

Abstract

Tracking of vehicles across multiple cameras with non-

overlapping views has been a challenging task for the

intelligent transportation system (ITS). It is mainly because

of high similarity among vehicle models, frequent

occlusion, large variation in different viewing perspectives

and low video resolution. In this work, we propose a fusion

of visual and semantic features for both single-camera

tracking (SCT) and inter-camera tracking (ICT).

Specifically, a histogram-based adaptive appearance

model is introduced to learn long-term history of visual

features for each vehicle target. Besides, semantic features

including trajectory smoothness, velocity change and

temporal information are incorporated into a bottom-up

clustering strategy for data association in each single

camera view. Across different camera views, we also

exploit other information, such as deep learning features,

detected license plate features and detected car types, for

vehicle re-identification. Additionally, evolutionary

optimization is applied to camera calibration for reliable

3D speed estimation. Our algorithm achieves the top

performance in both 3D speed estimation and vehicle re-

identification at the NVIDIA AI City Challenge 2018.

1. Introduction

Among the studies in the Intelligent Transportation

System (ITS), video analytics with data captured by
multiple cameras have been of high significance for many
applications, e.g., the estimation of traffic flow
characteristics, anomaly detection, multi-camera tracking,
etc. However, different from the majority of works in
Multiple Object Tracking (MOT) that focus on human
objects, tracking of vehicles in urban environments is much
more challenging due to several reasons. First, because of
the limited number of car models, the appearance similarity
among vehicles is generally higher than humans. Second,
in a busy flow of traffic especially at traffic intersections,
many vehicle objects are occluded, which will cause severe
identity switches. Last but not least, the viewpoints of the
same car in two different cameras can vary largely.

In Single-Camera Tracking (SCT), the problem of
vehicle tracking for 3D real world speed estimation (in
terms of mi/h, not pix/sec) remains challenging. Some
propose to utilize traditional approaches for MOT such as
Bayesian inference methods [1]. Automatically generated
3D vehicle models are adopted in [2, 3] to address the
problem of occlusion. But for long videos with busy traffic
flow, a more efficient and reliable descriptor of appearance
features is critically needed. Also, the semantic features for
data association in vehicle tracking, which has been proven
effective in many works of human tracking [4, 5], is of little
attention. Finally, the accurate backprojection of vehicle
positions into 3D world space is another critical issue to be
addressed.

Inter-Camera Tracking (ICT) of vehicles, i.e., vehicle re-
identification, can be considered as an instance-level object
search task, which is different from vehicle detection,
tracking, and categorization problems. Many works [6, 7]
focus on the extraction of reliable appearance features,
especially attributes learned by Deep Convolutional Neural

Networks (DCNNs). Additionally, license plate recognition
[8] and spatio-temporal optimization [6] are commonly
used to resolve confusion between vehicles, as there are
large number of similar cars in urban surveillance. But all
the mentioned approaches can only perform well in fine-
grained vehicle categorization and verification, which may
not be suitable for vehicles captured in low resolution.

Single-camera and inter-camera vehicle tracking and 3D speed estimation based

on fusion of visual and semantic features

Zheng Tang, Gaoang Wang, Hao Xiao, Aotian Zheng, Jenq-Neng Hwang
Department of Electrical Engineering, University of Washington (UW)

Seattle, WA 98195, USA
{zhtang, gaoang, alexinuw, azheng, hwang}@uw.edu

Fig. 1. Object detection, SCT with 3D speed estimation and multi-
camera tracking. The detected vehicles and their car types are
shown on top left. The trajectories of objects are shown on top

right with the estimated speed in mi/h plotted above each
bounding box. At the bottom, a pair of identified vehicles in two
camera views are shown in red bounding boxes.

108

In this paper, we propose an innovative framework for
both SCT and ICT. A fusion of visual and semantic features
is exploited for SCT, including a histogram-based adaptive
appearance model designed to learn long-term appearance
change. The computed loss function is applied to a bottom-
up clustering scheme for the association of tracklets.
Similarly, we also employ a fusion of various features for
vehicle re-identification across cameras. Finally, an
evolutionary algorithm is introduced to optimize camera
parameters for 2D-to-3D backprojection, resulting in
reliable 3D speed estimation of tracked vehicles in SCT.

The rest of this paper is organized as follows. The related
works of our approach are reviewed in more details in
Section 2. The system overview and description of each
algorithmic component are covered in Section 3. In Section
4, we introduce the evaluation of our method on the
NVIDIA AI City Dataset [9]. Finally, the conclusion is
drawn in Section 5.

2. Related works

We follow the tracking-by-detection paradigm for
vehicle tracking in each single camera and across multiple
cameras. Some related methods are reviewed as follows.

2.1. Single-camera tracking (SCT)

MOT within a single camera has been a challenging field
mainly due to noise in object detection, occlusion and
similar appearance among nearby objects. Most methods
focus on formulating MOT as a data association problem,
where many approaches are developed using semantic
features of human objects [4, 5], but none is specifically
designed for vehicle tracking. Effective modeling of object
appearance is also key to the robustness of MOT. To
overcome partial occlusion, Chu et al. [10, 11] propose to
build multiple spatially weighted kernel histograms with
binding constraints to model object appearance. However,
for vehicle objects in traffic scenes, the occluded parts are
usually not regular due to fast change of viewpoint along
car movement. Therefore, Lee et al. [3] make use of 3D
deformable models of vehicles to define multiple kernels in
3D space. Tang et al. [12] extend their work and combine
kernel-based MOT with camera self-calibration for
automatic 2D-to-3D backprojection [13], which is selected
as the winning method in NVIDIA AI City Challenge 2017.
More recently, Sochor et al. [2] introduce a simpler vehicle

model using 3D bounding box for fine-grained recognition.
The 3D modeling of vehicles can work fine for light traffic
flow, where the shape of each car can be well segmented.
However, the performance is degraded when the contours
of vehicles are attached to each other. In [14], a pixel-based
adaptive appearance model is proposed for multiple human
tracking, in which a relatively long-term history of
appearance change is explicitly encoded in a normalized
matrix of pixel models. However, pixel-based appearance
model can fail easily for vehicle re-identification, as the
variation of viewpoints in two different cameras can
contrast significantly.

2.2. Inter-camera tracking (ICT)

 Vehicle re-identification is a frontier area with limited
research in recent years. Yang et al. [7] propose to apply
DCNNs for fine-grained vehicle categorization and model
verification. Recently, Liu et al. [6] explore fusion of
appearance features, such as texture, color and semantic
attributes learned by DCNNs, where low-level and high-
level semantic features are integrated for vehicle search.
Nevertheless, all these appearance features are extracted
from one or few instances of a vehicle, which can be
affected by the poor quality in some specific frames.
Moreover, these appearance-based methods can hardly
distinguish among vehicles of the same model. In [6, 8],
video-based license plate recognition and comparison are
explored for vehicle re-identification. But they may not
work properly when the traffic video resolution is low.

3. Methodology

The overview flow diagram of our proposed framework
for SCT and ICT in a camera array is presented in Fig. 2. In
each single camera view, we first employ evolutionary
algorithm for camera calibration. For object detection, the
state-of-the-art YOLOv2 detector [15] is adopted, which is
trained on thousands of hand-labeled frames. Taking
advantage of the calibrated camera, which allows the
detected objects to be backprojected to 3D space, we can
perform 3D SCT based on a bottom-up clustering strategy
with a fusion of features in loss computation, among which
the histogram-based appearance models are learned and
used to resolve confusion between nearby targets.
Meanwhile, other visual and semantic information, i.e.,
DCNN features, license plates, temporal information and

Fig. 2. Flow diagram of the proposed multi-camera tracking framework, where each color represents the processing flow of a camera.

109

detected car types, are also extracted for vehicle re-
identification in the ICT task. Each algorithmic component
will be elaborated in this section.

3.1. Evolutionary optimization for camera calibration

From each camera view, we first manually label two
pairs of vanishing lines, i.e., parallel line pairs on the 3D
ground plane that are orthogonal with each other, from
which we can derive the two vanishing points on the ground
plane, noted ௑ܸ and ௒ܸ. It has been proven [16] that all the
camera parameters in a ͵ × Ͷ projection matrix ۾ can be
computed from ௑ܸ and ௒ܸ with some constraints on
intrinsic camera parameters. To relax these constraints for
more accurate estimation of camera parameters, we
formulate an optimization problem to minimize the
reprojection error. A set of ୪ܰୱ line segments on the ground
plane, each defined by two endpoints, noted { ௞ܲܳ௞തതതതതതത}, are
manually selected, whose ground-truth 3D lengths are
measured in the Google Maps [17]. Using the calculated
camera parameters, the 2D endpoints of the line segments,
noted {݌௞} and {ݍ௞} , can be backprojected to 3D. Their
Euclidean distances represent the estimated 3D lengths of
the line segments. The absolute differences between
estimations and ground truths are summed up to describe
the reprojection error. Thus, the objective of our
optimization problem is defined as follows. min۾ ∑ ቚ‖ ௞ܲ − ܳ௞‖ଶ − ฮ ௞ܲ෢ − ܳ௞෢ฮଶቚேౢ౩௞ୀଵ , s. t. ۾ ∈ Rng۾, ௞݌ = ۾ ∙ ௞ܲ෢, ௞ݍ = ۾ ∙ ܳ௞෢ , (1)

where ൛ ௞ܲ෢ൟ and ൛ܳ௞෢ൟ denote the estimated endpoints of the
selected line segments that are backprojected to the 3D

ground plane. Additionally, Rng۾ is the initial range for
each camera parameter to be optimized.

The non-linear optimization problem in (1) can be
iteratively solved by the Estimation of Distribution

Algorithm (EDA) [18], which is a classic evolutionary
optimization algorithm, to optimize the 11 camera
parameters in ۾. This iterative process stops until the mean
of the estimated probability density function (pdf) is smaller
than a specified threshold, ߳۾. In Fig. 3, the visualization of
our performance on two scenes of the NVIDIA AI City

Dataset [9] is shown.

3.2. Object detection based on YOLOv2

The provided training dataset, UA-DETRAC [20], by the
NVIDIA AI City Challenge 2018 is not adopted by us due to
its highly unbalanced data distribution, which gives little
information about vehicle categorization. Therefore, we
select 4,500 frames uniformly sampled from [9], where
each of them contains 5 to 40 objects. The training data are
manually labeled in 8 categories, including sedan,
hatchback, bus, pickup, minibus, van, truck and
motorcycle. The state-of-the-art object detector, YOLOv2
[15], is chosen by us for training and testing. The pretrained
weights are used to initialize the network. An example of
our qualitative performance can be viewed in Fig. 1.

After the 2D bounding box of each observation is derived
from object detection, the optimized ۾ from evolutionary
camera calibration is used to backproject its foot point, i.e.,
the center of the bottom, to 3D space for speed estimation.

3.3. Loss function for data association

A bottom-up clustering strategy based on a fusion of
visual and semantic features is proposed for SCT. First, the
detected objects are grouped into tracklets based on spatio-
temporal consistency [21]. Then we employ a clustering
method to associate tracklets into longer trajectories. The
clustering operations are determined by minimizing a loss
function measuring the loss in the assignment of tracklets, ݈ = ∑ ݈௜௡౬௜ୀଵ , ݈௜ = ୱ୫݈௜,ୱ୫ߣ + ୴ୡ݈௜,୴ୡߣ + ୲୧݈௜,୲୧ߣ + ୟୡ݈௜,ୟୡ, (2)ߣ
where ݊୴ is the number of vehicle identities in a camera, ݈௜
is the clustering loss for the ݅ -th trajectory, ݈௜,ୱ୫ is the
trajectory smoothness loss, ݈௜,୴ୡ is the velocity change loss, ݈௜,୲୧ is the time interval loss between adjacent tracklets, and ݈௜,ୟୡ is the appearance change loss. We use ߣ to denote the
regularization parameters of loss functions, which are
empirically set as 0.2, 8, 25 and 0.5 respectively.

The smoothness of vehicle trajectories can be
represented by Gaussian regression. We denote the x and y
coordinates of observed tracklets in 2D as ݔ෤ሺݐሻ and ݕ෤ሺݐሻ
respectively, which can be expressed as ݔ෤ሺݐሻ = ሻݐሺݔ + ߳௫, ݕ෤ሺݐሻ = ሻݐሺݕ + ߳௬, (3)
where ݔሺݐሻ and ݕሺݐሻ are from the real trajectories and ߳௫~ࣨሺͲ, ௫ଶሻߪ and ߳௬~ࣨ൫Ͳ, ௬ଶ൯ߪ are the Gaussian noise
from detection results. Given a new set of frame indices ܜ∗,
we want to predict the trajectories ܠ∗ and ܡ∗.

We denote the kernel function as ߢሺݐ, ሻ. Then the joint′ݐ
density of the observed data and the latent noise-free
function on the test time indices are given by ൬ ,൰~ࣨቆͲ∗ܠ෤ܠ ൬۹௫෤ ۹∗۹∗் ۹∗∗൰ቇ,

൬ ,൰~ࣨ൭Ͳ∗ܡ෤ܡ ൬۹௬෤ ۹∗۹∗் ۹∗∗൰൱, (4)

(a) (b)
Fig. 3. Visualization of the performance of the proposed
evolutionary camera calibration. Projected (uniformly distributed)
virtual grids on the ground plane are plotted as red dots. The green

solid lines denote the manually selected line segments used to
measure the reprojection error on the ground plane. (a) A scene at
Loc4 in [9]. (b) A scene at Loc1 in [9].

110

where ۹௫෤ = ,ܜሺߢ ሻܜ + ௫ଶ۷ߪ , ۹௬෤ = ,ܜሺߢ ሻܜ ௬ଶ۷ߪ	+ , ۹∗ ,ܜሺߢ= ∗∗ሻ and ۹∗ܜ = ,∗ܜሺߢ ሻ. Then the posterior predictive∗ܜ
densities can be defined as ݌ሺܜ|∗ܠ∗, ,ܜ ሻܠ = ࣨሺࣆ|∗ܠ௫ , ઱௫ሻ, ݌ሺܜ|∗ܡ∗, ,ܜ ሻܡ = ࣨ൫ࣆ|∗ܡ௬, ઱௬൯, (5)
where ࣆ௫ = ۹∗்۹௫෤ିଵܠ, ઱௫ = ۹∗∗ − ۹∗்۹௫෤ିଵ۹∗, ࣆ௬ = ۹ ∗்۹௬෤ିଵܠ, ઱௬ = ۹∗∗ − ۹∗்۹௬෤ିଵ۹∗. (6)
Hence, we can use ࣆ௫ and ࣆ௬ as the prediction results
given frame indices ܜ∗.
• Smoothness loss

Smoothness loss is defined to measure the smoothness of
tracklets which belong to the same trajectory. The tracklets
in each trajectory is sorted by the entering time stamps. For
each pair of adjacent tracklets in the ݅ -th trajectory, we
calculate their distance in the connected region, i.e.,

 ௝݀,ୱ୫ = ∑ ብ ೕሺ௧ሻ൫௕ೕ,౭ሺ௧ሻమା௕ೕ,౞ሺ௧ሻమ൯భ/మብଶ௧ೕ,౤ౚ௧ୀ௧ೕ,౤ౚି௡ౡ,∗ܘ෥ೕሺ௧ሻି࢖ +

∑ ብ ೕశభሺ௧ሻ൫௕ೕశభ,౭ሺ௧ሻమା௕ೕశభ,౞ሺ௧ሻమ൯భ/మብଶ௧ೕశభ,౩౪ା௡ౡ௧ୀ௧ೕశభ,౩౪,∗ܘ෥ೕశభሺ௧ሻି࢖ , (7)

where ࢖෥௝ሺݐሻ = ,ሻݐ෤ሺݔ] ݆ ሻ]் is the detected location of theݐ෤ሺݕ -th tracklet at time ݐ ሻݐ௝ሺ,∗ܘ , = ,ሻݐ௫ሺߤ] ்[ሻݐ௬ሺߤ	 is the
predicted location of the ݆ -th tracklet at time ݐ using
Gaussian regression, ௝ܾ,୵ሺݐሻ and ௝ܾ,୦ሺݐሻ respectively
denote the width and height of the detected bounding box, ݐ௝,ୱ୲ and ݐ௝,୬ୢ	respectively denote the starting and ending
frame indices of the ݆-th tracklet, and ݊୩ = Ͷ is the number
of neighboring points around the endpoints of adjacent
tracklets for comparison. Examples are shown in Fig. 4.

The smoothness loss of the ݅-th trajectory is defined as ݈௜,	ୱ୫ = ∑ ௝݀,ୱ୫௡೔ିଵ௝ୀଵ , (8)

where ݊௜ is the number of tracklets in the ݅-th trajectory.

• Velocity change loss

Since the velocity of vehicles cannot change abruptly, we
use acceleration to measure the velocity change between
two adjacent tracklets. If high acceleration is detected in the
connected region, the two tracklets are less likely to hold
the same identity. We calculate the maximum acceleration
around each endpoint of a tracklet as follows,

௝ܽ,ୱ୲ = max௧ୀ௧ೕ,౩౪ି௞,…,௧ೕ,౩౪ା௡ౡ ብܘ∗,ೕሺ௧ାଵሻାܘ∗,ೕሺ௧ିଵሻିଶܘ∗,ೕሺ௧ሻ൫௕ೕ,౭ሺ௧ሻమା௕ೕ,౞ሺ௧ሻమ൯భ/మ ብଶ, ௝ܽ,୬ୢ = max௧ୀ௧ೕ,౤ౚି௡ౡ,…,௧ೕ,౤ౚା௡ౡ ብܘ∗,ೕሺ௧ାଵሻାܘ∗,ೕሺ௧ିଵሻିଶܘ∗,ೕሺ௧ሻ൫௕ೕ,౭ሺ௧ሻమା௕ೕ,౞ሺ௧ሻమ൯భ/మ ብଶ, (9)

Then the velocity change loss is defined as ݈௜,୴ୡ = ∑ ൫ ௝ܽ,ୱ୲ + ௝ܽ,୬ୢ൯௡೔௝ୀଵ . (10)

• Time interval loss

 If a pair of adjacent tracklets have long time interval in
between, they are less likely to share the same trajectory.
The time interval loss is defined based on the difference
between two endpoint time stamps, 	ݐ௝ାଵ,ୱ୲ and ݐ௝,୬ୢ, of two
adjacent tracklets accordingly, ݈௜,୲୧ = max௝ ቂ൫ݐ௝ାଵ,ୱ୲ − ௝,୬ୢ൯ଷ/ͳͲ଺ቃ. (11)ݐ

• Appearance change loss

Reliable description of object appearance is key to the
reduction of identity switches, especially for nearby
vehicles with similar appearance. We propose a histogram-
based adaptive appearance model for the computation of
appearance change loss, which is elaborated in Section 3.4.

3.4. Histogram-based adaptive appearance modeling

The appearance model of the ݆-th tracklet, noted ܕ௝ ,
contains a set of ݊୫ observed concatenated histogram
vectors. ܕ௝ = ൛݉ଵ,௝, ݉ଶ,௝ , … ,݉௡ౣ,௝ൟ. (12)
In our experiments, we use a combination of RGB color
histogram, HSV color histogram, Lab color histogram,
Linear Binary Pattern (LBP) histogram and Histogram of

Oriented Gradients (HOG) histogram for feature
description. As there are 11 channels with 8 bins each, we
have each copy of ݉௞,௝ ∈ ℝ଼଼. For each tracklet, we keep ݊୫ copies of continuously updated {݉௞,௝} to “memorize”
variations of the appearance. The value in each bin is
normalized between 0 and 1. An example of feature maps
and the corresponding histograms is shown in Fig. 5.

To build and update this appearance model, each cropped
object region within the detected bounding box is used to
build histograms. When the observation is occluded by
other(s), the occluded area is removed from the object
region before our building the concatenated histograms of
visual features. The pixel values for histogram construction
are spatially weighted by Gaussian (kernel) distribution,

Fig. 4. Examples of smoothness loss between adjacent tracklets.
Top figures present two tracklets that belong to the same
trajectory. Bottom figures show two tracklets that do not belong to
the same trajectory. Black dots show the detected locations at time
t, i.e., ࢖෥௝ሺݐሻ and ࢖෥௝ାଵሺݐሻ. Red curves represent trajectories from
regression, i.e., ܘ∗,௝ሺݐሻ and ܘ∗,௝ା૚ሺݐሻ . Green dots show ݊୩
neighboring points on the red curves around the endpoints of the
tracklets at ݐ௝,୬ୢ and ݐ௝ାଵ,ୱ୲.

111

ሻ݌ሺݓ = exp ൤− 	‖௣ି௣೎‖మమଶሺ௪మା௛మሻ	൨, (13)

where ݌ denotes a pixel location in the visible object
region, ݌௖ denotes the center of mass of the visible area, and ݓ and ℎ are the width and height of the object region
respectively. The spatial weight ݓሺ݌ሻ is maximum around ݌௖ where the object usually occupies, which should be
emphasized in our feature description. As ݓሺ݌ሻ decreases
when ݌ gets further from ݌௖ , we can suppress the
background area.

Since the object instances that are closer to the camera
should enjoy more reliable appearance description, the
learning rate, noted ߙ௝ሺݐሻ, of ܕ௝ is inversely proportional
to the depths of vehicles’ 3D foot points, defined as ߙ௝ሺݐሻ = ୫୧୬೟స೟ೕ,౩౪,…,೟ೕ,౤ౚൣ஽ೕሺ௧ሻ൧஽ೕሺ௧ሻ , (14)

where ܦ௝ሺݐሻ denotes the depth. For each tracklet, ݊୫
concatenated histogram vectors extracted from instances
with the smallest depths are inserted into ܕ௝ . Any other
encountered histogram vector can be randomly swapped
with an existing element ݉௞,௝ with probability ߙ௝ሺݐሻ.

 Therefore, the appearance change loss in (2) can be
defined as ݈௜,ୟୡ = ∑ ∑ #ቄฮ௠ೖబ,ೕି௠ೖభ,ೕశభฮాவ	ఢౣቅ೙೘ೖభసభ೙೘ೖబసభ ௡೘మ , (15)

where ߳୫ = Ͳ.͵ is a threshold for histogram distance. The
loss in (15) is equivalent to the ratio of histogram vectors
from two appearance models that are mismatched. The
Bhattacharyya distance is adopted for the measurement of
histogram distance.
 After a group of tracklets are associated in SCT, their
appearance models are merged together based on depth
information following similar update scheme in (14). The
merged appearance model, noted ܕ௜, is used to describe the

appearance change along the entire vehicle trajectory,
which will be employed in ICT.

3.5. Optimization by bottom-up clustering

For the ݆-th tracklet, noted ௝߬, we compute the changes of
loss, noted ∆ ௝݈, for five separate operations (assign, merge,
split, switch and break) and select the operation with the
minimum loss-change value, i.e., ∆ ௝݈∗ = arg	min∆௟ೕ ൫∆ ௝݈,ୟୱ, ∆ ௝݈,୫୥, ∆ ௝݈,ୱ୮, ∆ ௝݈,ୱ୵, ∆ ௝݈,ୠ୩	൯, (16)

where ∆ ௝݈,ୟୱ , ∆ ௝݈,୫୥ , ∆ ௝݈,ୱ୮ , ∆ ௝݈,ୱ୵ and ∆ ௝݈,ୠ୩ respectively
stand for the changes of loss for assign, merge, split, switch
and break operations. If ∆ ௝݈ ∗ is greater than 0, which means
the loss increases after performing the selected operation,
no change is made for this tracklet. All tracklets are
iteratively clustered into trajectories until convergence.
Since the loss decreases or remains unchanged after each
selected operation, we are guaranteed to reach convergence.

• Assign operation

The trajectory set of ௝߬, noted ܵሺ݆ሻ, is a set of tracklets
including ௝߬ , which belongs to a trajectory. We search
through all the trajectory sets and assign ௝߬ to the trajectory
that generates the minimum loss. To be specific, the change
of loss after assign operation is given by ∆ ௝݈,ୟୱ = min௜ ቀ݈൫ܵሺ݆ሻ\ ௝߬൯ + ݈൫ܵ௜ ∪ ௝߬൯ቁ − ቀ݈൫ܵሺ݆ሻ൯ + ݈ሺܵ௜ሻቁ. (17)

The first term in (17) is the updated loss after assign
operation while the second term is the original loss.

• Merge operation

For each tracklet, we merge its trajectory set ܵሺ݆ሻ with
another trajectory set if lower loss can be obtained.
Similarly, the change of loss is calculated as ∆ ௝݈,୫୥ = min௜ ൫݈ሺܵሺ݆ሻ ∪ ௜ܵሻ൯ − ቀ݈൫ܵሺ݆ሻ൯ + ݈ሺ ௜ܵሻቁ. (18)

• Split operation

Split operation is used to split a tracklet from the current
trajectory set, which becomes an independent trajectory set.
The change of loss is defined as ∆ ௝݈,ୱ୮ = ቀ݈൫ ௝߬൯ + ݈൫ܵሺ݆ሻ\ ௝߬൯ቁ−݈൫ܵሺ݆ሻ൯. (19)

• Switch operation

For a trajectory set ܵሺ݆ሻ, we denote all the tracklets after ௝߬ as ܵୟ୤୲ሺ݆ሻ and all others as ܵୠୣ୤ሺ݆ሻ . In the switch
operation, ܵୠୣ୤ሺ݆ሻ and ௜ܵ,ୠୣ୤ are switched for the calculation
of the change of loss, ∆݈ୱ୵ = min௜ ቀ݈൫ܵୠୣ୤ሺ݆ሻ ∪ ௜ܵ,ୟ୤୲൯ + ݈൫ܵୟ୤୲ሺ݆ሻ ∪ ௜ܵ,ୠୣ୤൯ቁ − ቀ݈൫ܵሺ݆ሻ൯ + ݈ሺ ௜ܵሻቁ. (20)

• Break operation

Fig. 5. An example of the construction of an adaptive appearance
model. The first row respectively presents the RGB, HSV, Lab,
LBP and gradient feature maps for an object instance in a tracklet,
which are used to build feature histograms. The second row shows
the original RGB color histograms and the third row demonstrates
the Gaussian spatially weighted histograms, where the
contribution of background area is suppressed.

112

We split ܵሺ݆ሻ into ܵୟ୤୲ሺ݆ሻ and ܵୠୣ୤ሺ݆ሻ for the
computation of the change of loss in break operation, ∆݈ୠ୩ = ቀ݈൫ܵୠୣ୤ሺ݆ሻ൯ + ݈൫ܵୟ୤୲ሺ݆ሻ൯ቁ−݈൫ܵሺ݆ሻ൯. (21)

3.6. Feature fusion for ICT

Like SCT, another fusion of visual and semantic features
is extracted for ICT. Besides the histogram-based adaptive
appearance models for the computation of loss function in
SCT, we also exploit DCNN features, detected license
plates, detected car types and traveling time information in
our feature fusion. The loss function for ICT is defined as ܮ = ∑ ூே౬ூୀଵܮ ܫܮ , = ୟୡ,ܫܮ × ୬୬,ܫܮ × ୪୮,ܫܮ × ୡ୲,ܫܮ × ୲୲, (22),ܫܮ
where ୴ܰ is the number of vehicles appeared in all
cameras, ூܮ	 is the loss for the ܫ -th vehicle, ܮூ,ୟୡ is the
appearance change loss, ܮூ,୬୬ is the matching loss of
DCNN features, ܮூ,୪୮ is the license plate comparison loss, ܫܮ,ୡ୲ is the mis-classified car type loss, and ܮூ,୲୲ is the
traveling time loss.
 In two camera views for ICT, for each probe vehicle
trajectory, a trajectory from the gallery with the lowest loss
is selected for vehicle re-identification. If the selected loss
is considered too high, i.e., over a threshold ߳୐, the vehicle
is assigned a new identity.

• Appearance change loss

The computation of appearance change loss in ICT is
similar to SCT, except the appearance model merged from
all tracklets in a trajectory set is used to describe each
vehicle identity from a camera. The definition is as follows, ܮூ,ୟୡ = ∑ ∑ #൜ቛ௠ೖబ,೔౦ି௠ೖభ,೔ౝቛాவ	ఢౣൠ೙೘ೖభసభ೙೘ೖబసభ ௡೘మ , (23)

where ݅୮ and ݅୥ are the indices of probe and gallery for ܫ
respectively.

• Matching loss of DCNN features

For the extraction of DCNN features, we make use of the
GoogLeNet [22] model that is fine-tuned on the CompCars
[7] dataset. From each trajectory within a camera, we select
3 representative views of object instances. A 1024-dim

feature vector is extracted from each object instance, noted ௞݂,௜. Thus, the matching loss of DCNN features is given by
Bhattacharyya distance as ܮூ,୬୬ = ∑ ∑ ቛ௙ೖబ,೔౦ି௙ೖభ,೔ౝቛಳయೖభసభయೖబసభ ଽ . (24)

• License plate comparison loss

The license plates are essential to large-scale vehicle re-
identification. However, the resolution of the NVIDIA AI

City Dataset [9] is not sufficient to support automatic
license plate recognition, which brings about a major
challenge in ICT. Hence, we propose a license plate
comparison scheme for low-resolution images. The process
of license plate comparison is demonstrated in Fig. 6.

First, we train another DCNN model [15] to detect the
license plate region in each cropped vehicle image. For each
trajectory set, 3 representative views of object instances are
selected for license plate recognition. The license plate
detector is run on cropped vehicle images and the detected
region with the highest score is chosen for comparison.
Then, all the characters are segmented based on a vertical
histogram that finds gaps between the plate characters. An
Optical Character Recognition (OCR) phase analyzes each
character independently, which generates the most possible
characters and the confidence. If the confidence scores of
two license plates are both above a threshold ߳୪୮ = Ͳ.8, the
recognized characters are considered correct. The license
plate comparison loss is thus calculated as the portion of
characters that are mismatched, ܮூ,୪୮ = ∑ ቂ௦೔౦ሺ௞ሻ⋀௦೔భሺ௞ሻቃౣ౟౤൬ฬೞ೔౦ฬ,ฬೞ೔ౝฬ൰ೖసభ ୫୧୬ቀቚ௦೔౦ቚ,ቚ௦೔ౝቚቁ , ௜౦ݎ > ߳୪୮	&	ݎ௜ౝ > ߳୪୮, (24)

where ݏ௜ denotes the string of characters of a license plate
and ݎ௜ is the corresponding confidence of recognition.
 Otherwise, if either of the license plates fails to be
recognized properly, which is common for low-quality
images, the cropped images of license plate regions are
normalized and segmented into binary images by Otsu’s
method for comparison. Because of potential perspective
difference between two license plates, we perform ୮ܰ୲ =ͳͲͲ random perspective transforms on the gallery image.
Each transformed image is compared with the probe image

Fig. 6. Demonstration of license plate comparison in low resolution. The confidence score in OCR for the license plate above is
considered too low. The segmented binary license plate images are used for calculating the comparison loss.

113

by bitwise OR operation. In this scenario, the license plate
comparison loss is proportional to the 1’s in the combined
binary image, ܮூ,୪୮ = minଵ,ଶ,…,ே౦౪ ∑ ቂ௚೔౦ሺ௞ሻ∨௚ഢౝ෦ ሺ௞ሻቃ೙ౢ౦ೖసభ ௡ౢ౦ , ௜౦ݎ ≤ ߳୪୮	|	ݎ௜ౝ ≤ ߳୪୮, (25)

where ݃௜ is the binary image of a license plate and ݊୪୮
represents the normalized size of license plate images. In
each of the ୮ܰ୲ iterations, ݃ప෥ gives a randomly perspective
transform of ݃௜.
• Mis-classified car type loss

From the output of our DCNN-based object detector [15],
the vehicle types in 8 categories can be derived. Along a
trajectory set in a video, the majority vote of car type, noted ܿ௜, can be used to inform the vehicle identity. Hence, the
mis-classified car type loss can be computed as follows ܮூ,ୡ୲ = ቊͲ,																			ܿ௜౦ = ܿ௜ౝͲ.ͷ,																ܿ௜౦ ≠ ܿ௜ౝ . (26)

• Traveling time loss

From SCT in 3D space, we can compute the driving
speed of each vehicle. From the given driving distance
between two cameras, the expected traveling time can thus
be estimated. The traveling time loss is designed as a
normal distribution around the mean of the expectation, ܮூ,୲୲ = ݂ ቆݐ௜ౝ,ୱ୲ − |௜౦,୬ୢݐ ௗ೔౦,೔ౝ௩೔౦ , ଵଶగቇ, (27)

in which ݂ሺ∙ሻ is the pdf of normal distribution, ݀௜౦,௜ౝ

indicates the traveling distance between two cameras and ݒ௜౦ is the estimated 3D speed. ܮூ,୲୲ is applied only when

there is time overlap between two video sequences.

4. Experimental results

Our proposed method is submitted for evaluation on the
NVIDIA AI City Challenge 2018, in which we participate in
both tracks of 3D speed estimation and multi-camera
tracking. Our team achieves the rank #1 in each of the two
tracks. The visualization of our qualitative performance in
each track is made available at the following link
http://allison.ee.washington.edu/thomas/aicity18/. Detailed
analyses on our performance are as follows.

4.1. 3D speed estimation

The dataset for traffic flow analysis consists of 27 videos,
each 1 minute in length, recorded at 30 fps and 1080p
resolution. Our task is to estimate the speed of all vehicles
on the main thruways in all frames of all given videos. The
ground-truth speed data have been collected via in-vehicle
tracking for a subset of cars in each video, which we call
ground-truth vehicles. The evaluation is based on the ability
to localize these vehicles and predict their speed. The
performance evaluation score for this track is computed as ܵͳ = ܴܦ × ሺͳ − ሻ, (28)ܧܵܯܴܰ
where ܴܦ is the detection rate and ܴܰܧܵܯ is the
normalized Root Mean Square Error (RMSE) of speed. The ܵͳ score ranges between 0 and 1, and higher ܵͳ scores are
better. ܴܦ is computed as the ratio of detected ground-truth
vehicles and the total number of ground-truth vehicles. A
vehicle is said to be detected if it was localized in at least
30% of frames it appeared in. A vehicle is localized if at
least one predicted bounding box exists with Intersection-

Over-Union (IOU) score of 0.5 or higher relative to the
annotated bounding box for the vehicle. ܴܰܧܵܯ is the
normalized RMSE score across all teams, obtained via min-
max normalization given all team submissions.

There are 13 submissions in total for this track. The
quantitative comparison of ܵͳ scores across all teams is
presented in Table 1. Our method achieves perfect ܴܦ
score, as the association of tracklets based on clustering
operations can maximize the utility of detected bounding
boxes. We also generate the lowest RMSE (4.0963 mi/h) in
speed estimation, as the proposed camera calibration
scheme can minimize reprojection error on the ground
plane, which leads to robust speed estimation after SCT.

4.2. Multi-camera tracking

The dataset for multi-camera vehicle detection and re-
identification contains 15 videos, each around 0.5-1.5 hours
long, recorded at 30 fps and 1080p resolution. The task for
each team is to identify all vehicles that pass through each
of the 4 recorded locations at least once in the given set of
videos. This track is evaluated based on tracking accuracy
and localization sensitivity for a set of ground-truth vehicles
that were driven through all camera locations. Specifically,
the evaluation score is computed as

Table 1. Quantitative comparison
of speed estimation on the

NVIDIA AI City Dataset [9]

Rank Team S1 Score

1 Ours 1.0000

2 team79 0.9162

3 team78 0.8892

4 team24 0.8813

5 team12 0.8331

6 team4 0.7924

7 team65 0.7654

8 team6 0.7174

9 team40 0.6564

10 team26 0.6547

11 team18 0.6226

12 team45 0.5953

13 team39 0.0000

Table 2. Quantitative comparison
of multi-camera tracking on the

NVIDIA AI City Dataset [9]

Rank Team S3 Score

1 Ours 0.7106

2 team37 0.2861

3 team79 0.0785

4 team18 0.0074

5 team28 0.0026

6 team41 0.0024

7 team53 0.0002

8 team6 0.0001

9 team10 0.0000

10 team31 0.0000

* Bold entries indicate the rank
#1 in each comparison.

114

ܵ͵ = Ͳ.ͷ × ሺܴܶܦ + ܴܲሻ, (29)
where ܴܶܦ is the trajectory detection rate and ܴܲ is the
localization precision. The ܵ͵ score ranges between 0 and
1, and higher ܵ͵ scores are better. ܴܶܦ is the ratio of
correctly identified ground-truth vehicle trajectories and the
total number of ground-truth vehicle trajectories. ܴܲ is the
ratio of correctly localized bounding boxes and the total
number of predicted boxes across all videos.
 There are 10 teams submitted to this track, whose
performance is summarized in Table 2. As can be seen,
vehicle re-identification under low resolution is such a
challenging task that most teams cannot identify even a
single vehicle across all 4 locations, which leads to zero ܴܶܦ and heavily penalized ܴܲ . However, with the
effective fusion of visual and semantic features in ICT, our
proposed method can successfully identify 3 out of 7
ground-truth vehicles with a ܴܲ of 0.9925.

5. Conclusion

In this paper, we propose a multi-camera tracking system
based on fusion of visual and semantic features. In SCT, the
loss function consists of motion, temporal and appearance
attributes. Especially, a histogram-based adaptive
appearance model is designed to encode long-term
appearance change for enhanced robustness. The change of
loss is incorporated with a bottom-up clustering strategy for
the association of tracklets. Furthermore, the proposed
appearance model together with DCNN features, license
plates, detected car types and traveling time information are
combined for the computation of cost function in ICT.
Finally, robust 2D-to-3D backprojection is achieved with
EDA optimization applied to camera calibration. Our
superior performance in both speed estimation and vehicle
re-identification is presented in the experimental results on
the NVIDIA AI City Dataset [9].

Acknowledgment

The authors would like to thank many people who helped in the
improvement of the performance of the proposed system: Chen
Bai, Ge Bao, Jiarui Cai, Bill Cheung-Daihe, Tianhang Gao, Yijin
Lee, Ching Lu, Shucong Ou, Ningyang Peng, Mingxin Ren,
Jingwen Sun, Yi-Ting Tsai, Yun Wu, Chumei Yang, Xiao Tan,
Hao Yang, and Jiacheng Zhu.

References

[1] T. Liu, Y. Liu, Z. Tang and J.-N. Hwang. Adaptive ground
plane estimation for moving camera-based 3D object
tracking. IEEE Int. Workshop Multimedia Signal Processing,
2017.

[2] J. Sochor, J. Špaňhel and A. Herout. BoxCars: Improving
fine-grained recognition of vehicles using 3-D bounding
boxes in traffic surveillance. IEEE Trans. Intelligent
Transportation Syst., 2018.

[3] K.-H. Lee, J.-N. Hwang and S.-I Chen. Model-based vehicle
localization based on three-dimensional constrained

multiple-kernel tracking. IEEE Trans. Circuits Syst. Video
Technol., 25(1):38-50, 2014.

[4] A. Milan, S. Roth and K. Schindler. Continuous energy
minimization for multitarget tracking. IEEE Trans. Pattern
Analysis & Machine Intelligence, 36(1):58-72, 2014.

[5] A. Milan, K. Schindler and S. Roth. Multi-target tracking by
discrete-continuous energy minimization. IEEE Trans.
Pattern Analysis & Machine Intelligence, 38(10):2054-2068,
2016.

[6] X. Liu, W. Liu, H. Ma and H. Fu. Large-scale vehicle re-
identification in urban surveillance videos. Proc. IEEE Int.
Conf. Multimedia Expo, 2016.

[7] L. Yang, P. Luo, C. C. Loy and X. Tang. A large-scale car
dataset for fine-grained categorization and verification. Proc.
IEEE Conf. Comput. Vis. Pattern Recogn., 3973–3981, 2015.

[8] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D.
Psoroulas, V. Loumos and E. Kayafas, E. License plate
recognition from still images and video sequences: A
survey. IEEE Trans. Intelligent Transportation Syst.,
9(3):377-391, 2008.

[9] NVIDIA AI City Challenge – Data and Evaluation. [Online]
Available: https://www.aicitychallenge.org/?page_id=9.

[10] C.-T. Chu, J.-N. Hwang, H.-Y. Pai and K.-M. Lan. Tracking
human under occlusion based on adaptive multiple kernels
with projected gradients. IEEE Trans. Multimedia, 15:1602-
1615, 2013

[11] Z. Tang, J.-N. Hwang, Y.-S. Lin and J.-H. Chuang. Multiple-
kernel adaptive segmentation and tracking (MAST) for
robust object tracking. Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing, 1115-1119, 2016.

[12] Z. Tang, G. Wang, T. Liu, Y.-G. Lee, A. Jahn, X. Liu, X. He
and J.-N. Hwang. Multiple-kernel based vehicle tracking
using 3D deformable model and camera self-calibration.
arXiv preprint arXiv:1708.06831, 2017.

[13] Z. Tang, Y.-S. Lin, K.-H. Lee, J.-N. Hwang, J.-H. Chuang
and Z. Fang. Camera self-calibration from tracking of
moving persons. Proc. Int. Conf. Pattern Recognition, 260-
265, 2016.

[14] Z. Tang, R. Gu and J.-N. Hwang. Joint multi-view people
tracking and pose estimation for 3D scene reconstruction.
Proc. IEEE Int. Conf. Multimedia Expo, 2018.

[15] J. Redmon and A. Farhadi. YOLO9000: Better, Faster,
Stronger. arXiv preprint arXiv: 1612.08242, 2016.

[16] B. Caprile and V. Torre. Using vanishing points for camera
calibration. Int. J. Computer Vision, 4(2):127-139, 1990.

[17] Google Maps. [Online] Available: https://maps.google.com/.
[18] P. Larranaga and J. A. Lozano. Estimation of distribution

algorithms: A new tool for evolutionary computation.
Springer Science & Business Media, 2nd edition, 2002.

[19] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi, J.
Lim, M.-H. Yang, S. Lyu. UA-DETRAC: A new benchmark
and protocol for multi-object detection and tracking. arXiv
preprint arXiv:1511.04136, 2015.

[20] G. Wang, J.-N. Hwang, K. Williams and G. Cutter. Closed-
loop tracking-by-detection for ROV-based multiple fish
tracking. Int. Conf. Pattern Recognition Workshop Comput.
Vis. Analysis Underwater Imagery, 7-12, 2016.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich.
Going deeper with convolutions. Proc. IEEE Conf. Comput.
Vis. Pattern Recogn., 2015.

115

