
Traffic Flow Analysis with Multiple Adaptive Vehicle Detectors and

Velocity Estimation with Landmark-based Scanlines

Minh-Triet Tran ∗1, Tung Dinh-Duy1, Thanh-Dat Truong1, Vinh Ton-That1, Thanh-Nhon Do1,

Quoc-An Luong1, Thanh-An Nguyen1, Vinh-Tiep Nguyen2, and Minh N. Do3

1University of Science, VNU-HCM, Vietnam
2University of Information Technology, VNU-HCM, Vietnam

3University of Illinois at Urbana-Champaign, U.S.

Abstract

In this paper, we propose our method for vehicle detec-

tion with multiple adaptive vehicle detectors and velocity

estimation with landmark-based scanlines. Inspired by the

idea for tiny object detection, we use Faster R-CNN with

Resnet-101 to create different specialized vehicle detectors

corresponding to different levels of details and poses. We

propose a heuristic to check the fitness of a particular ve-

hicle detector to a specific region in camera’s view by the

mean velocity direction and the mean object size. By this

way, we can determine an adaptive set of appropriate ve-

hicle detectors for each region in camera’s view. Thus our

system is expected to detect vehicles with high accuracy,

both in precision and recall, even with tiny objects.

We exploit the U.S. road rules for the length and distance

of broken white lines on roads to propose our method for

vehicle’s velocity estimation using such landmarks. We de-

termine equally-distributed scanlines, virtual parallel lines

that are nearly-perpendicular to the road direction, with

reference to the line connecting the corresponding ends of

multiple broken white lines. From the timespan for a vehicle

to cross two consecutive virtual scanlines, we can calculate

the average vehicle’s velocity within that road segment. We

also refine the speed estimation by detecting when a vehicle

stops at a traffic light, and smooth the results with a moving

average filter. Experiments on the dataset of Traffic Flow

Analysis from NVIDIA AI City Challenge 2018 show that

our method achieves the perfect detect rate of 100%, the

average velocity difference of 6.9762 mph on freeways, and

8.9144 mph on both freeways and urban roads.

∗Corresponding author. Email: tmtriet@fit.hcmus.edu.vn

1. Introduction

More and more surveillance cameras have been deployed

in most countries worldwide to capture information, mostly

in visual format, of traffic systems. This valuable data

source provides potential insights for various practical ap-

plications and utilities, such as traffic jam prediction, smart

transportation services, urban planning, etc. However, ana-

lyzing to understand visual data from surveillance cameras

is still a challenging problem because of the huge amount

of data, the lack of annotated corpus and efficient models

for visual analysis and understanding, etc.

Various tasks on traffic video analysis are becoming pop-

ular, such as vehicle detection and localization [23, 11] ,

car fluent recognition [14], velocity estimation [8, 12], ve-

hicle re-identification [16, 1, 21], vehicle type classification

[13, 22]. In this paper, we focus on a fundamental task to

detect vehicles and estimate their speeds. For vehicle de-

tection, we propose to use multiple adaptive vehicle detec-

tors to capture and localize vehicles in different poses and

at different distances from the camera. Specifically, we use

Faster R-CNN with Resnet-101 to train three detectors: the

first detector is for the front and back views of a vehicle, the

second one is for the side view of a vehicle, and the last one

is for tiny instances of vehicles.

For velocity estimation, it is essential to map the distance

in an image to the distance in reality. When such mapping

is available or can be determined, it is possible to develop

different methods for velocity estimation with either tradi-

tional techniques or deep networks. For example, using an-

notated data with relative position and velocity generated

by range sensors, Kampelmuehler et.al. propose to use spa-

tiotemporal depth and motion features [12] for velocity es-

timation.

100



When there is no direct information about real-world dis-

tance or velocity, it is possible to exploit the dimensions of

a known-type vehicle to measure the actual distance it runs

on the road surface. By this way, the real distance between

certain pairs of points in the road surface can be inferred.

In this paper, we aim to propose a method for veloc-

ity estimation with limited source of information. Our

method depends only on the information of the traffic sys-

tem itself, without extra information from vehicles or an-

notated data on vehicle’s position or velocity. In our

method, we exploit the landmarks, i.e. broken white lines

on road surfaces, based on the U.S. road rules. We generate

equally-distributed scanlines, parallel lines that are nearly-

perpendicular to the road direction, with reference to the

line connecting the corresponding ends of multiple white

dotted lines. We detect the time instance when a vehicle

runs across a scanline, calculate the timespan that vehicle

spends to move between two consecutive scanlines, and in-

fer the speed of that vehicle. In fact, our method can be used

for the calibration task even when there is no vehicle mov-

ing on the street and without annotated data on vehicle’s

position or velocity.

We conduct experiments on the dataset of Track 1 – Traf-

fic Flow Analysis of NVIDIA AI City Challenge 2018. Ex-

perimental results show that our method for vehicle detec-

tion with multiple adaptive detectors achieves the perfect

detect rate of 100%, higher than using only one detector as

in traditional methods, such as Yolo, Faster R-CNN, SSD,

etc. Furthermore, our idea of using multiple adaptive detec-

tors can also be applied for different problems, such as face

detection at different distances, resolutions, and poses.

Experiments show that our method can determine the

speed of a vehicle with high accuracy (the difference of less

than 7 mph) for locations with complete and regular land-

mark patterns, such as in free ways. However, our method

might be affected in urban areas, especially at cross roads,

where the landmark patterns might be incomplete or irreg-

ular. In our experiments, the difference at a cross roads

can be up to 11.9049 mph. On average, the velocity root

mean square error of our method for the dataset of Track 1

in NVIDIA AI City Challenge 2018 is 8.9144 mph.

The content of this paper is as follows. In Section 2, we

briefly review existing methods and approaches for object

detection and vehicle tracking. We propose our method for

traffic flow analysis with multiple adaptive vehicle detectors

and landmark-based scanlines in Section 3. Experimental

results on the dataset of Track 1 - AI City Challenge 2018

are presented and discussed in Section 4. Conclusions and

future works are in Section 5.

2. Related Work

In this section, we first present briefly several tasks on

traffic analysis recently in Section 2.1, then we discuss

about the common method for object detection in the gen-

eral cases (Section 2.2) and the case of small instances (Sec-

tion 2.3).

2.1. Traffic Analytic

With the abundant availability of video data from surveil-

lance cameras, it is an urgent need to develop algorithms

to process such data for valuable insight understanding for

better traffic management and other smart services.

One of the fundamental tasks for traffic video analysis

is object detection and localization for scene layout aware-

ness [23] or vehicle localization [11] in traffic surveillance.

Detected vehicles can then be classified into known vehicle

types [13, 22] or further processed for car fluent recognition

[14].

Vehicle velocity estimation is one of the traditional prob-

lems in traffic surveillance [2, 8].This problem can be

solved with classical techniques, such as object tracking and

optical flow, and can take advantage of new achievements

in deep networks [12]. Extra information from LIDAR or

other sensors and annotated data may be exploited to train

networks for location and velocity estimation.

Vehicle re-identification is also a challenging task for

traffic video analysis. X. Liu et. al. propose a large

scale benchmark dataset facilitate vehicle re-identification

research [16]. The dataset is collected with 20 cameras that

record unconstrained traffic scene and over 40,000 bound-

ing boxes of 619 vehicles are labeled. There are at least 2

cameras the capture a single vehicle in different viewpoints,

illuminations, and resolutions so that the dataset provide

high recurrence rate for vehicle re-identification.

Y. Shen et. al. introduce an incorporating addi-

tional spatio-temporal information for solving the chal-

lenging re-identification task [21]. A chain MRF model

with a deeply learned potential function generates candi-

date visual-spatio-temporal path when a pair of vehicle im-

ages with their spatio-temporal information is given. A

Siamese-CNN takes the candidate path as well as the pair-

wise queries to generate their similarity score.

2.2. Object Detection Networks

The application of Deep Learning in Computer Vision

using Convolutional Neural Network (CNN) approach has

improved significantly and achieved good results in various

tasks, especially in object detection. R-CNN [6] is one of

the pioneers and there are many methods have been devel-

oped based on R-CNN, such as Fast R-CNN[5] or Faster

R-CNN [20], which can be considered as a state-of-the-art

architecture in Object Detection. However, the representa-

tions in R-CNN and its related methods cost lots of time

to run on an image completely. To overcome this ‘draw-

back’, YOLO [18, 19] and SSD [15] use local information

to predict object, instead of extracting Region-of-Interesting

101



Multiple Adaptive 

Vehicle Detectors

Vehicle 

Tracking

Velocity 

Estimation

Velocity 

Refinement

Final 

Result

(a) (b) (c) (d)

Figure 1. Overview of the proposed method with four main parts. (a) input frame, (b) frame with detected bounding boxes, (c) frame with

bounding boxes and vehicle IDs, (d) frame with velocity value for each vehicle.

before moving to classifier like Faster R-CNN to save time

and can run in real-time condition.

Because Faster R-CNN is the state-of-the-art method for

object detection, we adopt this method in our proposed

method for multiple adaptive vehicle detectors (see Section

3.1).

The key features of Faster R-CNN are (1) CNN base

which extracts high level features of an image and (2) Re-

gion Proposal Network (RPN) that shares full-image above

convolutional features with the detection network, thus en-

abling nearly cost-free region proposals [20]. An RPN is

a fully convolutional network that takes an image as an in-

put and the output is a set of rectangle object proposal, each

with an object score. The RPN is trained end-to-end to gen-

erate high-quality region proposals, which are used by Fast

R-CNN for detection.

Most of ‘normal’ CNN architecture are built with numer-

ous stacked layers which leads to the network might learn

unreferenced information and loose some important feature

when it becomes deeper. To tackle that problem, ResNet is

a potential idea to improve ‘original’ Faster R-CNN [7]. We

choose ResNet-101 variation because its top-1 and top-5 er-

rors are nearly the same with ResNet-152 on ImageNet[3].

2.3. Small Object Detection

Although existing methods may be used directly to de-

tect objects in different scales and levels of details, recent

works focus on creating dedicated solutions for small ob-

ject detection to adapt the detection process for the domains

of tiny visual instances.

Christian Eggert et al. propose a method for small ob-

ject detection in Faster R-CNN [4] by theoretically exam-

ine the problem of small objects at the proposal stage. De-

rive a relationship which describes the minimum object size

which can reasonably be proposed and provide a heuristic

for choosing appropriate anchor scales. They perform de-

tailed experiments which capture the behavior of both the

proposal and the classification stage as a function of object

size using features from different feature maps. Deeper lay-

ers are potentially able to deliver features of higher quality

which means that individual activations are more specific

to input stimuli than earlier layers. They show that in the

case of small objects, features from earlier layers are able

to deliver a performance which is on par with and -can even

exceed the performance of features from deeper layers.

Duy Nguyen et al. focus on evaluating real-time model

for small object detection [17], specifically, YOLO and

SSD. The paper shows that if we focus on detecting small

objects in real time and trade off a little about accuracy,

YOLO554 is the best choice. On the other hand, if we con-

centrate on accuracy and do not care about the other aspects

we can choose models whose sizes of an input are close to

the average size of the real image. If objects are in 10% -

20% of an image, SSD get better results than versions of

YOLO, especially SSD512. If objects are less than 10% of

an image, the YOLO get better than SSD.

For tiny face detection, Peiyun Hu and Deva Ramanan

[9] explore three aspects of the problem in the context of

finding small faces: the role of scale invariance, image res-

olution, and contextual reasoning. Most recognition ap-

proaches aim to be scale-invariant, but it is really not suit-

able for small face. They take a different approach and

train separate detectors for different scales. To maintain ef-

ficiency, detectors are trained in a multi-task fashion: they

make use of features extracted from multiple layers of sin-

gle (deep) feature hierarchy. In addition, they show that

context is crucial, and define templates that make use of

massively-large receptive fields (where 99% of the template

extends beyond the object of interest). Finally, they ex-

plore the role of scale in pre-trained deep networks, provid-

ing ways to extrapolate networks tuned for limited scales to

rather extreme ranges.

102



3. Proposed Method

Figure 1 illustrates the overview of our proposed method

with four main parts. We first detect all vehicles in a video

clip using multiple vehicle detectors to adapt to different

regions in a camera’s view (Section 3.1). Then we track

the trajectory of a vehicle by linking detected bounding

boxes in consecutive frames based on the overlapped

region of bounding boxes (Section 3.2). We estimate the

velocity of a vehicle exploiting the landmarks on a road

using multiple scanlines, parallel lines that are nearly

perpendicular to the main moving direction of a lane in that

road (Section 3.3). Finally, we propose several techniques

for velocity refinement (Section 3.4). Both our code and

models are available online at https://github.

com/HCMUS-Smart-Environment-Group/

AICItyChallenge2018.

3.1. Vehicle Detection with Multiple Adaptive Ob­
ject Detectors

3.1.1 Multiple Adaptive Object Detectors

We adopt Faster R-CNN with ResNet-101 for vehicle de-

tection. Although Faster R-CNN is an ideal method for

multi-scale object detection, it is still not good enough for

detecting small objects[17]. Therefore, we propose to use

multiple object detectors to efficiently detect vehicles in dif-

ferent areas of a camera’s view. Based on the mean velocity

direction and the mean size of a vehicle’s bounding box in

each region of the frame, we determine the appropriate de-

tectors from our collection of vehicle detectors that should

be applied in that region. By this way, we can both increase

the recall and reduce false positive vehicles.

Specifically, we create a detector set D with 3 Faster R-

CNN detectors: (1) a detector D1 for the front and back

views of a vehicle, (2) a detector D2 for the side view of

a vehicle, and (3) a detector D3 for a tiny vehicle which is

very far from the camera.

Annotate 

boxes

Train detector 

for front and

back views

Generate 

low-res data

High-res 

training data

Train detector 

for side view

Low-res 

training data

Train detector 

for tiny instances

Figure 2. Process to train multiple vehicle detectors.

To train detectors in D, we select only 1000 frames, ap-

proximately 2% frames in all video clips, for manual anno-

tation. Instead of detecting all vehicles in selected frames

for training, we only annotate, on average, 10 most visible

vehicles per frame. We define 2 groups of vehicle instances:

front or back views, and side view. In total, we have about

7000 bounding boxes for front and back views, and about

3000 bounding boxes for side views.

We do not create training samples for tiny instances of

vehicles directly from training frames because such task is

difficult, unnecessary, and the boundary for such instance

may not be precisely annotated. Instead, we generate train-

ing samples for tiny instances but applying a low pass filter

to the high resolution (and high quality) training samples

(see Figure 2).

For vehicle detection process, in our preliminary imple-

mentation, we forward each frame through all detectors in

D, extract all bounding boxes, and apply non-maximum

suppression to get the final detection result. As each detec-

tor may be appropriate just for certain areas in a camera’s

view, applying a detector to an inappropriate region may

produce false positive vehicles.

3.1.2 Region-based Adaptive Set of Detectors

(a) Input frame

(b) Optical flow for moving entities ;ĐͿ Bloďs to estimate vehiĐle’s size

Figure 3. Velocity direction estimation and vehicle’s estimation

using FlowNet. (a) input frame, (b) optical flow of vehicles - the

color represents the flow direction, (c) blobs to evaluate the size of

each vehicle.

As the camera is fixed, we propose a heuristic to evaluate

the fitness of a detector Di ∈ D with certain area in a frame

based on the profile of the detector and that of each region

in the camera’s view.

The profile for each detector Di is defined from its train-

ing data, including the distribution of velocity direction and

the distribution of vehicle’s size. Each distribution can be

represented by its mean and standard deviation. For each

training sample of a vehicle, we use not only its bounding

box but also the instant flow map, generated by FlowNet

[10], at the corresponding frame. The velocity direction of

each training sample is defined as the mean of flow map

directions.

103

https://github.com/HCMUS-Smart-Environment-Group/AICItyChallenge2018
https://github.com/HCMUS-Smart-Environment-Group/AICItyChallenge2018
https://github.com/HCMUS-Smart-Environment-Group/AICItyChallenge2018


To split the camera’s view into appropriate regions, we

first determine the main moving direction at each pixel as

the mean of (non-zero) velocity direction at that pixel over

multiple frames. Then we evaluate the average blob size

of moving vehicle at each pixel over time/ Finally, we can

define the profile at each pixel or even a certain region in

the camera’s view by the distribution of velocity direction

and the distribution of blob size. Figure 3 illustrates our

usage of FlowNet to determine the main velocity direction

and blobs of moving vehicles for a given frame.

Using our proposed heuristic, we can divide a frame into

multiple regions, each corresponds to a subset of D that

should be applied to that region.

3.2. Vehicle Tracking with Overlapped Bounding
Boxes in Consecutive Frames

Because the existence of a vehicle is continuous frame-

by-frame, we use a simple technique to track vehicles based

on the previous frame. For each bounding box B1 in the

current frame, we find a bounding box B2 at the previous

frame with the highest IoU rate (Intersection of Union, (1)).

IoU (B1, B2) =
‖B1 ∩B2‖

‖B1 ∪B2‖
(1)

If the IoU score is greater than a certain threshold, we

link the two bounding boxes B1 and B2. By this way, we

can create a sequence of bounding boxes of a vehicle in a

video clip. We assign the same vehicle ID for all tracked

bounding boxes of one vehicle in a video clip. Figure 4 vi-

sualizes the trajectories of certain vehicles with our simple

tracking technique. Experiments show that this method is

sufficient to follow a vehicle in traffic video from a surveil-

lance camera, even when it changes its moving direction,

such as turning left, right, or U-turn.

(b) Moving with curve path(a) Moving with straight path

Figure 4. Trajectories of tracked vehicles. (a) vehicles move in

straight lines (b) a vehicle moves forward then turns right.

3.3. Velocity Estimation with Scanlines based on
Landmarks

Estimating the distance in real world between two pixels

in an image is the essential step of speed estimation and this

calibration task can be done only once.

In this section, we present our proposed method for ap-

proximate calibration based on U.S. road rules for broken

white lines painted in roads. According to US Department

(a) (b) 

Figure 5. Landmarks and virtual scanlines on road surface. (a)

landmarks with broken line marking pattern (b) virtual scanlines

that connect corresponding ends of multiple broken line segments.

of Transportation, in each broken white line, each segment

has a standard length of 10 feet, and the gap between two

consecutive segments is 30 feet (see Figure 5a). Thus the

distance between the first point of a 10-feet segment 1 and

the first point of segment 2 in the same dash line is expected

to be 40 feet.

As dash lines in the same driving direction are parallel,

the 4 first points of the 4 white line segments in 2 adjacent

dash lines usually form a rectangle, or at least a parallel-

ogram. Therefore, we propose to draw a virtual scanline

passing through the first points of 2 white line segments of

2 adjacent parallel dash lines, and the distance d between

the 2 consecutive scanlines is 40 feet (see Figure 5b)

There are 3 cases to estimate the velocity of a vehicle:

1. The vehicle crosses through at least 2 scanlines

2. The vehicle crosses only 1 scanline

3. The vehicle doest not cross any scanline.

The first case is the main scenario we use for speed es-

timation. Let fi and fi+1 be the frame index when a vehi-

cle goes across the ith and (i+1)th scanlines, respectively.

Figure 6 illustrates our strategy to determine the time instant

when a vehicle first crosses a scanline. If the vehicle runs

toward the camera, its front is not occluded and crosses the

scanline before other parts in the vehicle. Then we choose

the frame when the bounding box of a vehicle first hits the

scanline. If the vehicle runs away from the camera, its back

is visible and crosses the scanline after all other parts in the

vehicle. In this situation, we choose the frame when the

bounding box of a vehicle last hits the scanline.

The timespan (in seconds) for the vehicle to run the dis-

tance d is 40 feet between two consecutive scanlines is

t = (f2−f1)
fps

where fps is the frame rate of the video clip.

The average velocity of the vehicle between the two scan-

lines can be determined with a simple formula v = d/t. In

the case that the vehicle hits only 1 scanline, we suppose its

velocity v = 0. For the last case, we cannot determine the

velocity when there is no collision between the bounding

104



Figure 6. Strategy to determine when a vehicle runs across a virtual

scanline. (a) the vehicle runs toward the camera, its front is visible

and hits first with the scanline (b) the vehicle runs far away from

the camera, its back is visible and hits last with the scanline

box of a vehicle and any scanline, so we set its velocity v to

infinity.

3.4. Velocity Refinements

Using our proposed method for velocity estimation with

landmark-based scanlines, we can successfully determine

the velocity of a vehicle when it actually runs continuously

between consecutive virtual scanlines. This assumption is

true for vehicles in freeways. However, in urban areas, es-

pecially at crossroads, a vehicle should slow down its speed

when it approaches an intersection, stop at a red traffic light,

and accelerate its speed when the traffic light turns green.

Therefore, it is necessary to detect when a vehicle stops to

better estimate its speed.

For each vehicle in a frame, we calculate the color simi-

larity in its bounding box between the current and previous

frames using the cosine similarity. If the visual data in its

bounding box is nearly the same in two consecutive frames,

the vehicle is considered to be in the idle state (or with ne-

glected movement). By this way, we can determine the state

(Moving or Stopped) of a vehicle in each frame. We also

smooth the sequence of states using a smoothing window

with the size of 30 frames (equivalent to 1 second).

After smoothing the sequence of moving states of a ve-

hicle, we assign the velocity of that vehicle to be 0 (mph)

when it is in Stopped state. We use linear interpolation to

estimate the velocity for the vehicle when it slows down or

accelerates its speed.

4. Evaluation on NVIDIA AI City Challenge

2018

In this section, we first present the dataset and metrics

used to evaluate our proposed method. Then we study the

improvement of our method with multiple adaptive vehicle

detectors over existing methods, such as YOLO, Faster R-

CNN (Section 4.2). Finally, we evaluate the velocity error

of our method in two main environmental contexts: free-

ways without crossroads and traffic lights, and roads in ur-

ban areas (see Section 4.3).

4.1. Dataset

We conduct the experiments with our proposed method

on the dataset of Track 1 - Traffic flow Analysis in NVIDIA

AI City Challenge 2018. This dataset includes 27 video

clips recorded from fixed cameras at 4 different locations

in California, U.S.A. The duration for each clip is 1 minute

with 1800 frames in total.

For the first two locations (with 16 clips), traffic flow

is recorded on I-280 highway. There are only two oppo-

site driving directions along the vertical axis of the video

clip. As there is no intersection or traffic lights, each ve-

hicle runs at a nearly-constant speed without any direction

change, such as turning left, right, or U-turn. These two lo-

cations are ideal case for our proposed method to estimate

velocity with landmark-based scanlines (see Section 3.3).

For the last two locations (with 11 clips), the video clips

show the traffic data at intersections with traffic lights in

urban areas. A vehicle may slow down or accelerate its

speed, stop, or change it moving direction. This context

raises difficult yet practical issues for velocity estimation,

and demonstrates the importance and efficiency of the ve-

locity refinement step in our proposed method.

The detection rate (DR) is used to measure the accuracy

of vehicle detection. DR is the ratio of detected vehicles and

the total number of vehicles. Vehicle is considered as de-

tected if the intersection-over-union (IOU) score from 0.5 to

1.0 between its predicted bounding box and its ground truth

bounding box in at least 30% of its ground truth frames. The

speed estimate error is the root mean square error (RMSE)

of the ground truth vehicle speed and predicted speed for all

correctly localized ground-truth vehicles.

4.2. Detection Rate

(a) Our Detector (b) YOLO version 2

(c) YOLO version 3 (d) Original Faster RCNN

Figure 7. Comparison on vehicle detection between our proposed

method with other existing methods, including YOLO v2, YOLO

v3 and Original Faster R-CNN

105



Figure 7 illustrates an example of vehicle detection with

our proposed method and some state-or-the-art object de-

tection methods, including YOLO v2 and v3, and original

Faster R-CNN. YOLO and the origin Faster R-CNN can

detect most of the cars in a frame. However, they still miss

small objects due to the long distance as discussed in Sec-

tion 3.1. The key idea, which is also the main difference

of our methods comparing to others, is that we train and use

multiple vehicle detectors to adapt to the profile of a specific

region in the camera’s view. In Figure 7, our detectors can

detect very small instances of vehicles, while such objects

are usually ignored in other methods.

If we use only one detector as in traditional approach,

the detect rate (DR) on the evaluation dataset is 88.89%.

In this case, we miss some vehicles that are far away from

the camera. When we use all three detectors, our method

achieves up to the absolute score 100% detection rate on

Track 1 NVIDIA AI City Challenge 2018.

4.3. Evaluation of Velocity

Table 1 shows the detection rate and velocity error of our

proposed method on the evaluation dataset. The detection

rates in all cases are always 100%.

As we mention in Section 4.1, the first two locations

with 15/26 video clips are the ideal cases for our method

to estimate velocity. All vehicles continuously runs without

any significant velocity or direction changes. For this case,

our method achieves the root mean square error (RSME) of

6.9762 mph.

For the second case, we consider the crossroads in urban

areas with 11/27 clips. Our method can successfully predict

velocity when a vehicle continuously runs on a street and

crosses virtual scanlines. However, near the intersection of

two roads, the landmark patterns may not be complete, and

our method may not evaluate directly the velocity from the

last scanline to the traffic light, and in the middle of the

crossroad. Therefore, the RMSE for this case is 11.9049

mph, and the error mostly appears near the intersection of

two roads during the slow down or accelerate periods of a

vehicle.

We consider all the four locations with 26 video clips

in the last two cases. Using the refinement techniques (see

Section 3.4, we achieve the RMSE of 8.9144 mph (for case

4), while the RMSE without refinement is 9.3800 mph (for

case 3).

Case Locations #Clips DR RSME

1 1, 2 15 1.0 6.9762

2 3, 4 11 1.0 11.9049

3 1, 2, 3, 4 26 1.0 9.3800

4 1, 2, 3, 4 26 1.0 8.9144

Table 1. Evaluation of velocity in different locations.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8. Comparison between different teams in Traffic Flow

Analysis task.

Figure 8 shows the comparison between our method

with others in the Traffic Flow Analysis task of NVIDIA

AI City Challenge 2018. This task uses the score S1 =
DR × (1−NRMSE) where DR is the detection rate and

NRMSE is the normalized root mean square error. Our

method achieves the S1 = 0.7924 and ranks 6th in the

track.

5. Conclusion and Future Works

In this paper, inspired by the idea of tiny object detector,

we propose a object detection scheme with multiple adap-

tive detectors to detect objects in different poses and sizes.

For vehicle detection, we train and use 3 specific detectors

using Faster R-CNN with Resnet-101 corresponding to 3

view types: (1) the front and back views of a vehicle, (2)

the side view of a vehicle and (3) a tiny instance of a vehi-

cle which is very far away from the camera.

We also propose a heuristic to select appropriate set of

trained detectors for each region in the camera’s view based

on the the fitness of their profiles. In the context for vehicle

detection, the profile for a particular detector includes the

distribution of vehicle’s size and the distribution of velocity

direction of training data that are used to trained that de-

tector. The profile for each pixel or region in the camera’s

view includes the distribution of moving blob size and the

distribution of object flow’s direction from the optical flow

map. By this way, we can improve both precision and re-

call for object detection as we only apply detectors that are

appropriate to certain area in the camera’s view.

For velocity estimation, we propose to create virtual

scanlines from the landmarks on almost every road, i.e. bro-

ken white lines on a road’s surface. We exploit the standard

length of a white line segment and the standard gap distance

between two consecutive segments in a single white dash

line to calibrate the mapping between pixels in an image to

real-world distance. As our proposed method for velocity

estimation does not required augmented data with annota-

tion (such as the location of velocity), our method can be

applied easily in most cases.

106



Although our detection rate for vehicles is 100%, our

detectors might lose some bounding boxes, thus some vehi-

cles hold more than one ID. Besides, we need further refine-

ments to estimate vehicle’s velocity near the intersection of

roads in urban areas.

References

[1] X. Z. A. Kanaci and S. Gong. Vehicle re-identification by

fine-grained cross-level deep learning. In 5th Activity Mon-

itoring by Multiple Distributed Sensing Workshop, British

Machine Vision Conference, pages 1–6, July 2017.

[2] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. A

real-time computer vision system for vehicle tracking and

traffic surveillance. Transportation Research Part C: Emerg-

ing Technologies, 6(4):271 – 288, 1998.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009.

[4] C. Eggert, S. Brehm, A. Winschel, D. Zecha, and R. Lien-

hart. A closer look: Small object detection in faster r-cnn.

In 2017 IEEE International Conference on Multimedia and

Expo (ICME), pages 421–426, July 2017.

[5] R. Girshick. Fast r-cnn. In International Conference on Com-

puter Vision (ICCV), 2015.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Computer Vision and Pattern Recognition,

2014.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. arXiv preprint arXiv:1512.03385,

2015.

[8] J.-W. Hsieh, S.-H. Yu, Y.-S. Chen, and W.-F. Hu. Automatic

traffic surveillance system for vehicle tracking and classifi-

cation. Trans. Intell. Transport. Sys., 7(2):175–187, Sept.

2006.

[9] P. Hu and D. Ramanan. Finding tiny faces. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), July 2017.

[10] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2017.

[11] H. Jung, M.-K. Choi, J. Jung, J.-H. Lee, S. Kwon, and

W. Young Jung. Resnet-based vehicle classification and lo-

calization in traffic surveillance systems. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR)

Workshops, July 2017.

[12] M. Kampelmühler, M. G. Müller, and C. Feichtenhofer.

Camera-based vehicle velocity estimation from monocular

video. CoRR, abs/1802.07094, 2018.

[13] P.-K. Kim and K.-T. Lim. Vehicle type classification us-

ing bagging and convolutional neural network on multi view

surveillance image. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, July

2017.

[14] B. Li, T. Wu, C. Xiong, and S.-C. Zhu. Recognizing car

fluents from video. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

ECCV, 2016.

[16] X. Liu, W. Liu, H. Ma, and H. Fu. Large-scale vehicle re-

identification in urban surveillance videos. In 2016 IEEE

International Conference on Multimedia and Expo (ICME),

pages 1–6, July 2016.

[17] P. Pham, D. Nguyen, T. Do, T. D. Ngo, and D.-D. Le. Eval-

uation of deep models for real-time small object detection.

In D. Liu, S. Xie, Y. Li, D. Zhao, and E.-S. M. El-Alfy, edi-

tors, Neural Information Processing, pages 516–526, Cham,

2017. Springer International Publishing.

[18] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6517–6525, July 2017.

[19] J. Redmon and A. Farhadi. Yolov3: An incremental improve-

ment. arXiv, 2018.

[20] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), 2015.

[21] Y. Shen, T. Xiao, H. Li, S. Yi, and X. Wang. Learning deep

neural networks for vehicle re-id with visual-spatio-temporal

path proposals. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 1918–1927, Oct 2017.

[22] J. Sochor, J. pahel, and A. Herout. Boxcars: Improving fine-

grained recognition of vehicles using 3-d bounding boxes in

traffic surveillance. IEEE Transactions on Intelligent Trans-

portation Systems, PP(99):1–12, 2018.

[23] T. Wang, X. He, S. Su, and Y. Guan. Efficient scene lay-

out aware object detection for traffic surveillance. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR) Workshops, July 2017.

107


