := (dll,dul,dur)
⊺

.

For a pixel p ∈ R
2, we obtain barycentric coordinates λd =

(λ1, λ2, λ3)
⊺ of p w.r.t. ∆(d), so that p = λ

⊺

d∆(d) (see

Fig. 3). We fix a standard box dstd. Then, p is mapped to

angle feature
relative position

distance feature

Figure 3. Distance and angle between the expected (blue node) and

the observed (mirrored) head position (green node). Barycentric

coordinates are computed w.r.t. black corners.

pd
std := λ

⊺

d∆(dstd), keeping the relative position as in d.

Now, all subsequent distance measurements are computed

using the mapped position w.r.t. dstd.

Spatial costs. We introduce two features that set the posi-

tion of the head in relation to the full-body box. For a pair

of head and full-body detection, we mirror the head detec-

tion to the left half side of the detection box d, resulting

in the pixel p, thereby making the position robust against

different orientations of the person. From the MOT16 train-

ing data, we learned the expected relative position mh of a

head w.r.t. the standard detection dstd, corresponding to a

full-body detection of the same person. Finally, we obtain

the feature
∥
∥pd

std −mh

∥
∥
2
, measuring distance between the

detected and expected position. We introduce a second fea-

ture which uses the angle between expected and detected

position, with the anchor at the box’s center (see Fig. 3).

We set the spatial costs between detections from the

same detector to a constant high value.

Temporal costs. Temporal costs are defined via correspon-

dences of pixels between two frames. DeepMatching [61]

(DM) provides such assignments, which are more reliable

than spatio-temporal affinities, see [57]. Given rectangles

u and v, DM samples dmu and dmv many pixels in u

and v, respectively. Let cou,v denote the number of cor-

respondences, found by DM. Comparing two heads or two

full-body detections, we use the features
cou,v

dmu
,
cou,v

dmv
and

cou,v

0.5(dmu+dmv)
, as in [57]. As head detections are signif-

icantly smaller than full-body detections, we only use the

temporal head to full-body feature
cou,v

dmu
, where u denotes

the head detection and v the full-body detection. From

the MOT16 training data, we learned the mean ratios φw
m

and φh
m between a head and body detection, w.r.t. width

and height, respectively, if both belong to the same person.

Then, we obtain features ‖φw
m − φw

det‖2 and
∥
∥φh

m − φh
det

∥
∥
2
,

for the observed ratios φw
det and φh

det w.r.t. width and height,

respectively, given a pair of detected head and full-body de-

tection.

4. Experimental Results

In this section, we first analyze the gain both in speed

as well as in tracking performance by our proposed solver.
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Table 1. Solver comparison: While our solver quickly terminates,

Gurobi is not able to finish after 1000 seconds. Entries in brackets

denote the results of Gurobi after that time.

Method Iters Time[sec] Obj Value MOTA

FW 16 0.7 -3060 14.2
FW + r 676 27 -5481 26.8
FW + r + h - 27+0.5 -5925 27.5
Gurobi - 1000 (-5531) 24.9
Gurobi bound - 1000 (-5973) -

Next, we investigate the impact of the detector fusion on

the tracking performance, using the training sequences of

the challenging MOT16 benchmark [43]. This bench-

mark consists of 7 sequences for training and 7 for test-

ing, with footage of crowded scenes. In the last experi-

ment, we show our performance on the test set of the bench-

marks MOT16 and MOT17, where we achieve state-of-the-

art performance. We evaluate our experiments using well-

established tracking metrics [6, 41, 49].

4.1. Implementation Details

In our implementation, we set the temporal costs of two

nodes being more than 9 frames apart to zero. The maximal

number of labels P is fixed to 70. We process a sequence

in batches containing no more than 1800 nodes. We stop

the Frank-Wolfe iterations of Alg.1 in case the duality gap

is below 10−4 or 750 iterations are reached.

4.2. FrankWolfe Optimization

Our first experiment analyzes the impact of our mod-

ifications on the Frank-Wolfe optimization. To this end,

we choose a representative batch of 41 frames from the

MOT16-13 training sequence and perform tracking using

full-body detections only. It consists of 403 detections, so

that we have 28210 decision variables. In Tab. 1 we show

the number of iterations performed by the solver until the

duality gap is below the defined threshold, the runtime, the

final objective value of fG as well as the corresponding

Multiple Object Tracking Accuracy (MOTA).

Our proposed modification FW+r+h improves the ob-

jective value considerably compared to the standard Frank-

Wolfe algorithm FW . This naturally translates to almost

double MOTA accuracy, 14.2% vs 27.5%. Note also that

the objective value comes very close to the global optimum.

The commercial solver Gurobi [23], which uses the branch-

and-bound algorithm is still far away from the global op-

timum after 1000 seconds, while we obtain a much better

energy after only 27.5 seconds. While Gurobi was not able

to compute the global optimum in the given time span, it

delivers at each time step a lower bound (Gurobi bound) on

the optimal value, showing that the optimal solution to the

BQP has an objective value ≥ −5973.

The energy evolution of the different solvers is plotted in
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Figure 4. Minimization performance of each BQP solver and the

bound as given by Gurobi for each moment.

Fig. 4. Here we clearly see where FW stops (red line), how

our modification FW + r improves the energy by a large

margin (blue line), and how finally FW + r + h (green

line) comes even closer to the estimated lower bound (pur-

ple line), as provided by Gurobi. In contrast, Gurobi (yellow

line) has a much slower convergence.

To separate the quality of our solver from the detections,

we further evaluate the performance on ground-truth per-

son detections for 40 frames of each MOT16 training se-

quence in Tab.4.2, where we also report the (relative) dual-

ity gap to the optimal solution (GAP). The results show a

consistent and huge improvement by the hierarchical con-

cept over FW+r. At the same time, the solutions are close to

optimality w.r.t. to the objective value and w.r.t. to tracking

performance. The sequences MOT16-05 and MOT16-11

both contain many partial occlusions that makes it difficult

for the DM features to be correct in any situation, thus re-

sulting in lower tracking scores. However this shows that a

second type of detections (head detections) is necessary for

high quality tracking results. On the other hand, the solver

reaches the perfect result on MOT16-09 (which has far less

occlusions), thereby justifying our solver.

Table 2. FW+r versus FW+r+h (on GT detections).

FW+r FW+r+h
Seq IDF1 ID FM MOTA GAP IDF1 ID FM MOTA GAP

02 87.4 5 1 84.0 6.424 90.9 3 0 90.8 0.428
04 85.0 5 0 73.2 7.506 92.4 0 0 85.8 0.120
05 57.4 10 8 74.2 9.130 70.1 8 7 75.1 0.071
09 80.6 3 0 98.9 5.353 100.0 0 0 100.0 0.000
10 82.0 10 6 80.4 7.410 87.0 7 6 89.4 0.638
11 76.8 13 2 78.2 12.846 89.4 5 3 96.3 0.084
13 87.2 10 2 85.3 10.332 96.3 2 3 96.9 0.434

4.3. Ablation studies on head and body detections

We analyze how our formulation exploits the informa-

tion from two detectors. For this experiment, we use all

MOT16 training sequences with the full-body detections

only (B) against body and head detections (B+H). We use

the body detections provided by the benchmark while we

train the head detector and the regression model on MOT16

training sequences in a leave-one-out fashion.
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In Tab. 3, we report several ablation results with: (i)

different inputs (body and heads) and (ii) different solvers,

namely our proposed FW+r+h (Ours) is compared to: track-

ing heads and bodies independently and then using our

solver to fuse them. The tracklets are computed by our sys-

tem (Ours-fusion) and from LP2D [39] (LP2D-fusion). We

use the affinities as defined in Sect.3, but set the spatial and

temporal costs between two tracklets that originate from the

same detector to a constant high value, as the tracklets are

already separating the persons (Sect.3*). We further pro-

vide the quality of the head trajectories, which we evaluated

on the head ground truth boxes.

Table 3. Ablation experiments on MOT16 training sequences.

Feature Affinities Solver SolverID MOTA MT FP FN IDs

H 2D dist LP2D 1 14.9 70 14829 50991 472
H Sect.3 Ours 2 16 70 14168 50959 331

B 2D dist LP2D 3 31.7 44 3557 71332 467
B Sect.3 Ours 4 33.0 76 11949 61603 378
B [16] GMMCP [16] 5 33.7 46 4053 68675 499

B+H Sect.3* LP2D − fusion 6 33.0 54 3501 70163 358
B+H Sect.3* Ours− fusion 7 34.2 87 11852 60401 376
B+H Sect.3 FW 8 31.1 75 5315 69563 1207
B+H Sect.3 FW + r 9 33.4 82 6497 66238 807
B+H Sect.3 Ours 10 38.2 86 4972 62935 372
B+H Sect.3 NLLMPa [40] 11 37.4 86 4954 63831 336

Our system performs comparable on full-body detec-

tions to the SolverID 5, using their defined affinities. By

using the two detectors, our system significantly improves

almost all relevant tracking metrics, justifying our tracking

framework (SolverID 10 vs 4). Due to the coupling of head

detections with full-body detections, the number of false

positives (FP) is halved and the system is less prone to par-

tial occlusions, which results in an increase of the number of

mostly tracked (MT) trajectories. Overall, the MOTA score

increases by more than 5pp (percentage points). Performing

the fusion directly on the input detections is clearly more ef-

fective than using initial tracklets. SolverID 6 and 7 use our

solver and precomputed trajectories from SolverID 3 and 4,

where the gain is no more than 1.3pp, justifying our fusion

concept. Using another heuristic solver [40] (SolverID 11)

performed worse on the fusion than FW+r+h, using exactly

the same graph. The comparison SolverID 8-10 show the

improvement on MOT16train due the regularizer and the

hierarchical step (up to 7.1 pp on the MOTA score).

4.4. Benchmark Evaluation

We evaluate the tracking performance of our formu-

lation with body and heads on the benchmarks MOT16

and MOT17 with the full-body detections provided by the

benchmarks. Due to space constraints, we show some of

the best performing published trackers in Tab. 4, as well as

the worst performing tracker. For the full table of results,

please visit the benchmark’s website.

Our system creates slightly higher identity switches.

This can be resolved in future work with more advanced

features that include a foreground/background mask in each

detection or in a post-processing step where tracklet consis-

tency is checked, though this is beyond the scope of this

paper. However, our proposed tracker performs on par with

state-of-the-art in terms of tracking accuracy on MOT16 and

sets a new state-of-the-art on MOT17. Furthermore, the

tracker won, together with [30], the MOT 2017 Tracking

challenge at the CVPR 2017 1. Note that the MOTA met-

ric is regarded as the most representative metric [38]. With

our proposed formulation, we have the lowest ML (mostly

lost) score within all trackers in both benchmarks, showing

that we can recover more trajectories than any other tracker.

Also our MT score is highest on the MOT16 benchmark and

ranks second on the MOT17 benchmark, demonstrating that

we recover very long trajectories. In contrast, the GMMCP

model approach is not able to produce long-term consistent

trajectories possibly due to erroneous initial tracklets, that

could not be connected (we used the official code of [16]

to produce the results). We note that the LMP tracker uses

very advanced and stable convolutional neural network im-

age features that can reliably link boxes over 200 image

frames, thus resulting in a better MOTA score.

5. Conclusion

We presented a global formulation for multi-detector

multi-target tracking, and showed its state-of-the-art perfor-

mance with head and full-body detectors. We proposed to

cast the problem into a quadratic program, which is solved

efficiently via the Frank-Wolfe algorithm. We improved the

solver in three ways; (i) regarding time by providing com-

plete and efficient computation of the optimal step size and

(ii) regarding minimization by a reformulation of the objec-

tive function, resulting in better discrete solutions. Finally

(iii), we showed that our hierarchical solving scheme im-

proves a feasible solution, often close to optimality and yet

is easy to integrate and fast.

The detector fusion delivered superior results when com-

pared to single detector tracking, thus proving the bene-

fits of our formulation. The overall performance on two

challenging tracking benchmarks showed state-of-the-art

results.

1https://motchallenge.net/MOT17_results_2017_

07_26.html

Table 4. Public tracking results on MOT16 and MOT17.

Method Rank MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ ID↓
MOT16

LMP [58] 1 48.8 51.3 18.2 40.1 6654 86245 481
Ours 2 47.8 47.8 19.1 38.2 8886 85487 852
NLLMPa [40] 3 47.6 47.3 17.0 40.4 5844 89093 629
AMIR [50] 4 47.2 46.3 14.0 41.6 2681 92856 774
NOMT [15] 5 46.4 53.3 18.3 41.4 9753 87565 359
GMMCP [16] 15 38.1 35.5 8.6 50.9 6607 105315 937
DP NMS [47] 23 26.6 31.2 4.1 67.5 3689 130557 365

MOT17

Ours 1 51.3 47.6 21.4 35.2 24101 247921 2648
MHT DAM [31] 2 50.7 47.2 20.8 36.9 22875 252889 2314
EDMT17 [13] 3 50.0 51.3 21.6 36.3 32279 247297 2264
GMPHD KCF [32] 6 30.5 35.7 9.6 41.8 107802 277542 6774
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