

Abstract

Estimating traffic flow condition is a tough but beneficial

task. In Intelligent Transportation System (ITS), many

applications have been done to collect and analyze traffic

data. However, the surveillance video data are still only

used for engineer’s manual check. To better utilize this data

source, traffic flow estimation from surveillance camera

should be explored. This study uses Faster Regional

Convolutional Neural Network (Faster R-CNN) with

ResNet 101 as the backbone to achieve multi-object

detection. Then a tracking algorithm based on histogram

comparison is applied to link objects across frames.

Finally, this study uses warping method to convert vehicle

speeds from the pixel domain to the real world. The results

show that estimating vehicle speed at intersection is more

challenging than in uninterrupted flow.

1. Introduction

In Intelligent Transportation System (ITS), traffic data is

the key to conduct research and applications. Current

techniques have made lots of data available for traffic flow

monitoring, including using roadside radar sensors on

highways, inductive loop detectors at intersections, GPS

data collected from probe fleet, etc. Besides those devices,

surveillance cameras are deployed widely but have not been

used as a mean of traffic data collection yet. Turning the

usage of camera from current manual check only to

automatic monitoring would be a beneficial challenge.

Agencies could not only use surveillance camera as visual

validation of incidents, but also as speed data collection and

traffic flow monitoring. Thus, this study focuses on

estimating vehicle speeds from video data, starting from

multi-object detection, tracking to speed conversion, which

could demonstrate the potential of turning a camera into a

sensor.

To estimate the vehicle speed, the first task is to correctly

detect the vehicles showing in the video. The object

detection has been studied with computer vision techniques

for years. Traditional computer vision techniques tend to

analyze the object’s contour, contrast and other features to

detect the object. However, with the successful

implementation of artificial intelligence technology,

especially the deep convolutional neural network (CNN),

the object detection has been improved. The first deep CNN

used for image classification was developed by Alex

Krizhevsky [1] in ImageNet Large Scale Visual

Recognition Challenge (ILSVRC-2012). Known as

AlexNet, it is deeper and has more filters than previous

LeNet [2]. It outperformed all other methods in the

challenge with a large margin. After the success of

AlexNet, more CNN variants (ZFNet [3], GoogLeNet [4],

VGGNet [5], ResNet [6]) are developed in object detection

domain.

Recently, researchers also found that using regional

proposals before using CNN to extract features could

improve the performance on object detection [7]. To

overcome the long computational time of R-CNN, several

improvements have also been made. Fast R-CNN [8] and

Faster R-CNN [9] are developed to speed up the

computation. This study uses Faster R-CNN with ResNet

101 model to achieve multiple vehicle detection.

The next for speed estimation is tracking. Multi-object

tracking (MOT) is an important task in video processing.

Many studies have been done in both batch and online

manner. And many applications have also been made to

implement MOT. For example, OpenCV provides different

kinds of tracker from different algorithm, such as, MIL,

BOOSTING, TLD, KCF, etc. [10]. These methods have

their own advantages and disadvantages. For this specific

challenge, I propose a histogram-based tracking algorithm

to solve the MOT in traffic estimation. Details will be

discussed in section 3.2.

The last step for traffic speed estimation is converting the

speed obtained from the pixel domain to the real world.

Camera calibration is a tough task in image processing,

especially when there is no enough meta information about

the camera, such as in this challenge. Image warping is a

way to convert the perspective from one way to another.

Due to the limitation of time in this challenge, a warping

method by linear perspective transformation was, with each

testing location manually calibrated.

Traffic Speed Estimation from Surveillance Video Data

For the 2nd NVIDIA AI City Challenge Track 1

Tingting Huang

Institute for Transportation, Iowa State University

2711 S. Loop Dr., Suite 4700, Ames, IA

thuang1@iastate.edu

161

2. Data description

The test data for Challenge Track 1 is collected by

challenge organizers from 2 highway interchanges and 2

signalized intersections located in urban area in state of

California. The locations and some characteristics are

summarized below.

Number Type Description Coordinates

1 Highway
I-280 @

Winchester

37.316788,

-121.950242

2 Highway I-280 @ Wolfe
37.330574,

-122.014273

3 Intersection
San Tomas @

Saratoga

37.326776,

-121.965343

4 Intersection
Stevens Creek

@ Winchester

37.323140,

-121.950852

Table 1. Location information of data collected

Each location has multiple video clips, and each clip lasts

1 minute long with 30 fps. The resolution is 1920×1080 for

each video. All the cameras have overhead view with no

additional information on mounting height and angle.

3. Methods and results

The approach to traffic speed estimation in this challenge

is outlined in Figure 1. Details in different phases are

discussed as follows.

Figure 1. Speed estimation pipeline.

3.1. Object detection

Due to the lack of training data in this challenge, a pre-

trained model has been selected for object detection. By

investigating the performance of the pre-trained models

from TensorFlow object detection API [11][13], the Faster

R-CNN with ResNet 101 as the backbone trained on COCO

dataset [12] provides a fair inference speed and relatively

high performance on the challenge dataset. Among 80

classes in COCO, car, bus and truck are the object of

interest in this study.

All frames are extracted from the 27 evaluation videos

and the inference frozen graph (2017-11-08 version) is then

applied to detect objects in each frame. The inference speed

is about one frame per second on one NVIDIA TITAN Xp

GPU. The false positives in the detected bounding boxes

were reduced by a group filtering algorithms: a) class filter,

b) confidence score filter, c) duplicated detection filter, and

d) outlier filter. As mentioned above, only class 3, 6 and 8

in COCO are vehicles. Thus, class filter will only remain

the results from those classes. Confidence scores are

generated during detection process, in this challenge, 0.2 is

used for maintain enough amount of detections. For

duplicated detections, intersection-over-union (IoU) over

0.3 is used for identifying overlapping duplicates. And

extremely large bounding box is also removed. These

thresholds are configurable inputs subject to different use

cases.

After applying those filtering algorithms, a sample frame

with the final detection results are shown in Figure 2,

comparing to the same frame with the raw detections on the

left.

a) Location 1

b) Location 2

c) Location 3

d) Location 4

Figure 2. Raw detection and processed detection for 4

locations.

162

As shown in Figure 2, the left column illustrates the

original detection from Faster R-CNN model. The original

detection contains many duplicate detections, especially at

the far end of the view (location 1, 2 and 3). Location 4

also has an extreme large detection covered the whole

intersection. These kinds of error should be removed from

detection results to help the tracking phase later.

3.2. Multi-object tracking

In this challenge, I propose a histogram-based tracking

algorithm. The histogram-based tracker connects the same

object across frames by finding the minimum Chi-squared

distance (calculated in OpenCV [14]) in the histogram

domain among a group of candidates. The algorithm is

descripted as follows.

Tracking Algorithm

1: Input frames with bounding boxes, �

2: � = 0

3: while � ≤ � − 1 do

4: for � in �[�] do

5: Generate neighborhood region �: extend � by its

height and width on �[� + 1].
6: for � in �[� + 1] do

7: if ������(�, �) > 0.8 then

8: � appends to �

9: end if

10: end for

11: Compare target image (�) with candidate images

(�).

12: Select image � in � with minimum distance.

13: Assign ID on �[�] same as �.
14: end for

15: for � in �[� + 1] do

16: if � is not labeled then

17: Assign � a global ID.

18: end if

19: end for

20: �+=1

21: end while

Input all � frames �[∙] to the tracker, and objects in

consecutive frames �[�] and �[� + 1] are compared. The

tracking algorithm is explained in details as the following.

• Select candidates in the next frame

In this study the videos are recorded at 30fps so that an

assumption was made that the same object in the next frame

will stay in the neighborhood region of its current bounding

box position. Specifically, the neighborhood region � in the

next frame �[� + 1] is a squared region at the same location

of the object’s current bounding box 	� in the current frame

and with weight and height three times as large. All

bounding boxes � with 80% area covered by the

neighborhood region � in the next frame �[� + 1] are

selected as candidates � with respect to the target object	�.

This conservative candidate selecting strategy is supposed

to reduce the broken trajectories to a fairly good level.

• Find the minimum distance

After experimenting on several similarity comparison

methods, the Chi-squared distance in histogram domain

was selected due to its fairly high variation and

distinguishability among the vehicles in the study data set

and the simplicity in implementation. The candidate �[�]

with the lowest Chi-squared distance from the target object

� is labeled with the same object ID. The same method is

applied to assign ID to all bounding boxes � in the next

frame �[� + 1] and all the remaining unassigned bounding

boxes are treated as new objects with new IDs.

The proposed tracking algorithm runs at over 30 frames

per second. A tracking example is shown in Figure 3 using

frame 1 and frame 3 from location 2 to demonstrate the

movement of vehicles. At the bottom right of Figure 3b, a

new vehicle showed up and assigned ID 14. Other vehicles

were tracked with correct ID assigned except object 11 was

missed due to the loss of detection.

a) Frame 1

b) Frame 3

Figure 3. Tracking example from location 2.

3.3. Speed conversion

The method to convert the speed from pixel per second

to mile per hour used here is warping with linear

perspective transformation. Examples of warped images

from 4 locations are shown in Figure 4. Due to the different

camera configurations across videos even at the same

location, each video was calibrated separately.

163

a) Location 1

b) Location 2

c) Location 3

d) Location 4

Figure 4. Image warping samples from each video.

Using the assumption that the lane width is 12 feet (US

standard), the pixel distance of warped lane is used as the

reference to convert the speed. The raw speed conversion

results are smoothed by moving average with step size of 5

frames (0.167 seconds).

The speed conversion is the key step and can potentially

be the major source of error in the entire speed estimation

pipeline. The warping method with linear perspective

transformation may introduce error due to its strong

assumptions, such as the road is straight and flat, no camera

distortion, and detected centroids of vehicles (the bottom

midpoint of a bounding box is used as the centroids) are on

the ground. These assumptions are not necessarily met in

this challenge, thus, a better pixel-to-reality calibration

method should be considered in future study. In this study,

an alternative approach is used to process the noisy raw data

from the linear perspective transformation.

For highway locations that are usually in free flow

condition with rare stop-and-go pattern, the assumption that

drivers are driving around speed limit is made. The detected

speed from the aforementioned linear perspective

transformation can provide the essential speed variation

among vehicles, and a scaling method is applied so that the

final detected speeds comply to the speed limit while the

detected variations are remained. The final results on

highway locations have the RMSE as low as 3.9083.

However, the intersection always has stop-and-go

pattern, thus, no further process except smoothing is used.

The final combined results on both highway and

intersection locations have the RMSE of 8.6089 and total

detection rate (DR) of 0.8148.

4. Conclusion

Traffic speed estimation is important in many aspects of

traffic operation and management, such as flow monitoring,

incident detection, and delay cost estimation, etc. Current

data collection methods like radar sensor or inductive loop

detector are costly and surveillance cameras are only used

for manual check now. Turning low-cost cameras into

effective sensors is a beneficial challenge. With computer

vision and deep learning techniques rapidly developed, this

study tries to extract vehicle speeds from surveillance video

data.

This study aims to solve the 2018 AI City Challenge

Track 1. Three steps are taken: a) multi-object detection

using Faster R-CNN, b) multi-object tracking based on

histogram comparison, and c) speed conversion using

warping with linear perspective transformation. The

detection and tracking yield plausible results but the

warping with linear perspective transformation introduces

errors due to its strong linear assumptions. To overcome the

limitation in warping process, this study applies a scaling

method based on assumption that highway traffic is under

free flow condition. The results show that by using this

approach, the speed estimation on highway achieved a good

performance. However, this approach has strict assumption

and low scalability, which should be improved in future

study.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet

classification with deep convolutional neural networks,

Communications of the ACM, vol. 60, no. 6, pp. 84–90,

2017.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-

Based Learning Applied to Document Recognition,

Proceedings of the IEEE, vol. 86, no.11, pp. 2278–2324,

1998.

[3] M. D. Zeiler and R. Fergus, Visualizing and Understanding

Convolutional Networks, arXiv:1311.2901 [cs], Nov. 2013.

[4] C. Szegedy et al., Going Deeper with Convolutions,

arXiv:1409.4842 [cs], Sep. 2014.

[5] K. Simonyan and A. Zisserman, Very Deep Convolutional

Networks for Large-Scale Image Recognition,

arXiv:1409.1556 [cs], Sep. 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning

for Image Recognition, arXiv:1512.03385 [cs], Dec. 2015.

164

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich

feature hierarchies for accurate object detection and semantic

segmentation, arXiv:1311.2524 [cs], Nov. 2013.

[8] R. Girshick, Fast R-CNN, arXiv:1504.08083 [cs], Apr. 2015.

[9] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal

Networks, arXiv:1506.01497 [cs], Jun. 2015.

[10] OpenCV. Introduction to OpenCV Tracker. [Online].

Available:

https://docs.opencv.org/3.1.0/d2/d0a/tutorial_introduction_t

o_tracker.html. [Accessed: 04-Apr-2018].

[11] Google. Models: Models and examples built with

TensorFlow. [Online]. Available:

https://github.com/tensorflow/models. [Accessed: 04-Apr-

2018].

[12] COCO - Common Objects in Context. [Online]. Available:

http://cocodataset.org/#home. [Accessed: 04-Apr-2018].

[13] Google. TensorFlow detection model zoo. [Online].

Available:

https://github.com/tensorflow/models/blob/master/research/

object_detection/g3doc/detection_model_zoo.md.

[Accessed: 04-Apr-2018]

[14] OpenCV. Histogram Comparison - OpenCV 2.4.13.6

documentation. [Online]. Available:

https://docs.opencv.org/2.4/doc/tutorials/imgproc/histogram

s/histogram_comparison/histogram_comparison.html.

[Accessed: 04-Apr-2018].

165

