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Abstract

Most state-of-the-art anomaly detection methods are

specific to detecting anomaly for pedestrians and cannot

work without adequate normal training videos. Recently,

there is a growing demand for detecting anomalous vehicles

in traffic surveillance videos. However, the biggest chal-

lenge in this task is the lack of labeled datasets for train-

ing supervised models. By examining the resemblances of

anomalous vehicles, we find it reasonable to label a vehi-

cle as anomaly if it stays still in the video for a relatively

long time. Utilizing this property, in this paper we introduce

a novel unsupervised anomaly detection method for traffic

surveilliance based on background modeling, which shows

great potentials in handling heterogeneous scenes as well as

extremely low resolution videos recordings without the de-

pendence on labeled data. In the proposed system, we first

employ background modeling using MOG2 to remove the

moving vehicles as foreground while keeping the stopped

vehicles as part of the background. Then we use Faster R-

CNN to detect vehicles in the extracted background and de-

cide if they are new anomalies under certain conditions. All

information is updated on a frame basis until the end of the

video which contains the final results. In this way, we make

full use of the characteristics that abnormal vehicles stay in

the scene for a relatively long time and reduce the difficulty

of vehicle anomaly detection. Eventually, we can detect al-

most every anomaly in the NVIDIA AI CITY CHALLENGE

track-2 dataset except for several extremely complex cases

with a 81.08% F1-score and 10.2369 RMSE.

1. Introduction

Detecting anomalies in surveillance videos, e.g. stalled

objects, accidents and abnormal objects, has been a chal-

lenging task because of the shortage of annotated or labeled

data and the variable video scenes. Therefore, it is almost

infeasible to acquire the orbits of every object in the videos

and then judge whether the orbit should be classified as

anomaly or not. However, it is a truly valuable task due

to its potential application in real world.

The main trend in this area is to design or learn a fea-

ture representation for videos clips with no anomalies, such

as[5][17][8][4][22]. Recently, thanks to the development

of Generative Adversarial Network(GAN)[7], video predic-

tion has been used on anomaly detection[14]. Despite of the

great success of the previous works, we argue that almost all

existing methods do not have the capacity to handle the real

cases for two main reasons. First, most of them can just

work on datasets ,e.g. UCSD[20] and CUHK Avenue[17],

which are captured in homogeneous scenes, rather than in

dataset with heterogeneous scenes, like Shanghai Tech [19].

Even if method like [14] experiments on [19], their perfor-

mance is not satisfying enough. Second, the demand for

anomaly detection in traffic surveillance is to be competent

in all kinds of scenes, which is barely achieved by any ex-

isting methods. All these challenges exist in the NVIDIA

AI CITY CHALLENGE track-2. This competition aims

to promote the techniques that rely less on supervised ap-

proaches and can be applied in real life to make our trans-

portation system safer. These are also motivation for our

work.

To deal with the above challenges, we tackle the anomaly

detection problem of traffic surveillance from a creative per-

spective. As we can tell from human eyes, vehicles run-

ning on the road have the similar patterns. Hence, we de-

cide to design a system based on vehicle detection. But,

it is extremely hard to detect every vehicle, especially with

low resolution and severe congestion. After observing the

videos with and without anomalies, we find that whenever

an accident happens it leads to at least one stopped vehicle.

It means that the backgrounds of videos before and after

accidents are different, since the stopped vehicle becomes a

part of the new background, as illustrated in Figure 1. Then,

we can pick out a successively detected vehicle appearing in

the background modeled video, which stays longer than the

time duration when the traffic light turns red, as an anomaly.

In our system, we use the state-of-the-art detection

model, Faster R-CNN[23], to detect vehicles cross frames.
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Figure 1. Background Modeling. The left frames are extracted from original evaluation video (2.mp4), while the frames on the right side

are the background images generated from the left ones. Yellow rectangles indicate area containing stalled vehicles. We can easily notice

that the stalled vehicles become parts of the background and the moving vehicles totally disappear in the background at the same time.

To find as many vehicles as possible in images, multi-scale

detection is used in our experiment. Then, we implement

a VGGNet[25] as a powerful classifier to reduce the false

positive detection rate coming with multi-scale detection.

All detected bounding boxes are delivered to the decision

module to wait for the final judgment. Some cases can af-

fect our decision module, e.g. the vehicles waiting for traffic

light at the same position is one type of interference. The

other type of interference is that the detected abnormal ve-

hicle can show up in different scenes camera’s perspective

changes. Our strategy is to compare the similarity between

detected vehicles. We employ the ResNet[9], trained with

triplet loss, to accomplish similarity comparison. The per-

formance of our method on track-2 illustrates its capacity

that it can perform well in various scenes. To the best of

our knowledge, it is the first work to use such pipeline for

anomaly detection in traffic surveillance.

Our main contribution is our novel method, which com-

bines the traditional background model and deep learning

network. Through experiments, we show that the proposed

method possesses several outstanding advantages over the

other state-of-the-art anomaly detection methods: i) Unsu-

pervised: Our method does not require any training data for

specific scenes. ii) Robust: The system reduces the diffi-

culty of anomaly detection and finishes the task in a simple

and elegant way, with robustness against complex scenes.

Due to the well designed decision logic of the final module,

even some false or missed detection in the second module

cannot affect the final judgment. Our method can detect

almost all anomalies in the dataset provided by NVIDIA

AI CITY CHALLENGE track-2 which includes abundant

scenes. iii) Generalizable: Because of the nature of our

method, it is able to detect accident in any scenes without

special modification. Further details about our system will

be present in the Section 3.

2. Related Work

Numerous efforts have been taken for anomaly detec-

tion [5][8][14]. However, because of the lack of datasets

about the abnormal event in traffic surveillance, most of

these work are made for anomaly detection in the crowd.

Based on the strategies used, all the existing methods can

be categorized into two categories: i) feature reconstruction

for normal training data based methods [5][4][19][10]). ii)

video frames prediction based methods[14].

2.1. Feature Reconstruction Based Methods

Generally speaking, the most works in computer vi-

sion solve the problem with a framework of reconstruct-

ing training data. They use either the hand-crafted features

[5][17] or the features learned by a deep neural network

with Auto-Encoder to reconstruct normal events with small

reconstruction errors [4][8][22]. Sparse coding or dictio-

nary learning is a popular approach to encode the normal

event [5][17][27]. The Gaussian mixture model is used by

Mahadevan et al. [20] to fit a mixture of dynamic textures

(MDT). Also, in order to be more efficient both in training

and testing phase, Lu et al [17] raises to discard the sparse

constraints and learn multiple dictionaries to encode normal

scale-invariant patches.

With the advances in deep learning area, lots of works

[8][4][19][18] begin to utilize various architectures of Deep

Neural Network (DNN) to detect anomaly. Hasan et al. pro-

poses to use 3D convolutional auto-encoder (CAE) to model

regular frames [8]. Furthermore, motivated by the strong

capacity of Convolutional Neural Networks (CNN) in spa-

tial feature learning, Recurrent Neural Network (RNN) and

its long short term memory (LSTM) variant has been widely

applied for sequential data modeling. Therefore, by tak-

ing advantage of CNN and RNN, [4][18] employ a Convo-

lutional LSTMs Auto-Encoder (ConvLSTM-AE) to model

the normal pattern, which hugely promotes the performance
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Figure 2. Framework of our proposed system. Every frame of a video is sent to background extraction module first. Then, the detection

module detects vehicle in background images. Each detected vehicle from former module is passed to decision module. This module

updates result in real time. When the video finished, our system gains the final prediction.

of methods based on CAE. In [19], Luo et al. proposes a

method based on temporally coherent sparse coding which

can map to a stacked RNN framework.

All above methods, aiming to detect anomalies, are

based on the reconstruction of regular training data and the

surmise that abnormal events could correspond to larger re-

construction errors. But features, whether hand-crafted or

learned by deep learning model, cannot guarantee a large

enough reconstruction error for abnormal incidents, which

means that these methods are not really robust in complex

scenes. Hence, the difference of reconstruction errors be-

tween normal and abnormal events can be small, leading to

low capacity in discrimination.

2.2. Frame Prediction Based Method

Recently, prediction learning is attracting more and more

attention due to its possible application in unsupervised fea-

ture learning for video representation [21]. [21] proposes a

multi-scale network with adversarial training, which could

generate more natural future frames in videos. Consider-

ing the identification of events that do not meet the expecta-

tion, [14] designs a frame prediction system based on U-Net

[24] and compares the prediction with its ground truth for

anomaly detection. However, methods based on frame pre-

diction rely more on the dataset, which makes it almost in-

feasible to leverage such system in reality, because we can-

not build separate models for each scene.

The shared shortage of all existing method is that they

are not generalizable, which has been shown by their perfor-

mance on the challenging dataset ShanghaiTech [19]. For

[14], it can only achieve 72.8% AUC (Area Under Curve),

while it can reach 83% AUC on the CUHK Avenue dataset

[17] and about 90% AUC on the UCSD Pedestrian dataset

[20]. It means that we need to train these models with data

containing no anomaly when deploying them in a new cir-

cumstance. However, it is contrary to the nature of this chal-

lenge and impossible to achieve in real life. The purpose of

unsupervised anomaly detection is to build a system which

can be used in surveillance video without large modifica-

tion. Unfortunately, none of these existing methods could

achieve this goal.

3. Methods

Our traffic anomaly detection system, as shown in Fig-

ure 2, is composed of three modules. The first module ex-

tracts the background images of every frame (Figure 1), us-

ing MOG2. The detection module illustrated in Figure 3 is

made up of the Faster R-CNN [23] detector and the classi-

fier based on VGGNet [25]. Faster R-CNN is responsible

for detecting as many vehicles as possible using multi-scale

detection. Because the training data used to train the detec-

tor extremely differs from the data in track-2, we acquire

plenty of false detections. Therefore, we utilize VGGNet as

a classifier to eliminate the wrong detection results. Next,

in order to determine if there is an accident based on the re-

sults obtained in the second module, we design a decision

module. It can i) define a detected vehicle as anomaly ac-

cording to the duration it stays in the background, ii)provide

the timestamp when the anomaly happens, iii) eliminate the

effect of scenes switching and traffic light using ResNet

trained with triplet loss.

3.1. Background Extraction

For anomaly detection in traffic surveillance videos,

some traditional methods attempt to track every vehicle and

obtain its track. Then they analyze the track to determine

whether the vehicle is abnormal or not. Unfortunately, light,
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Figure 3. The pipeline of detection. The branch (a) represents the detection process on 3× size image, and the same for branches (b) and

(c). The red and blue bounding boxes indicate the positive and negative result, respectively. After NMS, we acquire the final result as (d).

weather and the quality of camera can all affect the quality

of videos, which makes detecting and tracking vehicles ac-

curately in various scenes almost impossible. In fact, once

an abnormal event occurs, the relevant vehicles should stop

and become part of the background. On the contrary, the

non-relevant vehicles will not remain in the background

since they keep moving. Thus, we exploit the background

modeling to extract background images from video frames.

If there is a stalled or crashed vehicle, it should appear in

the background image. In this way, we can transform the

complex problem into a simpler detection problem.

There are several algorithms for the purpose of back-

ground modeling. In our work, we utilize the MOG2, which

is introduced by Andrew [28] and [29]. One important char-

acteristic of this algorithm is that it selects the appropriate

number of components of GMM for each pixel and provides

better adaptability to varying scenes.

In traffic surveillance, severe congestion can cause nu-

merous vehicles to stay in background, which severely af-

fect the accuracy of anomaly detection. In order to resolve

this problem, we need to choose a reasonable time period T
for updating GMM parameters. In MOG2, the update rate

is α, where α = 1/T . A larger T can make MOG2 to adapt

to the gradual change better. In our work, we set the pa-

rameter T to 120frames, which corresponds to 4s for test

video (frame rate is 30fps). As a result, all normal mov-

ing vehicles are removed from the frames and all stopped

vehicles stay in the background.

3.2. Detection Module

After removing moving vehicles from the frames, we

now detect vehicles in the background images in this de-

tection module. It contains a Faster R-CNN [23] detector

and a VGGNet [25] classifier, as illustrated in Figure 3. In

surveillance videos, it is hard to accurately detect the vehi-

cles with a single detector since vehicles show up in differ-

ent sizes. To deal with this issue, [13] and [3] try to detect

objects at different scales to obtain a more accurate result.

In this paper, we test every image in 1×, 2× and 3× size.

Due to the low resolution of the data provided by AI

CITY CHALLENGE, the detector mistakenly identifies

many non-vehicle objects as vehicles in our scaled images.

To correct false detections, we leverage VGGNet to deter-

mine whether or not the candidates provided by Faster R-

CNN are eligible. Then we use NMS to remove the over-

lapping bounding boxes coming from different branches of

detection module. Our architecture is not as deep compared

with e.g. ResNet [9] and DenseNet [11], but it has desirable

ability to meet our needs.

3.3. Decision Module

In our decision module, we determine anomalous vehi-

cles based on the bounding boxes produced by the former

module. We also manage to eliminate the impact of traffic

lights and the movements of the cameras. The procedure of

determining abnormality is summarized in Algorithm 1.

It is worth mentioning that every saved vehicle infor-

mation contains the following terms: begintime (the time

when the vehicle first appears), endtime (the last time the

vechile appears), frequency (the total number of the vehi-

cle’s occurrences), anomaly (whether the vehicle is abnor-

mal) and score (the confidence of this predicted anomaly).

As illustrated in Algorithm 1, for the bounding boxes

in every frame produced by the detection module, we feed

them to the decision module. When the current bound-

ing box does not match any saved information, we save

it as a new vehicle. On the other side, if the current de-

tected bounding box shares the same position with a previ-
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Algorithm 1 Decision module

Input:

The time t corresponding to the current frame;

The set of bounding boxes B detected in current frame;

The set of all the saved vehicle information I;

Output:

The set of updated vehicle information Inew;

1: for each b ∈ B do

2: itmp = ∅
3: for each i ∈ I do

4: if (t− i[end] < 5s and IoU(b, i) > 0.5) or

(t− i[end] > 15s and Similar(b, i) < 0.9) then

5: i[end] = t, i[position] = b, i[f ]+ = 1;

6: itmp = i;
7: remove i from I
8: break;

9: end if

10: end for

11: if itmp is ∅ then

12: itmp[begin] = itmp[end] = t,
itmp[position] = b,
itmp[anomaly] = False,

itmp[score] = 0;

13: end if

14: if itmp[anomaly] is True then

15: update itmp[score];
16: else if itmp[end]− itmp[begin] > 30s and i[f ] > 25

then

17: itmp[anomaly] = True,

update itmp[score];
18: end if

19: Inew ← itmp

20: end for

21: Inew ← I

ously stored vehicle within 5s, we treat the two as the same

anomaly and update the saved vehicle with the current in-

formation: end time, position, frequency and the most re-

cent time of occurence. We note that in cases where the

perspective of a camera changes occasionally, all the previ-

oulsy stored information will not be updated after the cam-

era shifts and the same anomalies will be detect again as

new anomalies. To match the anomalies before and after

camera moves, we compare the similarities between the cur-

rent bounding boxes and all saved vehicles if all stored in-

formation is not updated within 15s. For similarity compar-

ison, we extract the features of a vehicle through ResNet50

trained with triplet loss and then compute the L2 distance

to features of other vehicles. When the L2 distance is less

than 0.9, we consider these two vehicles as same one.

If a vehicle has stayed in the background for more than

30s since its beginning time, the system labels it as a poten-

(a) DETRAC (b) DETRAC (c) Extra-Video (d) Extra-Video

(h) ImageNet(g) UIUC(e) GTI (f) Cars Dataset

Figure 4. Some examples in the UA-DETRAC, Extra-Video, GTI,

Cars Dataset, UIUC and ImageNet datasets.

tial anomaly and starts to give it a score of being an anomaly

which is updated afterwards in real time. We choose a 30s
time window to avoid the interference when vehicles stop to

wait at the red traffic light. The anomaly score of each piece

of saved information is updated in real time. The equation

of anomaly score is as follow:

score = frenquency/(end time− begin time) (1)

Equation 1 indicates the proportion of frames containing the

vehicle to the total number of frames from its appearing to

disappearing. The nature of our method is that a vehicle

staying in the background long enough should be detected

as an anomaly. Thus, we employ the proportion of occur-

rences as the score of confidence. If the score is lower than

0.3, we think it cannot be an anomaly vehicle. And if the

time span from beginning to end is more than 120s, our sys-

tem gives it a 100% confidence about anomaly. Because no

matter if the vehicle is waiting for traffic light or stuck in

traffic jam, it cannot stay in the same place more than 120

seconds.

In order to obtain a more accurate timestamp, we go

back to track the abnormal vehicle A in the previous frames

in the original video after we are certain about it being an

anomaly, scoring 0.3 or higher. We set a 7W×7H size area

centered at the anomaly vehicle, where W ×H is the vehi-

cles size. Then we rerun our detection module in this area

to detect the vehicle A′ from begintime conversely. When

the IoU between previously detected A and redetected A′

is more than 0.5, we consider them as the same vehicle and

set the time when the abnormal vehicle A′ disappears in the

7W ×7H area in the original video as the timestamp of this

anomaly.

3.4. Dataset

In this section we introduce the data used in our experi-

ments. Samples are shown in Figure 4.

Data for detection We mainly use training sequences

from UA-DETRAC [26] dataset to fine-tune our pre-trained

Faster R-CNN model. There are about 84k frames and more

than 578k annotated bounding boxes in this dataset. The
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UA-DETRAC dataset contains video with large variations

in scale, pose and illumination, occlusion, and background

clutters, which makes it suitable for our work. Videos in

UA-DETRAC have high resolution which differs greatly

from the test datasets from NVIDIA AI CITY CHAL-

LENGE track-2. To guarantee the performance on the test

datasets, we add Gaussian blur on the training set (UA-

DETRAC) to make up for the huge difference in the video

resolution. The Gaussian filter on each dimension is as fol-

lows:

Gi = α ∗ e−(i−(K−1)/2)2/(2∗σ2) (2)

where i = 0, . . . ,K − 1 and α is the scale factor chosen

such that
∑

i Gi = 1. The size of the filter is K × 1. In

our work, we set parameters as follows: K = 5, σX = 5,

σY = 5. Furthermore, we modify the lightness of images

in training set as:

Im[i, j][c] = a× Io[i, j][c] + b (3)

where i, j donate the corresponding position of pixels, c in-

dicates the channels, and a = 0.7, b = 10.

Due to the lack of night scenes and certain vehicle types

(e.g. truck) in UA-DETRAC, we have collected 5 more

video clips on the Internet for a total of 6 minutes and

10 seconds which we refer to as Extra-Video.. Then, we

manually annotate 1012 frames with about 16k annotated

bounding boxes, as shown in Figure 4. We modify the

lightness of images in this dataset using Equation 3, where

a = 0.8, b = 40.

Data for classification The data used to train our VG-

GNet comes from the following sources: i) ImageNet [6]

(categories: car, truck, sign, road, snow and traffic light),

ii) UIUC Car Detection [1], iii) GTI dataset [2], iv) Cars

Dataset [12], v) Images of vehicles and non-vehicles ran-

domly captured from the Extra-Video. For vehicle images,

we crop the bounding boxes if provided and randomly crop

80% of the original size during training. For non-vehicle

images, we make a crop of random size (10%, 30%, 50%,

100%) of the original size during training. All training im-

ages are resized to 64× 64 and are rotated a certain degree

randomly chosen from [−10◦, 10◦].
Data for similarity We use the dataset ViRe [15][16]

to train our ResNet50 [9] with triplet loss. This dataset

contains over 50000 images of 776 vehicles captured by

20 cameras covering an area of 1.0km2 in 24 hours. This

dataset aims to promote the research in vehicle Re-Id. It

also meets our need to compare the similarity between ve-

hicles.

4. Results

In this section, we evaluate the properties of different

components in our proposed system and present the final

results.

(a) (b)

(c) (d)

Figure 5. The effects of background extraction with different pa-

rameter T . All these images are about a certain frame of 14th

video in test data. (a) is from the original video, and (b)(c)(d)

are respectively from background extracted videos with T =

30, 60, 120.

MSD VGG F1(%)

× × 48.65
× √

56.25√ × 32.26√ √
81.08

Table 1. Test results about the capacity of detection module.

”MSD” and ”VGG” presents the multi-scale detection and the

classifier. The
√

and × means with or without corresponding sec-

tion in the experiment. The performance is measured by F1.

Our expectation for background extraction module is not

only to eliminate the effects of moving vehicles but also

to reduce the impact of traffic jam. In real scenes, even

if in most traffic jams, vehicles can still move at very low

speed. Therefore, we want to set an appropriate T , which

corresponds to the number of frames that can affect back-

ground modeling. As shown in Figure 5, we test the effects

of background modeling with different values for T . With

T = 120, we can eliminate the impact of severe congestion

and provide good condition for the detection module.

In order to show the effectiveness of multi-scale detec-

tion and the classifier in the detection module (see Section

3.2), which we denote as MSD and VGG respectively, we

examine the performance of detection module with differ-

ent settings. From Table 1), we can see that our detection

module work best with both MSD and VGG.

As shown in Table 1, our proposed method performs well

in the challenging dataset containing various scenes. It can

detect almost all anomalies in the dataset of track-2 and

send back the precise positions of the detected anomalies,

Figure 6. The results demonstrate the capabilities of our

system to achieve robustness and generalizability against

complex scenes without additional modification or training.
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Figure 6. Example Results on NVIDIA AI CITY CHALLENGE track-2. Red bounding boxes show the accident vehicles detected by

proposed method, which demonstrate the robustness and generality of this method.

In the NVIDIA AI CITY CHALLENGE track-2 traffic

anomly detection competition, we detect a decent amount

of anomalies with 0.8108 F1-score and 10.2369 RMSE.

Among all the participated teams, our proposed method in

this paper ranks in the 2nd place with S2-score 0.7853 on

the official evaluation datasets.

5. Conclusion

Since normal moving vehicles cause great interference to

anomaly detection for traffic surveillance, we propose a sys-

tem which can reduce the effects of non-abnormality. We

use MOG2 to extract background and eliminate the mov-

ing objects. In order to detect as many abnormal vehicles

as possible, we utilize multi-scale detection and classifica-

tion with the help of Faster R-CNN and VGGNet. With

our decision module, we can greatly reduce the impact of

traffic light waiting time, traffic jam and camera movement.

Results on NVIDIA AI CITY CHALLENGE show the po-

tential of our method to work on various scenes of traffic

surveillance videos without special training on these scenes,

which almost all existing methods can not achieve. Mean-

while, the main drawback our method is that it can provide

only a rough rather than precise estimation of beginning

time of an anomaly. To perfect our work, more focuses

on the dynamic process of anomalies are needed in further

work.
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