
 

 

 

Abstract 

 

Estimating traffic flow condition is a tough but beneficial 

task. In Intelligent Transportation System (ITS), many 

applications have been done to collect and analyze traffic 

data. However, the surveillance video data are still only 

used for engineer’s manual check. To better utilize this data 

source, traffic flow estimation from surveillance camera 

should be explored. This study uses Faster Regional 

Convolutional Neural Network (Faster R-CNN) with 

ResNet 101 as the backbone to achieve multi-object 

detection. Then a tracking algorithm based on histogram 

comparison is applied to link objects across frames. 

Finally, this study uses warping method to convert vehicle 

speeds from the pixel domain to the real world. The results 

show that estimating vehicle speed at intersection is more 

challenging than in uninterrupted flow. 

 

1. Introduction 

In Intelligent Transportation System (ITS), traffic data is 

the key to conduct research and applications. Current 

techniques have made lots of data available for traffic flow 

monitoring, including using roadside radar sensors on 

highways, inductive loop detectors at intersections, GPS 

data collected from probe fleet, etc. Besides those devices, 

surveillance cameras are deployed widely but have not been 

used as a mean of traffic data collection yet. Turning the 

usage of camera from current manual check only to 

automatic monitoring would be a beneficial challenge. 

Agencies could not only use surveillance camera as visual 

validation of incidents, but also as speed data collection and 

traffic flow monitoring. Thus, this study focuses on 

estimating vehicle speeds from video data, starting from 

multi-object detection, tracking to speed conversion, which 

could demonstrate the potential of turning a camera into a 

sensor. 

To estimate the vehicle speed, the first task is to correctly 

detect the vehicles showing in the video. The object 

detection has been studied with computer vision techniques 

for years. Traditional computer vision techniques tend to 

analyze the object’s contour, contrast and other features to 

detect the object. However, with the successful 

implementation of artificial intelligence technology, 

especially the deep convolutional neural network (CNN), 

the object detection has been improved. The first deep CNN 

used for image classification was developed by Alex 

Krizhevsky [1] in ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC-2012). Known as 

AlexNet, it is deeper and has more filters than previous 

LeNet [2]. It outperformed all other methods in the 

challenge with a large margin. After the success of 

AlexNet, more CNN variants (ZFNet [3], GoogLeNet [4], 

VGGNet [5], ResNet [6]) are developed in object detection 

domain. 

Recently, researchers also found that using regional 

proposals before using CNN to extract features could 

improve the performance on object detection [7]. To 

overcome the long computational time of R-CNN, several 

improvements have also been made. Fast R-CNN [8] and 

Faster R-CNN [9] are developed to speed up the 

computation. This study uses Faster R-CNN with ResNet 

101 model to achieve multiple vehicle detection. 

The next for speed estimation is tracking. Multi-object 

tracking (MOT) is an important task in video processing. 

Many studies have been done in both batch and online 

manner. And many applications have also been made to 

implement MOT. For example, OpenCV provides different 

kinds of tracker from different algorithm, such as, MIL, 

BOOSTING, TLD, KCF, etc. [10]. These methods have 

their own advantages and disadvantages. For this specific 

challenge, I propose a histogram-based tracking algorithm 

to solve the MOT in traffic estimation. Details will be 

discussed in section 3.2. 

The last step for traffic speed estimation is converting the 

speed obtained from the pixel domain to the real world. 

Camera calibration is a tough task in image processing, 

especially when there is no enough meta information about 

the camera, such as in this challenge. Image warping is a 

way to convert the perspective from one way to another. 

Due to the limitation of time in this challenge, a warping 

method by linear perspective transformation was, with each 

testing location manually calibrated. 
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2. Data description 

The test data for Challenge Track 1 is collected by 

challenge organizers from 2 highway interchanges and 2 

signalized intersections located in urban area in state of 

California. The locations and some characteristics are 

summarized below. 

 

Number Type Description Coordinates 

1 Highway 
I-280 @ 

Winchester 

37.316788, 

-121.950242 

2 Highway I-280 @ Wolfe 
37.330574, 

-122.014273 

3 Intersection 
San Tomas @ 

Saratoga 

37.326776, 

-121.965343 

4 Intersection 
Stevens Creek 

@ Winchester 

37.323140, 

-121.950852 

 

Table 1. Location information of data collected 

 

Each location has multiple video clips, and each clip lasts 

1 minute long with 30 fps. The resolution is 1920×1080 for 

each video. All the cameras have overhead view with no 

additional information on mounting height and angle. 

3. Methods and results 

The approach to traffic speed estimation in this challenge 

is outlined in Figure 1. Details in different phases are 

discussed as follows. 

 

 
 

Figure 1. Speed estimation pipeline. 

3.1. Object detection 

Due to the lack of training data in this challenge, a pre-

trained model has been selected for object detection. By 

investigating the performance of the pre-trained models 

from TensorFlow object detection API [11][13], the Faster 

R-CNN with ResNet 101 as the backbone trained on COCO 

dataset [12] provides a fair inference speed and relatively 

high performance on the challenge dataset. Among 80 

classes in COCO, car, bus and truck are the object of 

interest in this study. 

All frames are extracted from the 27 evaluation videos 

and the inference frozen graph (2017-11-08 version) is then 

applied to detect objects in each frame. The inference speed 

is about one frame per second on one NVIDIA TITAN Xp 

GPU. The false positives in the detected bounding boxes 

were reduced by a group filtering algorithms: a) class filter, 

b) confidence score filter, c) duplicated detection filter, and 

d) outlier filter. As mentioned above, only class 3, 6 and 8 

in COCO are vehicles. Thus, class filter will only remain 

the results from those classes. Confidence scores are 

generated during detection process, in this challenge, 0.2 is 

used for maintain enough amount of detections. For 

duplicated detections, intersection-over-union (IoU) over 

0.3 is used for identifying overlapping duplicates. And 

extremely large bounding box is also removed. These 

thresholds are configurable inputs subject to different use 

cases. 

After applying those filtering algorithms, a sample frame 

with the final detection results are shown in Figure 2, 

comparing to the same frame with the raw detections on the 

left. 

 

 
a) Location 1 

 
b) Location 2 

 
c) Location 3 

 
d) Location 4 

Figure 2. Raw detection and processed detection for 4 

locations. 
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As shown in Figure 2, the left column illustrates the 

original detection from Faster R-CNN model. The original 

detection contains many duplicate detections, especially at 

the far end of the view (location 1, 2 and 3). Location 4 

also has an extreme large detection covered the whole 

intersection. These kinds of error should be removed from 

detection results to help the tracking phase later. 

3.2. Multi-object tracking 

In this challenge, I propose a histogram-based tracking 

algorithm. The histogram-based tracker connects the same 

object across frames by finding the minimum Chi-squared 

distance (calculated in OpenCV [14]) in the histogram 

domain among a group of candidates. The algorithm is 

descripted as follows. 

 

Tracking Algorithm 

1: Input frames with bounding boxes, � 

2: � = 0  

3: while � ≤ � − 1 do 

4:     for � in �[�] do 

5:         Generate neighborhood region �: extend � by its 

height and width on �[� + 1]. 
6:         for � in �[� + 1] do 

7:             if ������(�, �) > 0.8 then 

8:                 � appends to � 

9:             end if 

10:         end for 

11:         Compare target image (�) with candidate images 

(�). 

12:         Select image � in � with minimum distance. 

13:         Assign ID on �[�] same as �. 
14:     end for 

15:     for � in �[� + 1] do 

16:         if � is not labeled then 

17:             Assign � a global ID. 

18:         end if 

19:     end for 

20:     �+=1 

21: end while 

 

Input all � frames �[∙] to the tracker, and objects in 

consecutive frames �[�] and �[� + 1] are compared. The 

tracking algorithm is explained in details as the following. 

• Select candidates in the next frame 

In this study the videos are recorded at 30fps so that an 

assumption was made that the same object in the next frame 

will stay in the neighborhood region of its current bounding 

box position. Specifically, the neighborhood region � in the 

next frame �[� + 1] is a squared region at the same location 

of the object’s current bounding box 	� in the current frame 

and with weight and height three times as large. All 

bounding boxes � with 80% area covered by the 

neighborhood region � in the next frame �[� + 1] are 

selected as candidates � with respect to the target object	�. 

This conservative candidate selecting strategy is supposed 

to reduce the broken trajectories to a fairly good level. 

• Find the minimum distance 

After experimenting on several similarity comparison 

methods, the Chi-squared distance in histogram domain 

was selected due to its fairly high variation and 

distinguishability among the vehicles in the study data set 

and the simplicity in implementation. The candidate �[�] 

with the lowest Chi-squared distance from the target object 

� is labeled with the same object ID. The same method is 

applied to assign ID to all bounding boxes � in the next 

frame �[� + 1] and all the remaining unassigned bounding 

boxes are treated as new objects with new IDs. 

The proposed tracking algorithm runs at over 30 frames 

per second. A tracking example is shown in Figure 3 using 

frame 1 and frame 3 from location 2 to demonstrate the 

movement of vehicles. At the bottom right of Figure 3b, a 

new vehicle showed up and assigned ID 14. Other vehicles 

were tracked with correct ID assigned except object 11 was 

missed due to the loss of detection. 

 

 
a) Frame 1 

 
b) Frame 3 

Figure 3. Tracking example from location 2. 

3.3. Speed conversion 

The method to convert the speed from pixel per second 

to mile per hour used here is warping with linear 

perspective transformation. Examples of warped images 

from 4 locations are shown in Figure 4. Due to the different 

camera configurations across videos even at the same 

location, each video was calibrated separately. 
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a) Location 1 

 
b) Location 2 

 
c) Location 3 

 
d) Location 4 

Figure 4. Image warping samples from each video. 

 

Using the assumption that the lane width is 12 feet (US 

standard), the pixel distance of warped lane is used as the 

reference to convert the speed. The raw speed conversion 

results are smoothed by moving average with step size of 5 

frames (0.167 seconds). 

The speed conversion is the key step and can potentially 

be the major source of error in the entire speed estimation 

pipeline. The warping method with linear perspective 

transformation may introduce error due to its strong 

assumptions, such as the road is straight and flat, no camera 

distortion, and detected centroids of vehicles (the bottom 

midpoint of a bounding box is used as the centroids) are on 

the ground. These assumptions are not necessarily met in 

this challenge, thus, a better pixel-to-reality calibration 

method should be considered in future study. In this study, 

an alternative approach is used to process the noisy raw data 

from the linear perspective transformation. 

For highway locations that are usually in free flow 

condition with rare stop-and-go pattern, the assumption that 

drivers are driving around speed limit is made. The detected 

speed from the aforementioned linear perspective 

transformation can provide the essential speed variation 

among vehicles, and a scaling method is applied so that the 

final detected speeds comply to the speed limit while the 

detected variations are remained. The final results on 

highway locations have the RMSE as low as 3.9083. 

However, the intersection always has stop-and-go 

pattern, thus, no further process except smoothing is used. 

The final combined results on both highway and 

intersection locations have the RMSE of 8.6089 and total 

detection rate (DR) of 0.8148. 

4. Conclusion 

Traffic speed estimation is important in many aspects of 

traffic operation and management, such as flow monitoring, 

incident detection, and delay cost estimation, etc. Current 

data collection methods like radar sensor or inductive loop 

detector are costly and surveillance cameras are only used 

for manual check now. Turning low-cost cameras into 

effective sensors is a beneficial challenge. With computer 

vision and deep learning techniques rapidly developed, this 

study tries to extract vehicle speeds from surveillance video 

data. 

This study aims to solve the 2018 AI City Challenge 

Track 1. Three steps are taken: a) multi-object detection 

using Faster R-CNN, b) multi-object tracking based on 

histogram comparison, and c) speed conversion using 

warping with linear perspective transformation. The 

detection and tracking yield plausible results but the 

warping with linear perspective transformation introduces 

errors due to its strong linear assumptions. To overcome the 

limitation in warping process, this study applies a scaling 

method based on assumption that highway traffic is under 

free flow condition. The results show that by using this 

approach, the speed estimation on highway achieved a good 

performance. However, this approach has strict assumption 

and low scalability, which should be improved in future 

study. 
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