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Abstract

With the fast advancements of AICity and omnipresent

street cameras, smart transportation can benefit greatly

from actionable insights derived from video analytics. We

participate the NVIDIA AICity Challenge 2018 in all three

tracks of challenges. In Track 1 challenge, we demon-

strate automatic traffic flow analysis using the detection and

tracking of vehicles with robust speed estimation. In Track 2

challenge, we develop a reliable anomaly detection pipeline

that can recognize abnormal incidences including stalled

vehicles and crashes with precise locations and time seg-

ments. In Track 3 challenge, we present an early result of

vehicle re-identification using deep triplet-loss features that

matches vehicles across 4 cameras in 15+ hours of videos.

All developed methods are evaluated and compared against

30 contesting methods from 70 registered teams on the real-

world challenge videos.

1. Introduction

With the advent of ubiquitous camera systems and new

breakthroughs in artificial intelligence, video analytics can

make public transportation safer, smarter and cheaper.

Transportation is fundamental to economic growth and

quality of life. With the arising development of Inter-

net of Things (IoT), 5G network, AI cloud services, and

autonomous driving cars, intelligent systems these days

are producing overwhelming impacts in smart transporta-

tion. Video data collected from a city-wide traffic network

can be automatically processed, to provide valuable traffic

statistics that can improve congestion control, safety, ac-

cident recovery, and transit infrastructure planning. The

need of video traffic analytics is pervasive. We partici-

pate the NVIDIA AICity Challenge 2018 (AIC18, www.

aicitychallenge.org) in this regard.

AIC18 consists of three tracks of challenges. Track 1

challenge aims to demonstrate automatic traffic flow anal-

ysis based on the detection and tracking of vehicles with

speed estimation. Track 2 challenge requests anomaly de-

tection, i.e. finding traffic incidences such as stalled vehi-

cles or crashes. Track 3 challenge focuses on vehicle re-

identification across multiple sites in long hours of videos.

This paper developed an automatic traffic monitoring sys-

tem that integrates an ensemble of video analytic methods

for the three challenge tracks.

While visual object detection and tracking have been

studied and evaluated extensively [8, 20], especially with

the breakthroughs of the deep neural networks (DNN), the

applications to real-world traffic monitoring are still im-

mature [3, 28]. Most existing research works focus on

object detection from a single image [8] using standard

datasets (COCO, ImageNet) or traffic-specific ones (AIC-

ity’17 [21]). Fewer works provide an end-to-end evaluation

of the detection-by-tracking paradigm, e.g. UA-DETRAC

[25]. Even so, an evaluation of how well visual tracking can

apply to real-world vehicle speed estimation is still lacking.

In Track 1 of AIC18 (§3), we develop an automatic traf-

fic flow analysis pipeline that can detect and track vehicles

with reliable speed estimation. Our system can run on-line

traffic analysis from live video feeds, using the state-of-the-

art vehicle detectors and a robust tracker with site calibra-

tion. The developed technology can apply to traffic condi-

tion analysis, including traffic volume and flow estimation,

congestion, queue length, turn ratio, level of service (LOS),

and land occupancy analysis.

Traffic incidents and anomaly has high impact in urban

traffic dynamics [9], as car accidents or stops can largely af-

fect highway safety and mobility. We focus on identifying

anomalies including car crashes and stalled vehicles. Traf-

fic anomaly detection from real-world videos is challenging

due to several reasons — low resolution, low contrast, cam-

era vibrations, camera pan-tilt-zoom change, high-density

traffic, weather conditions (such as snow), lighting condi-

tion change (day vs. night), and other factors in combina-

tions can easily downgrade the performance of the main-

stream video recognition methods.

In Track 2 of AIC18 (§4), we develop a probabilistic

rule-based approach for traffic anomaly detection. Our ap-

proach is simple, effective and training-free, and can handle
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videos with large variations in the context. The developed

technology can aid highway safety evaluation, e.g. to auto-

matically estimate level-of-safety service (LOSS) based on

traffic crash.

Vehicle re-identification in unconstrained images is

a frontier and remains open [17]. While person re-

identification has attracted intensive attention in the re-

search community, vehicle re-identification is still over-

looked. Most existing methods only relies on simple ap-

pearance features, which cannot distinguish vehicle makes,

models, or years [16].

In Track 3 of AIC18 (§5), we combine a recent triplet-

loss re-identification method [7] with vehicle tracking de-

scribed in §3 to develop an vehicle re-identification pipeline.

Our method extract deep embedding features using a mod-

ified ResNet-50 that are fine-tuned on the VeRi dataset

[17, 16]. We demonstrate results that recalls vehicles with

similar appearances across all 4 sites in over 15+ hours of

contest videos. The developed technology can be used in

travel time estimation and surveillance monitoring.

Our system can provide valuable information for trans-

portation study in three aspects: (1) Improve emergency

response time (e.g. to increase arrival time of the ambu-

lances and law enforcement to the accidents by rerouting

traffic). (2) Improve safety conditions by estimating time-

to-collision (TTC) and post encroachment time (PET) to

warn potential crashes. (3) Detect abnormal conditions in-

cluding stopping vehicles, unwanted turns, or dropped ob-

jects.

Subsequent sections will provide details of our method

and the evaluation results on the three AIC18 Tracks.

2. Background

Traffic flow analysis has been studied extensively for

intelligent transportation systems (ITS) using both (1) in-

vasive methods including tags, under-pavement coils, and

(2) non-invasive methods such as radars or cameras [3]. In

the first category, the conventional inductive-loop detector

(ILD) is probably the most invested technology that can pro-

vide traffic volume and occupancy estimation [10]. As the

raise of computer vision and AI, video analytics can now be

applied to the ubiquitous traffic cameras, which can gener-

ate vast impact in ITS and smart city. We focus the survey

in video analytic methods for smart transportation in the rel-

evance of the three tracks of AIC18.

Vehicle speed estimation from street cameras can be used

to detect traffic jams or speed violations. Most existing ve-

hicle speed estimation methods are based on motion track-

ing. Optical flow and pyramidal implementation are applied

in [12] to track vehicles with speed estimation. Gaussian

Mixture Model (GMM) are used in [26] to detect vehicles

in consecutive frames for speed estimation. KLT optical

flow are used to track vehicles, and license plates are lo-

cated via text detection in [19]. These methods rely on sim-

ple foreground/background modeling for vehicle detection,

and assume camera calibration is known.

Traffic anomaly detection can be performed using radar

sensors [9] or video cameras [22, 23]. While Doppler radar

can capture target speed, it is not always accurate and can-

not handle large traffic volume. Video camera based meth-

ods are scalable on the other hand, however the analytical

algorithms are hard to develop.

Most existing works for video anomaly detection focus

on human behavior or activities [15, 18]. Basharat et al. [2]

exploit object tracks to identify abnormal motions, where

the tracks can be noisy due to occlusions. To overcome this

disadvantage, [22, 23] develop a probabilistic model based

on low-level descriptors of video frames to identify abnor-

mal video frames.

Vehicle re-identification is emerging due to improvements

in person re-identification. Its impact is growing in smart

transportation and surveillance. Conventional intrusive

methods such as the in-vehicle tag, cellular phone, or GPS

can be used to provide unique vehicle IDs. For controlled

settings such as at a toll booth, license plate recognition

(LPR) is probably the most well-developed technology for

accurate identification of individual vehicles. Nonetheless,

license plates are subject to change and forgery, and LPR

cannot reflect salient specialties of the vehicles such as

marks or dents. Non-intrusive methods such as image-base

recognition have high potential and demand. However, even

the latest developments are still far from mature for practical

usage. Most existing image-based vehicle re-identification

methods are based on vehicle appearance including shape,

texture and color [27]. How best to recognize subtle dis-

tinctive features such as the vehicle make, year model, etc.

are still an open question.

Liu et al. [17] fuse deep low-level features and high-

level semantic attributes for vehicle re-identification. The

group sensitive triplet embedding (GSTE) [1] is a deep met-

ric learning method that can recognize and retrieve vehi-

cles, where the intra-class variance is elegantly modeled by

incorporating an intermediate representation between sam-

ples. Shen et al. [24] proposed a two-stage deep path pro-

posal framework that incorporates spatio-temporal informa-

tion for re-identification regularization. The deep relative

distance learning [13] exploits a two-branch deep convolu-

tional network to project raw vehicle images into an Eu-

clidean space, where distance can be directly used to mea-

sure the similarity of arbitrary two vehicles.

3. Track 1 – Traffic Flow Analysis

The proposed traffic analysis method consists of an one-

time site calibration (§3.2), an on-line pipeline for vehicle

detection (§3.1), tracking (§3.3), speed estimation, and off-

line speed refinement (§3.4). Fig.1 shows example results.
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Figure 1. Track 1 – Traffic Flow Analysis at (Left) a highway scene at Loc1 1 and (Right) a street scene at Loc4 1. Robust speed

estimation in MPH is shown in the color bar in the first row of the vehicle box and in the cyan-color graph bar over time. The second

row shows the noisy instantaneous speed. Track length and confidence are shown in the third row. The top of each box shows detection

ID/confidence and the track ID. In the highway scene the graphs are flat. In the street scene the graphs are initially 0 and gradually increase

for cars awaiting for traffic lights.

3.1. Vehicle Detection

We perform per-frame vehicle detection using the re-

cent Faster R-CNN inception ResNet v2 atrous model from

Google Object Detection API [8], due to its superior per-

formance (mAP 0.36 on the COCO dataset). Considering

GPU memory limitation, we resize the input 1920 × 1080

HD image to 960 × 540, and generate 500 proposals in the

region proposal network (RPN). The network produces 100

detections out of a frame.

Training is perform using the UA-DETRAC dataset

[25] 1. We use a COCO pre-trained model as initialization

to facilitate the training.

At run time, we set the confidence threshold to 0.1 to

generate detection outputs. Non-max-suppression of de-

tections is performed within every frame, based on the

intersection-over-union (IoU) of detection boxes, to remove

redundant detections with low confidence that are signif-

icantly overlapping with other ones. The detection runs

about 0.5 FPS on a workstation with GTX 1080 Ti GPU.

3.2. Camera Calibration

A one-time camera calibration is performed at each fixed

camera view of the four AIC18 challenge sites. We follow

a standard landmark-based camera calibration approach [5,

Ch.7] to compute the camera projection matrix Pmat, by

minimizing the landmark projection square errors using a

direct linear transformation (DLT) solved by SVD.

Since the AIC18 organization does not provide landmark

measurements in the physical coordinates, we use Google

map to manually specify landmarks and visually estimate

the 3D coordinates of the landmarks. For the street views

of Loc3 and Loc4, salient street objects such as the pedes-

1 The UA-DETRAC dataset http://detrac-db.rit.albany.

edu/ is a real-world multi-object detection and tracking benchmark con-

sisting of 10 hours, 100 sequences of videos with high quality annotations

and large environmental variabilities.

Figure 2. Site calibration to estimate Pmat for Loc1 1. A set

of 24 landmark points in green (ground) and red (at estimated

heights) are manually specified. The origin, 3D (x, y, z) axes, and

the 1x1m color grid meshes are visualized on the ground and at

5m height to provide visual justification of the calibration.

trian crosswalk and traffic lights can provide accurate 3D

position estimates. In this case, 8 to 10 landmarks are suffi-

cient to calculate Pmat. For the highway scenes of Loc1 and

Loc2, there exists less object to pinpoint the 3D coordinates

(especially the object height). It takes about 20 to 30 land-

marks to estimate a good Pmat. Fig.2 shows an example

calibration result.

3.3. Vehicle Tracking

We follow a tracking-by-detection paradigm, by project-

ing each vehicle detection to the ground plane (via Pmat),

and perform Kalman filter on the projected trajectories.

Since mainstream street videos are mostly high-frame-rate,

simple method such as the intersection over union (IoU) can

effectively associate vehicle detections to existing tracks.

Our method tracks multiple vehicles concurrently by moni-

toring and updating the detection and tracker confidences.

Explicit consideration of confidence scores can improve

tracker creation/detection and disambiguate uncertainties.

Detections are associated to tracks following a standard

Hungarian (Munkres) assignment [14]. Given a set of de-
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tection boxes {di} and a set of trackers {tj}, where i is the

index of detections, and j is the index of trackers. The as-

sociation cost is a matrix [i, j] calculated using the IoU of

the detection box bdi and tracker box btj , weighted by the

detection conference cdi and tracker confidence ctj . All con-

fidence scores take value between 0 and 1.

Specifically, we denote the area of intersection bdi ∩ btj as

α. Denote the relative complement of the detector box bdi
and the tracker box btj (the portions not in the intersection)

as rdi and rtj , respectively. 2 Denote the area of rdi as δ, and

the area of rtj as τ . The IoU score φIoU calculates the area

ratio between the intersection and union of the boxes bdi and

btj as:

φIoU [i, j] =
α

α+ δ + τ
· cdi · c

t
j . (1)

The detection-tracker association is established accord-

ing to the Hungarian assignment of the best pairs from the

score matrix φIoU [i, j]. In addition to IoU, we also ensure

that the complement areas (which reflect IOU association

errors) are not too large. These IoU association errors are

estimated by:

ǫd =
δ

α+ δ
· cdi , ǫt =

τ

α+ τ
· ctj . (2)

Specifically, the following threshold rules must be satisfied

for detection-tracker association: φIoU > θIoU , ǫd < θd,

ǫt < θt, where θIoU = 0.3, θd = θt = 0.5.

The tracking algorithm operates in an on-line fashion

(i.e. not referring to future video frames), which is impor-

tant for real-world applications. We continuously update

of the tracker confidence {ctj} when linking with detection

boxes {cbi}. The tracker update in each new frame can result

in three cases:

• Matched detections are added to the trackers and each

updated tracker tj performs a Kalman correction step.

The tracker confidence ctj increases by 0.1.

• Unmatched detections are used to create a new (puta-

tive) tracker with low initial confidence ct = 0.1.

• Unmatched trackers undergoes a Kalman prediction

step (with no observation update). The tracker con-

fidence ctj is reduced by 0.1.

Tracker with confidence dropping below 0.5 is considered

inactive, while its update is still maintained, such that it can

possibly get back to a longer active track. Tracker with con-

fidence dropping down to 0 is removed.

3.4. Speed Estimation

On-line speed estimation. Due to inaccuracy of detec-

tion boxes (i.e. not bounding the vehicle exactly), instanta-

neous speed estimation is not accurate. Also initial speed

2 bdi = (bdi ∩ btj) ∪ rdi , and btj = (bdi ∩ btj) ∪ rtj in a Venn Diagram.

Figure 3. AIC18 Track 2 videos provide real-world challenges for

anomaly detection: glare, occlusions, day/night views, high traffic

volume, low contrast, camera vibration and compression artifacts.

Figure 4. Estimated traffic flow density on two video sequences:

(Top) original frames. (Bottom) motion flow densities.

estimation can exhibit a “damping” effect after Kalman fil-

tering. We apply temporal median filtering (of size 19)

to smooth out the noisy trajectory estimations. Gaussian

smoothing (of size 10) is applied to further smooth the

speed estimation over time.

Off-line speed refinement. We apply further off-line

smoothing and removal of extreme vehicle speed estima-

tions to optimize AIC18 contest results.

4. Track 2 – Traffic Anomaly Detection

Traffic anomaly detection such as identifying stopping

traffics or finding incidents can provide great assistance for

accident reactions. However, video anomaly detection can

be a challenging problem, that the aim is to distinguish ab-

normal frames or objects. In this work we focus on anomaly

in traffic videos including stopping vehicles or crashes that

are distinct from normal traffic flows.

The AIC18 Track 2 contest dataset are real-world videos

provided by the U.S. Department of Transportation, which

contains wide range of locations, viewpoints, under various

weather/lighting conditions, seasons and day/night time. As

Fig.3 illustrates, many sequences can raise challenges to the

mainstream computer vision methods.

Since AIC18 organization does not provide training data
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Figure 5. (Left) A stalled vehicle outlined in a red block. (Right) The foreground speed and area feature histograms of the block over time.

Anomaly starts at frame 17,000, where a large foreground with low speed are detected for an extended period of time.

Figure 6. Track 2 – Anomaly Detection results. Road traffic is

masked out using the proposed traffic optical flow method. Green

boxes show the detected anomaly blocks.

or labels for anomalies, and it is hard to design machine

learning methods that can generalize well in all cases. We

propose a probabilistic rule-based modeling approach for

anomaly detection. We avoid explicit detection and track-

ing of individual vehicles, since vehicles of anomaly can

appear to be tiny in the view, and they are often occluded

by the passing vehicles. Considering the large viewing and

environmental varieties, foreground modeling segmentation

and optical flow methods are reliable and suitable for identi-

fying the passing vehicles and the lands with normal traffic

flow. The stalled vehicles of interest can be robustly identi-

fied by foreground modeling in a large time window. In ad-

dition, video stabilization can be applied to remove camera

vibrations. Land fitting can be estimated from the passing

vehicle flow, and homography can provide an good scale

estimate for far-away vehicles.

Identify traffic lanes for anomaly ROI extraction. In

a normal traffic video, vehicles can exhibit typical move-

ments including continue moving, turning, changing lanes,

making U-turns, stopping for traffic lights, etc. The first

step of our anomaly detection method is to bypass these

normal movements. We observe that in the contest videos,

anomaly almost always occurs at the road side for stalled

vehicles, and for crashes the vehicles eventually stopped at

the road side. We propose to identify and mask out the traf-

fic lands using motion flow, such that the anomaly region of

interest (ROI) can be defined for each view.

To estimate the motion flow for traffic land masking, we

apply the foreground segmentation [11] to each frame to

identifying short trajectories of moving objects. Aggregat-

ing all such trajectories over time highlights the traffic lands

with frequent motions, as shown in Fig.4. We mask out the

regions with large motion flow, and calculate the side road

ROI. Although some backgrounds such as the lawn or sky

can remain in this ROI, this approach effectively eliminate

most traffic flow that the search of the abnormal stopping

vehicles is greatly simplified.

Block-based features for stalled vehicle detection. We

identify stalled vehicles in the anomaly ROI using a grid

based approach. Specifically, we divide the image ROI into

small blocks, from which we extract two types of features. 3

We detect stalled vehicles based on two rules: (i) the fore-

ground should stay intact for an extended period of time,

and (ii) the motion speed should be close to zero. Thus, the

detection is performed on each block based on two features:

foreground area size and motion speed.

We apply foreground segmentation in the masked ROI to

calculate the foreground area Ab of each block b,

Ab =
∑

1(fp > θf ), (3)

where fp is the foreground value of pixel p in block b, and

θf is the foreground threshold.

We estimate the motion speed using standard optical

flow [4]. For each block b, we calculate the average opti-

cal flow magnitude of each pixel as its speed Sb:

Sb =
1

N

N∑

p=1

||(vxp , v
y
p)||2, (4)

where (vxp , v
y
p) is the optical flow in the x and y directions

for pixel p of block b. After calculation all frames, we can

get the area histogram and speed histogram shown in Fig.5.

Handle perspective scale changes. To overcome per-

spective scale change of the views, we perform scale recti-

3 As each test video contains more than 26, 000 frames, to reduce anal-

ysis complexity, we use non-overlapping blocks of 40× 40 pixels.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Track 3 – Vehicle Re-identification results. Each 4-tuple shows a matched vehicle that appears across the 4 test sites.

fication on the block feature histograms, under an assump-

tion that the image scanlines are proportional to the ground-

plane scale change. We multiply a proper scale factor to

enlarge the area and speed features for far-off blocks, such

that the features of the blocks closer to the top of the image

are magnified linearly.

Stalled vehicle detection. In the area and speed his-

tograms, a stalled vehicle in any block can be identified by

checking for any block with (1) Ab > θA and (2) Sb < θS ,

where θA and θS are threshold parameters. To ensure re-

liable anomaly detection, we check for the total time lapse

of the frames that fulfill conditions (1) and (2). Let Gb de-

notes such anomaly time lapse (in number of frames). We

enforce time lapse condition Gb > θG, such that normal

traffic vehicles including the stopped cars at traffic lights

will not trigger the stalled vehicle event. A median filter-

ing is performed on the histograms prior to the condition

thresholding to eliminate effects caused by camera shaking

or false foreground. Parameters θS , θA and θG are common

to many videos, which are manually selected based on the

video quality, light conditions and traffic density.

To further refine the anomaly candidates, we first search

if there are adjacent candidates that have a similar anomaly

time. If so, we combine the two candidates into one block.

All candidate blocks are ranked by Gb, and the top candi-

date is output as the event of anomaly in the video. Fig.6

shows examples of detected anomalies.

5. Track 3 –Vehicle Re-identification

With the advances of deep neural networks, the ability

to extract visual signature or learning an embedding of the

signatures enables new advances in vehicle identification.

The AIC18 Track3 contest is extremely challenging that

there are 15 long hours of videos recorded across 4 test sites.

Any vehicle can appear multiple times, anywhere, anytime,

across the entire video set. Vehicle license plates are not

always visible. The only assumption we can make is that

the vehicles of interest must appear at all 4 sites at least

once. To deal with this challenge, we propose the following

re-identification pipeline:

1. Perform vehicle detection tracking as in §3 to select the

largest image of each vehicle (with supposed highest

quality) in each video.

2. Extract deep features of each vehicle image for match-

ing, as described in §5.1.

3. Perform pairwise matching of vehicles across videos

and two sites, while retaining a manageable candidate

pool C2 of top n2 = 200 matching pairs of vehicles.

4. Extend the matching from C2 to each remaining videos

and across three sites, keeping a pool C3 of top n3 =
300 triplets of matches.

5. Extend the matching from C3 to each remaining video

and across four sites. Fine-select the top 100 vehicle

quadruplets as output.

Fig.7 shows qualitative visual evaluation of our re-

identification method.

5.1. Pairwise Vehicle Reidentification

We extract deep re-identification features for each ve-

hicle based on the triplet loss [7], where a convolutional

neural network (CNN) is trained to extract features in an

embedding space. The triplet loss can better optimize the

embedding metric learning, such that similar identities are

closer to each other than dissimilar ones.

We use the “VeRi” vehicle re-identification dataset [17,

16] 4 to train our triplet-based vehicle feature extractor.

4 https://github.com/VehicleReId/VeRidataset.

66

https://github.com/VehicleReId/VeRidataset


VeRi contains 576 vehicles with 37, 781 in the training set,

and 200 vehicles with 11, 579 images in the testing set.

We use the ResNet-50 [6] with pre-trained weights. The

last layer is removed and two new fully-connected layers

are added in our CNN model. The first layer contains

1024 units, followed by a batch normalization and ReLU.

The second layer contains 128 units, which serves as the

final embedding feature dimension of each vehicle. The

learned features can successfully match and distinguish sev-

eral properties of the vehicles, including the shape of the

windows, head and tail lights, the number of wheels, etc.

6. Challenge Results and Discussions

All contest dataset and evaluation are provided by the

challenge organization www.aicitychallenge.org.

Track 1 Traffic Flow Analysis contest data contain 27

HD 1920×1080 videos recorded in 4 sites, where each is

1 minute long at 30 FPS. The evaluation score S1 is cal-

culated by multiplying the vehicle detection rate Dr by a

speed estimation accuracy score, which is calculated by a

normalized root-mean-square error (RMSE) of speed esti-

mations Ns
rmse. Specifically,

S1 = Dr · (1−Ns
rmse), (5)

where

Ns
rmse =

es − emin

emax − emin

. (6)

The speed RMSE es ranges from 0 to ∞, and the the min-

max normalization reduces the range to between 0 and 1,

where the emax and emin are the minimum and maximum

RMSE values among all participant team submissions. The

detection rate Dr is calculated by comparing the detection

bounding box overlap with ground-truth boxes and confi-

dence measures, where the value ranges from 0 to 1. Note

that only a few ground-truth vehicles are available that pro-

vides accurate speed measures using GPS data for the con-

test, so the evaluation is not performed thoroughly.

We obtain detection rate Dr = 0.8519 and es = 10.3405
mile-per-hour (MPH) from the challenge evaluation.

Track 2 Anomaly Detection contest data contain 100

800x410 real-world traffic videos provided by the US De-

partment of Transportation, where each is 15 minute long at

30 FPS. The videos include large variabilities of traffic con-

ditions (jammed vs sparse, branching/merging, queuing),

weather conditions, camera motion (fixed vs. PTZ), view

quality, and lighting conditions (day vs. night). The evalu-

ation score S2 is calculated by multiplying the F1-score F a
1

of the anomaly detection precision-recall and a normalized

RMSE of detected anomaly time,

S2 = F a
1
· (1−Na

rmse), (7)

where the normalized RMSE is calculated from the

anomaly starting time RMSE ea, similarly as in Eq.(6).

We obtain F a
1

= 0.6286 and RMSE ea = 48.3406 sec

from the challenge evaluation.

Track 3 Vehicle Re-identification contest data contain

15 HD 1920x1080 videos of similar views as in Track 1,

each is around 0.5 to 1.5 hours long at 30 FPS. Track 3

test videos are relatively long for vehicle re-identification,

as there could be up to 5 to 10 thousands of passing vehi-

cles per hour on a highway, which casts the re-identification

search exhaustive. The evaluation score S3 is calcu-

lated from the average of track detection rate Dt
r and re-

identification precision Pr,

S3 = (Dt
r + Pr)/2. (8)

Dt
r is the ratio of the correctly identified ground-truth ve-

hicle tracks and the total number of ground-truth vehicle

tracks. Details are specified in the challenge website.

Due to the extremely challenging setting of the Track

3 evaluation, unfortunately our method has recalled some

ground-truth vehicles, however it did not successfully re-

acquire them across 4 sites. We obtain Dt
r = 0.0 and Pr =

0.0041 from the challenge evaluation.

We note that the evaluation of Track 3 contest is some-

what biased based on such few number of ground-truth con-

trolled vehicles. Since the evaluation did not consider pos-

sibilities that there exists identical or similar vehicles dur-

ing the long hours of videos, the vehicle re-identification is

only evaluated partially. Nonetheless, our result shows ex-

actly the current limitations of the state-of-the-art computer

vision methods when facing with practical applications of

vehicle re-identification in the real-world. There is still vast

room for improvements and future developments for AI in

smart transportation.

6.1. Results from AIC18 Challenge Evaluation

Our results are ranked 11-th (out of 13 submitted teams)

in Track 1 challenge with S1 score of 0.6226. We rank the

3rd place (out of 7 submitted teams) in Track 2 challenge

with S2 score of 0.4951 in the AIC18 leaderboard. We rank

the 4-th (out of 10 submitted teams) in Track 3 challenge

with S3 score of 0.0074.

7. Conclusion

We presented our participation to the NVIDIA AICity

Challenge 2018 with approaches and results. Our method

is simple and effective that can detect and track vehicles

in real-time with speed estimation for traffic flow analy-

sis. Our probabilistic rule-based approach can recognize

stalled vehicles for traffic anomaly detection. Finally, we

show an early result of multi-cam vehicle re-identification
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using deep progressive searches with early jump-out. The

developed algorithms can effectively improve public trans-

portation efficiency, safety, and management. Source code

will be make public upon publication of this paper after the

challenge is concluded.

Future work include continue refinement of the algo-

rithms on a larger real-world dataset and live beta sites.
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