
Geometry-aware Traffic Flow Analysis by Detection and Tracking

1,2Honghui Shi, 1Zhonghao Wang, 1,2Yang Zhang, 1,3Xinchao Wang, 1Thomas Huang
1IFP Group, Beckman Institute at UIUC, 2IBM Research, 3Stevens Institute of Technology

{hshi10, zwang246, yzhan143, xinchao, t-huang1}@illinois.edu

Abstract

In the second Nvidia AI City Challenge hosted in 2018,

the traffic flow analysis challenge proposes an interest task

that requires participants to predict the speed of vehicles on

road from various traffic camera videos. We propose a sim-

ple yet effective method combing both learning based detec-

tion and geometric calibration based estimation. We use a

learning based method to detect and track vehicles, and use

a geometry based camera calibration method to calculate

the speed of those vehicles. We achieve a perfect detection

rate of target vehicles and a root mean square error (RMSE)

of 6.6674 in predicting the vehicle speed, which rank us the

third place in the competition.

1. Introduction

To accurately estimate the speed of vehicles from traffic

camera videos is an interesting research topic for computer

vision. The track 1 of Nvidia AI City Challenge [14] in

2018, namely the traffic flow analysis challenge, deals with

predicting the speed of vehicles on road in various traffic

camera videos. This paper introduces our method for tack-

ling the speed estimation task in this challenge. We use

state-of-the-art region-based detector to detect vehicles on

road and the simple Medianflow algorithm to track vehicles

detected in the video. We propose a method involving cam-

era calibration method to estimate the speed of those vehi-

cles. Though simple, our method effectively achieves high

accuracy among submissions from all participating teams.

2. Related Work

Object Detection: State-of-the-art region-based object de-

tectors [15, 3, 8, 1, 2] trained on auxiliary large-scale

detection datasets [12, 4, 16, 5] are able to detect vehi-

cles from traffic camera videos accurately without learning

from scratch, weak supervision, or specific domain adap-

tation [17, 18, 9, 19]. Multiple bounding boxes are drawn

to where vehicles are present in frames extracted from the

traffic camera videos. To infer the vehicle instances in each

Figure 1. An example of original frames from location 1

Figure 2. An example of recognition results

frame, we run our detection model mainly based on the

newly released deep learning frameworks [6]. We use the

model ResNet-101 Feature Pyramid Network [11] and the

weights downloaded from Mask R-CNN source file for the

Mask R-CNN structure. As the model returns bounding

boxes for all instances it recognizes in a frame, we filter

out the bounding boxes of other instances but vehicles in-

cluding cars, trucks and buses. We consider the bounding

box with inference confidence higher than certain threshold

as valid bounding boxes for vehicles. An example of accu-

rate vehicle detection can be seen in Figure 1 and Figure 2.

Object Tracking: Even though we can use Mask R-CNN

detect vehicles in a frame with good effects. However, there

116



Figure 3. An example showing detection failure

still can be vehicles close to the camera but not recognized.

Shown in Figure 3, the white van is such an example. If we

only calculate the speed of vehicles based on the detected

instances, then we may easily lose track of a vehicle due

to such a problem. Therefore, to increase the probability

that we know the positions of a vehicle in at least a fixed

amount of frames, we use a tracking algorithm to track a

vehicle detected in the following frames. In this way, we

can calculate the speed of that vehicle based on 4 frames at

least in most cases. Due to a small and predictable motion

of the same vehicle between adjacent frames, Medianflow

tracker [10] can efficiently track that vehicle. This tracker

is a key point based tracker, and uses Lucas-Kanade algo-

rithm [13] to produce a trajectory of its tracking object. It

also filters invalid tracking points and takes the scale vari-

ance of an object into an account. Thus, the scale of the

bounding box generated by the Medianflow tracker varies

with respect to the scale changes of a vehicle moving close

to or away from the camera. Using the centers of the bound-

ing boxes generated for a vehicle by both Mask R-CNN and

the Medianflow tracker, we can get the trajectory of that ve-

hicle in continuing frames at least with high probability. Al-

ternatively, we can also use post-processing techniques such

as Seq-NMS [7] to enhance the per-frame detection results

to solve the detection failure case. However, such method

requires us to detect on each frame and are more computa-

tionally expensive.

Geometry Understanding: We first find the vanishing

point of the first frame of a video. We observe that the lanes

of the road are parallel to each other in a large area of each

frame. Therefore, we first find the dash line which sepa-

rates two lanes in a frame where straight segments of the

dash line can be seen. Then use a math formula to express

the extended lines of those straight dash line segments. We

let the vanishing point be the point in the frame which has

the lowest mean square distance to all those straight dash

line segments. This is shown in Figure 4. Even though

the camera is shaky sometimes, the vanishing point does

Figure 4. Illustration of finding vanishing point

not change its position in frames very much. For now, we

manually find the straight dash line segments. In the future,

we can develop a more comprehensive way in detecting the

straight dash line segments. Then we construct a distance

measurement formula to measure the displacement of a ve-

hicle between frames in real world. Given this distance and

frame rate of the video, we can compute the speed of that

vehicle. This is further introduced in the method section.

3. Proposed Method

3.1. Detection and Tracking

We use the pretrained model of Mask R-CNN to detect

vehicles in frames with an interval of three frames. The

model we use is ResNet 101 Feature Pyramid Network. The

structure of this neural network and its weights are available

on the source repository of Mask R-CNN. After we get the

detection bounding boxes for the vehicles, we use Medi-

anflow algorithm to track the detected vehicles in the fol-

lowing three frames. Then, we use centers of those bound-

ing boxes to represent the positions of those vehicles in the

frame. To know the trajectory of a vehicle, we find the clos-

est vehicle position in the next frame to the position of that

vehicle in the current frame. If the distance between these

two positions is above a certain bound, then we say we lose

the track of that vehicle.

3.2. Geometryaware Traffic Flow Analysis

To understand the distance relationship between a line

segment in a frame and the distance that line segment indi-

cates in real world, we construct a formula to convert the

distance in pixels in a frame to the distance in real world.

We first find the vanishing point of the lane separation dash

lines. Thus, all lines in the image that go through that van-

ishing point are parallel to each other. We observe the cam-

era plane is relatively perpendicular to the lanes on road.

Thus, in real world, the distance between any point in the

image and the vanishing point equals the distance between

the vanishing point and the intersection of a perpendicular

117



Figure 5. Illustration of distance relationship

Figure 6. Illustration of vertical relationship

line going through the point of interest to the vertical line

going through the vanishing point. Shown in Figure 5, This

relationship can be approximately expressed by

dx1”x2”
= dx′

1
x′

2
(1)

where dx1”x2”
and dx′

1
x′

2
are the distances of x1”x2” and

x′

1
x′

2
in real world respectively.

Let’s consider the relationship of the distance between

the vanishing point and a point on the vertical line across

the vanishing point in real world. As shown in Figure 6,

x∞ is infinitely far away from the image plane and on the

ground. Map this infinity point to the image plane, we get

x′

∞
. For points on the ground, x1 and x2, the mapping from

the ground to the image plane are x′

1
and x′

2
. according to

triangular relationships, we get

dx′

1
x′

2
= dFx0

dx1x∞

dx0x∞

dx0xi

dx0x1

− dFx0

dx2x∞

dx0x∞

dx0xi

dx0x2

(2)

Because
dx1x∞

dx0x∞

=
dx2x∞

dx0x∞

= 1, we can get

dx′

1
x′

2
=

C

dx0x1

−
C

dx0x2

(3)

where C = dFx0
dx0xi

. Because dFx0
and dx0xi

are con-

stants, C is also a constant. Thus, the distance between x1

and x2 can be expressed by

dx1x2
=

C ′

d′
x′

∞
x′

2

−
C ′

d′
x′

∞
x′

1

(4)

where C ′ is some constant, and d′ is a distance measured in

the number of pixels.

After finding the vanishing point of a frame, if we know

C ′, then we can get the real distance between two points

in the image. We measure the distance of several line seg-

ments that are parallel to the lane on road and are visible in

the video. Extend these line segments in a frame and they

will intersect at the vanishing point we find. Now we can

calculate the displacement distance of an object by

d = |
C

x1 cos θ1
−

C

x2 cos θ2
| (5)

where d is the displacement distance of an object in real

world, x1 and x2 are the distances between object posi-

tions in different frames with the vanishing point respec-

tively, and θ1 and θ2 are the corresponding angles between

the vertical line across the vanishing point and the line seg-

ment from the vanishing point to the object position. C is

calculated by

C = argmin
C

n
∑

i=1

(

|
C

xi1 cos θi1
−

C

xi2 cos θi2
| − di

)

2

(6)

where xi1 and xi2 are marked line segment in the frame

and di is the corresponding distance in real world measured

from Google Maps.

Then, we can compute the speed of a vehicle by

s = d
fr

fn
(7)

where s is the speed of the vehicle, fr is the frame rate and

fn is the difference of frame indexes between two frames.

An example of speed calculated for a frame is shown in

figure 3.

4. Experiments

We experiment our method for the 27 videos provided

by track 1 of Nvidia AI City Challenge 2018, and achieve

6.6674 root mean square error (RMSE) compared to the

ground truth. Figures 7-10 show the speeds estimated for

the vehicles recognized in that frame for 4 different loca-

tions.

5. Discussions

Our method can achieve relatively good results in mea-

suring the speed of vehicles whose trajectories are parallel

118



Figure 7. Speed estimation results for location 1

Figure 8. Speed estimation results for location 2

Figure 9. Speed estimation results for location 3

to the lane of road and vanish at the vanishing point preset.

However, if vehicles have horizontal displacement that are

orthogonal to the lane within two frames, then this method

is not capable of measuring the horizontal speed.

We observe that the camera plane is approximately per-

pendicular to lanes on road. Thus, the width of the road in

a frame linearly decreases and reaches 0 as the road van-

ishes at the vanishing point. Measuring the road width from

Google Maps, we can calculate the horizontal distance in a

frame by

dh = d′h
ds

d′s

dp

d′p
(8)

Figure 10. Speed estimation results for location 4

where dh is the horizontal distance in real world we need

to calculate, ds is the number of pixels between the apexes

of the horizontal line segment to be measured in a frame,

dp is the number of pixels from the vanishing point to the

horizontal line segment to be measured, d′h is the width of

the road in real world, d′s is the number of pixels between

the apexes of the line segment which we mark as the width

of the road, and d′p is the number of pixels from the vanish-

ing point to the line segment which we mark as the width of

the road. However, after we use this method to measure the

speed of vehicles in horizontal direction and add it to the

total speed, the RMSE increases.

We did not use the UADETRAC videos [20]. On the one

hand, we are not certain if the speed given for each vehi-

cle is accurate in the UADETRAC videos after careful ex-

amination. On the other hand, some important information

(the angle and the height of the camera for example) is not

given from both the UADETRAC videos and the challenge

videos. We cannot get accurate speed estimation without

such information.

6. Conclusion

To tackle the traffic speed estimation problem from traf-

fic camera videos, we use learning based method to detect

and track vehicles in the given traffic camera videos, and

use a geometric processing method to calculate the speed of

vehicles. Our submission achieves a perfect detection rate

of target vehicles and RMSE of 6.6674. Note we entered the

challenge at a very late stage and many future work would

be pursued especially in accurate speed estimation after de-

tection and tracking with high performance.

Acknowledgements. This work is in part supported by
IBM-ILLINOIS Center for Cognitive Computing Systems
Research (C3SR) - a research collaboration as part of the
IBM AI Horizons Network.

119




