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Abstract

Drones become popular recently and equip more sen-

sors than traditional cameras, which bring emerging appli-

cations and research. To enable drone-based applications,

providing related information (e.g., building) to understand

the environment around the drone is essential. We frame

this drone-view building identification as building retrieval

problem: given a building (multimodal query) with its im-

ages, geolocation and drone’s current location, we aim to

retrieve the most likely proposal (building candidate) on a

drone-view image. Despite few annotated drone-view im-

ages to date, there are many images of other views from the

Web, like ground-level, street-view and aerial images. Thus,

we propose a cross-view triplet neural network to learn vi-

sual similarity between drone-view and other views, further

design relative spatial estimation of each proposal and the

drone, and collect new drone-view datasets for the task. Our

method outperforms triplet neural network by 0.12 mAP.

(i.e., 22.9 to 35.0, +53% in a sub-dataset [LA])

1. Introduction

Recently, drones (known as Unmanned Aerial Vehicles

[UAVs]) become more available for the masses of peo-

ple and increasingly important in a wide range of security,

surveillance and transportation applications. In 2017, as re-

ported by Federal Aviation Administration, the number of

registered drones is around 0.75 million in the U.S.1, which

enables a remarkably increase in emerging applications,

like delivery drones, search and rescue (SAR) drones, and

first-person view (FPV) drone racing (e.g., Amazon Prime

Air, Matternet). Especially, Italdesign and Airbus unveil a

new concept of Pop.Up (a ground-air vehicle) that also sup-

ports the need for drone-based visual understanding.

Compared with traditional vehicles (e.g., cars) and cam-

eras, a wider area can be monitored by a drone, which

means we can more easily utilize location-based properties

1http://twitter.com/FAANews/status/840273816072933376

Figure 1. Drone-view building identification: given a drone-view

image, we align nearby buildings with drone-view image propos-

als (building candidates). Each building is associated with its (1)

name, (2) geolocation, and (3) images with different views from

the Web. We take a building as the multimodal query to rank pro-

posals (gray boxes) detected from the drone-view. The red box is

ranked the highest by our method and tagged its name.

as referring to the geographic map by drone’s geolocation.

It is vital to make a drone more deeply understand its envi-

ronment for surveillance and manipulation. Thus, as illus-

trated in Figure 1, we design a drone-view building iden-

tification and utilize Computer Vision (CV) techniques to

understand the environment automatically (e.g., image re-

trieval). However, image retrieval tasks are quite difficult in

images with different views, like retrieval between street-

view and aerial images [9, 26]. Fortunately, there are sev-

eral sensors on drones, like camera, GPS tracker, compass

and altimeter which we can utilize.

As shown in Figure 1, for the designed novel drone-

view building identification task, we propose to leverage

freely available resources from Web (e.g., Google Places

API, Instagram, Dronestagram). Based on the location of

drones, we collect all the nearby building (place) informa-

tion and the corresponding images with different domains

(e.g., street-view, aerial images). To associate them with

drone-view images, these buildings are viewed as queries

for retrieval. Due to the limitation of collecting data in

big cities, we make an all-out effort to collect drone-view

images in various locations and weather conditions. Since

these annotated drone-view images are hard to get to date,
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Dataset (1) Drone-BR (drone-view) (2) Drone-BD (drone-view) (3) IG-City8 (street-view)

Task Building retrieval or identification Building detection for proposals Building matching in 8 cities

# Images 18 (1920x1080) + 62 (3840x2160) 18 (1920x1080) + 185 (1200x800) 4,409 (640x640)

# Data 585 queries (16,000 proposals) 2,334 bounding boxes 104,906 triplets (209,812 pairs)

Attribute (a) Building queries from web

(b) Matched bounding boxes

(c) Drone’s geolocation for images

Bounding boxes of buildings on

drone-view images

(a) Matched building images

(b) Date, check-ins, hashtags and

geolocation for images
Table 1. Due to the lack of drone-view data, we collect 3 datasets for drone-view building identification. (1) Drone-BR consists of drone-

view images and buildings (multimodal queries). (2) Drone-BD is used for acquiring proposals by training building detectors. (3) IG-City8

contains various building images on Instagram in 8 cities for cross-domain (transfer) learning.

this retrieval problem is a few-shot learning problem owing

to the limited training data. Hence, we use distinct simi-

larities for building identification due to the scalability to

unknown environment. To conclude, we propose a drone-

view retrieval system combined with different similarities

by sensors on drones. Still, there are many difficulties in

retrieval on drone-view images:

1. Ultra-wide baseline matching. Buildings which are

far away from drones are low resolution and small size (e.g.,

50x80). Besides, there are large distortions for building im-

ages between drone-view and other views, and many obsta-

cles in front of buildings, like trees or other buildings.

2. Uncertainty of sensors. The sensors on drones have

uncertainty and are not always precisely accurate in all con-

ditions. GPS tracker and compass merely have a little noise,

but altimeter is rather unstable with huge error (10-20m).

3. Lack of drone-view data. Since the drone is a new

prevalent technical product, there are few annotated drone-

view images to date. So far there is almost no drone-view

data with sensor information.

To tackle difficulties above, here are our contributions:

• We collect and annotate new datasets for drone-view

building detection and retrieval by our drones. Also,

we gather a dataset of building images matching from

Instagram for more diverse building images.

• We propose a novel drone-view building identification

system with drones’ various sensors and a cross-view

drone-based triplet feature learning model to address

this challenging cross-view retrieval problem between

drone-view and other views.

• We further design relative spatial estimation for drone-

view images, and combine with cross-view visual

learning. Experiment results show that it is a challeng-

ing task (low baseline), but with our proposed method,

we can achieve better performance than triplet neural

network. (e.g., 24.07 to 34.97, +45% in LB)

2. Related work

Most of drone-based research focus on different kinds

of applications, like real-time UAV path planning [17], tree

counting [3], and UAV tracking [11, 21, 8]. Besides, many

works focus on aerial imagery [1, 9, 26] instead of drone-

view images, but it is fairly different from drone-view ow-

ing to inflexibility (fixed height and angle).

Content-based image retrieval is traditionally relied on

handcrafted features, like SIFT [10] and HOG [5], but

they are unable to handle ultra-wide baseline matching

due to diverse views. Since convolutional neural networks

(CNNs) have achieved state-of-the-art results in much CV

research, prior works often use ImageNet-CNN features [7],

Places205-CNN features [27], or further use a triplet learn-

ing to learn cross-view image features [24]. To perform bet-

ter, we apply object proposal methods to drone-view images

for acquiring building candidates. Popular methods include

window-scoring-based (e.g., EdgeBoxes [28]), grouping-

based (e.g., Selective Search [23], multiscale combinatorial

grouping [12]) approaches and deep learning methods (e.g.,

Region Proposal Networks [RPN] [15]).

Wegner et al. [25] consider spatial information between

a few street-view images to solve tree classification prob-

lem, but they have completely annotated tree dataset for ro-

bust evaluation. Wolff et al. [26] model spatial context and

use traditional image features, like color and texture fea-

tures [16] to solve the building facade matching problem

between street-view and aerial images, while our problem

focuses on drone-view to other views. Also, sensors includ-

ing compass and GPS tracker are helpful for CV problems

like image annotation by mobile sensors [4] and coronal

plane estimation by UAV sensors [14].

3. Datasets

There are few labeled building images. Instead, we have

tried to fine-tune on landmark datasets [2] which are rel-

atively abundant. While it does not perform well since

the appearance of landmark image are quite different from

drone-view building images and some landmark images

even do not contain buildings. We also try to find other

aerial or street-view datasets [9]. Yet the authors cannot

provide the images from Google API due to Google policy.

Consequently, we collect drone-view images with our

drone (DJI 3) by designing and using an app for automat-
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Figure 2. System diagram: (a) represents the raw data including drone-view images, drone’s direction, geolocation and height from sensors.

In (b), we collect these buildings’ information based on the drone’s geolocation and direction. For 3 cross-view images of building, we

use Google text search to get ground-level images by the building name, Google Street View Image API to obtain street-view images by

the geolocation, and Google Maps API to acquire aerial images by the geolocation. In (c), to identify buildings on drone-view images,

we require to generate possible proposals by using object proposal methods (RPN) [15]. In (d), given a building (multimodal query) and

proposals, we design cross-view visual learning and relative spatial estimation to compute similarity scores for our retrieval problem.

ically recording all drone sensors including GPS tracker,

compass and altimeter while capturing images. We fix the

angle of depression as 20◦, raise the drone to 40m to 90m

height and capture images with multiple buildings. Each

image consists of 1-12 buildings as queries which have cor-

responding bounding boxes on drone-view images. We col-

lect 80 images and annotate 108 buildings with bounding

boxes on them at 3 locations under different weather. Be-

sides, with Google Places API, we gather other information

for these buildings including name, latitude and longitude.

As Figure 2 (b) depicts, we gather ground-level, street-

view and aerial images for each building. Since the same

buildings may appear in different images, there are 585

building queries in total presented in Table 1(1) which is

Drone-BR. 2 Since buildings may be occluded or in low res-

olution, it requires great effort to annotate them with their

corresponding high-resolution drone-view images (mostly

3840x2160). In our setting, we search each building query

in 200 proposals on a drone-view image, which means the

Drone-BR can be also described as 585 queries with 16,000

(200*80) sub-images for searching. Experiments in Sec. 7

show that our method can perform better with limited train-

ing data and it is scalable because the building identification

for each drone-view image is performed independently.

On top of that, to the best of our knowledge, there are al-

most none drone-view images for building detection in any

public datasets. In order to obtain building proposals with

better quality, we also annotate 2,334 building bounding

boxes on our 18 drone-view images and 185 images from

Dronestagram website for training RPN [15]. This drone-

view building detection dataset is called Drone-BD.

Due to the lack of drone-view data, we collect build-

ing images based on check-ins (locations) from Instagram

and use the hashtag of #building and #buildings in 8 cities

including New York, London, Paris, Hong Kong, Tokyo,

2Datasets are available at https://jacky82226.github.io/DVBI

Sydney, Berlin and San Francisco, to get building images.

They are mostly ground-view or street-view images taken

by users. We make buildings with the same location be a

positive pair and with another random location be a nega-

tive pair to form a triplet. We manually remove some noisy

images owing to not facing the correct building; eventually,

there are 4,409 images, 848 buildings and 104,906 triplets

in our Instagram building dataset called IG-City8.

4. Building Identification System

Figure 2 provides an overview of our drone-view build-

ing identification system which is divided into four parts.

For this task, because of the lack of drone-view data, few

images of each building and too many various buildings to

identify, it is a few-shot learning problem. Therefore, we

frame it as building retrieval problem as follows and our re-

trieval model learns better features by similarity from build-

ing image matching instead of building classification. We

are able to identify unknown buildings (unseen labels).

4.1. Problem Definition

Our drone-view building identification problem is de-

fined as: given a nearby building Bi as query, we aim to

retrieve a proper proposal P ∗

i among all proposals. By re-

ferring to Google Places API based on drone’s location for

the top candidates, there are several buildings B1, B2, ...Bn

(multimodal queries) in a drone-view image and the number

of them (n) is different in each image (i.e., we annotate 1-

12 buildings per image). In addition, we utilize our building

detector to acquire rough proposals P1, P2, ...Pm (building

candidates) and the number of them (m) depends on how

many proposals we use in building detection (i.e., we use

200 proposals in our experiment). Thus, we can formulate

this problem as maximizing our designed similarity (S):

P ∗

i = argmax
j

S(Bi, Pj), j = 1, 2, ...m. (1)
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4.2. Drone­View Building Detection

To retrieve buildings and further identify them on drone-

view images, we have to create possible proposals (building

candidates) first. We employ building detection to gener-

ate proposals on drone-view images. Since the ground truth

(target buildings) may not actually exist in the detected pro-

posals, the quality of building detection has the significant

influence on identification results. To further improve the

quality of proposals, we utilize RPN [15], a learning-based

method. Accordingly, we train the drone-view building de-

tector on Drone-BD and get proposals through it. Since it

outperforms other object detection methods in our experi-

ment, we utilize proposals from RPN as candidates (Pj).

4.3. Similarity Scores for Retrieval

We then compute similarity scores between the extracted

proposals from the previous section and each building with

visual learning and relative spatial estimation. Since each

distance has different distributions without normalization,

we convert distance into similarity by the inverse function.

After trying borda count, linear normalization and sigmoid

function, we find that sigmoid function is the best owing

to more evenly representing the distribution. We aggregate

them linearly to get an overall similarity score (S):

S(Bi, Pj) = α·Ψ(Dv)+β ·Ψ(Da)+γ ·Ψ(Dx)+δ ·Ψ(Dy),
(2)

where Ψ is a inverse-sigmoid function (inverse first then

substitute to sigmoid function), Ψ(x) = 1/(1 + e−1/x).
We will introduce visual distance function (Dv) and relative

spatial distance functions (Da, Dx, Dy). α, β, γ, δ are the

weighted parameters of each similarity for linear combina-

tion according to the training data (alpha=0.4, beta=0.315,

gamma=0.437, theta=0.437). These close weights indicate

that our proposed methods are evenly essential.

5. Cross-View Visual Learning

To obtain the similarity scores between buildings (multi-

modal query) and proposals, we frame this cross-view im-

age retrieval as a cross-view matching problem. Given two

images from different views, the model outputs a distance of

this image pair. Thus, we propose (cross-view) drone-based

triplet neural networks which make features in certain CNN

layers close to positive pairs and far from negative pairs.

5.1. Transfer Learning: Pre­Trained on IG­City8

Based on the transfer learning, we propose leveraging

external data (building images from other views) on Insta-

gram to obtain a robust initial model. We train the initial

CNN model with a triplet neural network on our collected

IG-City8 to make our model focus on learning building fea-

tures. We adopt the triplet loss [18] from a standard triplet

network, and the triplets are formed with IG-City8. These

user images taken under different weather also help our

model to improve robustness in any illumination conditions.

The results of different initial models show that matching

between two ground-view building images helps to match

between images from drone-view and other views. For bet-

ter performance, we use a triplet neural network trained by

IG-City8 as our initial model in the following sections.

5.2. Drone­based Triplet (DT)

We propose a drone-based triplet (DT) neural network

for drone-view image matching. The architecture of DT il-

lustrated in the first 3 CNN streams (anchor, positive and

negative images) of Figure 3. For faster training and for-

ward time, we use AlexNet [7] as our CNN streams and

it can be changed to other networks (e.g., VGGNet [20]).

We utilize a shared CNN architecture to learn cross-view

features. Given features of anchor (a), positive (p) and neg-

ative (n) images, we attempt to make anchor-positive dis-

tances (dpos) close to zero and anchor-negative distances

(dneg) far from a margin (m). This triplet loss is:

Loss(a, p, n) = max(0, dpos − dneg +m). (3)

Empirically, we set the margin to 0.5 and use Euclidean dis-

tance as our distance function. For the input, we use sin-

gle building image for a query as an anchor image, ground

truth building image cropped from drone-view image as a

positive image, and other proposals with Intersection-over

Union (IoU) < 0.3 as negative images. After training, we

can forward the DT and obtain features to compute the dis-

tance for the image similarity.

5.3. Cross­View Drone­based Triplet (CVDT)

Although we solely use an image as anchor image in

our DT, images from other views contain different informa-

tion to match drone-view images. To model all images si-

multaneously, we propose a cross-view drone-based triplet

(CVDT) neural network. We use the same method as DT to

sample positive and negative images from drone-view im-

ages (the 2nd and 3rd streams in Figure 3). The differ-

ence is CVDT uses 3 anchor images including ground-level,

street-view and aerial images and goes through 3 CNN

streams in anchor part. Hence, there are 5 CNN streams

in CVDT with shared weights as shown in Figure 3(b).

To further integrate features with different views, we de-

sign a cross-view pooling (CVP) layer in Figure 4. The

idea is that these convolutional or pooling features (e.g.,

pool5, before fc layers) contain spatial information that the

upper part of ground-level images corresponds to aerial im-

ages (e.g., roofs) and the lower part corresponds to street-

view images (e.g., windows, doors). Hence, to wisely fuse

features from cross-view images, we split our ground-level

1593



Figure 3. Drone-based triplet (DT) and cross-view drone-based triplet (CVDT): (a) The first 3 streams (green) are DT. An anchor image can

be a ground-level, street-view, or aerial image from the same building. We then use our annotated ground truth on the drone-view image

as positive image and sample negative images from proposals whose IoU < 0.3 for training. Accordingly, the triplet loss is computed by

L2-normalized features. (b) The last 5 streams (blue) are our proposed CVDT. We use 3 cross-view images from the same building and

design a cross-view pooling layer for learning cross-view visual features described in Figure 4. (c) With AlexNet, we utilize the same

network architecture in our experiments and it can be changed to other networks (e.g., VGGNet or ResNet.)

image into the upper part and lower part and apply mean-

pooling to the corresponding viewpoints. CVP enhances

spatial features among cross-view images. The unmatched

part in ground-level images is padding zero. After mean-

pooling layer, the two features forward to a fc layer (shared

weights), and eventually go through max-pooling to gener-

ate the final output features. It remains more shared infor-

mation between 3 cross-view images by the combination of

mean-pooling and max-pooling rather than merely apply-

ing max-pooling. [22] The same as DT, these features after

max-pooling are normalized by Euclidean norm and com-

pute triplet loss. For testing, CVDT goes through 3 query

images, which are ground-level, street-view and aerial im-

ages, and attains a single feature to compute cross-view vi-

sual distance function shown below:

Dv = ‖CNN(Bi)− CNN(Pj)‖
2

2
, (4)

where CNN(Bi) and CNN(Pj) are L2 normalized CVDT

(or DT) features, and Bi and Pj are images of building from

different views (or single image) and a proposal.

6. Relative Spatial Estimation for Proposals

Different from traditional image retrieval with GPS in-

formation, all the proposals share the same geolocation as

the drone. It is hard to measure the spatial distance between

buildings and proposals. Thus, we propose to estimate the

distance by considering relative pixel positions on the drone

image. The position of drone-view building can be more

easily speculated than general ground-level imagery owing

to the wide view (Bird’s-eye view), and hence we can esti-

mate spatial similarity for each proposal. Given a building

(multimodal query), we measure the similarity between ac-

tual (geolocation) and relative estimated spatial relation.

Figure 4. Cross-view pooling layer (CVP). We observe that

ground-level images contain both aerial and street-view informa-

tion. Based on the spatial information, we intend to integrate

features (i.e., mean-pooling) in different views. We apply mean-

pooling on aerial images with the upper part of ground-level im-

ages and street-view images with the lower part of ground-level

images. Then these two features go through a fc layer (e.g., fc6)

with shared weights and max-pooling to obtain the output features.

6.1. Drone­angle (Da)

Without geolocation for proposals, we propose to esti-

mate relative spatial relation for the drone and proposals

based on their positions on the image. As shown in Figure

5(a), the drone’s position is located in Poso (bottom cen-

ter), and its heading is viewed as vertical direction (vom).

We can obtain the vector of certain proposal (vob) which

is the vector from the drone’s position (Poso) to a proposal

(Posb). In addition, based on the collected geolocation, and

drone’s direction, we can compute angles between the head-

ing vector (vdf ) and building vectors (vdb). These vectors

are shown in Figure 5(b). vdb is the vector from the drone’s

geolocation (GPSd) to the building’s geolocation (GPSb).

Considering the angle between drones and targets, we de-
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Figure 5. Relative spatial estimation for each proposal. Due to not

knowing building proposals’ geolocation on drone-view images,

we propose estimate their distance and angle. (a) shows how to

compute θd, xd, yd with each proposal. (b) reveals how to obtain

θg, xg, yg by geolocation from Google Places API. Thus, we can

compute their similarity scores between our estimation and the ge-

olocation information (i.e., θd vs. θg , xd vs. xg and yd vs. yg).

sign the Drone-angle (Da) to gain similarity between map

angle and drone-view angle. The Drone-angle (Da) is:

Da = |θd − θg| /180, (5)

where θd = angle(vob, vom) is the estimated angle for a

proposal, and θg = angle(vdb, vdf ) is the angle on geo-

graphic map. angle(v1, v2) = arccos((v1 · v2)/(‖v1‖ ·
‖v2‖)) returns the angle between two vectors.

6.2. Drone­distance (Dx and Dy)

Similar to Da, we compute actual (geolocation) and esti-

mated geographical distance for Drone-x-distance (Dx) and

Drone-y-distance (Dy). For the estimated distance of a pro-

posal, as shown in Figure 5(a), the estimated horizontal

distance (xd) and vertical distance (yd) are calculated from

Posb : ((x1 + x2)/2, y2) and Poso : (wI , hI). We de-

fine xd = |(x1 + x2)/2− wI | /wI and yd = |y2 − hI | /hI ,

where {x1, y1, x2, y2} are the bounding box coordinates for

a proposal Posb. While capturing drone-view images with

different heights, the geographical distance (xg , yg) is al-

ways the same but the estimated distance (xd, yd) varies

from camera settings (focal length and CCD width). Hence,

we transform the estimated distance with tx and ty . Note

that the vertical distance is additionally influenced by the

drone’s height. To mitigate the transformation error, we es-

timate tx and ty , respectively. Based on the drone’s height

(hd) and settings including CCD width (cd) and focal length

(fd), tx = cd/(100 ·fd) and ty = hd/70. The final proposed

Drone-distance functions (Dx and Dy) are defined as:

Dx = |xg − tx · xd| , Dy = |yg − ty · yd| . (6)

Finally, as mentioned in Sec. 4.2, we convert 3 distance

functions (Da, Dx and Dy) into similarity scores by the in-

verse function and then substitute them to sigmoid function.

7. Experiments

To obtain proposals for drone-view images, we apply the

state-of-the-art methods like selective search, edgebox and

RPN. We observe that RPN outperforms others. To fur-

ther enhance the quality of proposals, we fine-tune RPN

on Drone-DB. Due to the limited training data, we leave

the improvement of proposals’ quality in future work and

focus on cross-view visual learning and relative spatial esti-

mation. We experiment our proposed models on Drone-BR

(80 drone-view images and 585 queries). For evaluation, we

rank proposals for each query independently. If a retrieved

bounding box’s IoU overlaps with a ground truth bounding

box ≥ threshold, then it hits. We evaluate the performance

by mean Average Precision (mAP) and choose 0.3 as IoU

threshold owing to the limitation of proposal quality. There

are 56 queries which absolutely cannot retrieve the correct

answer (cannot find IoU ≥ 0.3) in the proposals. It also in-

creases the difficulties of image matching, since the ground

truth proposals may only contain partial building features.

The upper bound of the experiment is 0.923 (540/585). Af-

ter experimenting on different number of proposals (i.e., 50-

500), we find 200 proposals are good enough because the

performance remains constant even if we use more propos-

als. For fixed database and fair comparison, we compare

different models on the same proposal number (200) and

only search the query in the same drone-view image.

Query Images Aerial Street-view Ground-level

ImageNet-AlexNet 5.32 7.43 15.87

Places205-AlexNet 6.98 9.27 20.55

IG-City8-Triplet 7.38 13.06 21.61
Table 2. Effect of initial models. mAP (%) of various initial mod-

els on Drone-BR with 3 different types of 585 queries. It is critical

to utilize related dataset (IG-City8) for getting better performance.

Ground-level image is the most useful due to containing more vi-

sual information than other views.

7.1. Transfer Learning: The Effect of Initial Models

Research [19] suggests that CNNs outperform hand-

crafted features like SIFT. Thus, we use off-the-shelf deep

features as baselines (i.e., fc6 in ImageNet [ImageNet-

AlexNet] [7] and Places205 [Places205-AlexNet] [27]). In

Table 2, existing pre-trained models do not perform well

since they do not train on enough building images in general

datasets. It also shows the difficulty in drone-view build-

ing identification due to the lack of drone-view datasets.

Hence, leveraging external data and few annotated im-

ages for training is necessary. For ground-level images,
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Figure 6. Drone-BR: we gather ground-level, street-view and aerial images of 108 building images for multimodal queries (buildings).

Since we collect drone-view images at three locations under different weather, our Drone-BR can be split into five subsets according

to diverse conditions. Hence, due to the variety of the collected cross-view and drone-view images, it is a challenging problem for our

designed building identification. More data, some retrieval results and a video result are revealed in Supplementary. [Best viewed in color.]

Places205 (20.55%) is better than ImageNet (15.87%) be-

cause of seeing more location data which is relevant to

buildings. We fine-tune the network with parameters from

Places205 and train more building triplets with IG-City8-

Triplet. The ground-level image achieves the best accuracy

among all models. Besides, IG-City8-Triplet also improves

significantly for street-view images (+41% over Places205)

because photos taken by users in IG-City8 are also close to

street-view images (look up from the ground). In summary,

while testing 3 different views respectively, initial model

trained by IG-City8 outperforms pre-trained deep features

(+5% over Places205 in ground-level). This is because we

train on a relevant domain (building images) from external

IG-City8 dataset. We use this model as initial model for DT

and CVDT to achieve better performance and robustness.

7.2. Cross­View Visual Learning

Compared with drone-view images, street-view images

merely contain the facades of buildings, whereas aerial im-

ages simply contain the roofs of buildings. Thus, we use the

ground-level image as the anchor image for DT to compare

with other methods. Drone-BR can be categorized into 5

subsets according to its captured location and weather. To

evaluate our method under diverse conditions, we respec-

tively test on a subset by training on other subsets. Since

early stopping is critical for limited training data, we adopt

it and observe that the best performance usually appears

in the first 5 epochs with learning rate=0.00001 and batch

size=128. Our model outperforms pre-trained deep fea-

tures, which shows the improvement for both unseen build-

ings (e.g., LC) and different weather (e.g., WB).

Siamese and triplet network are 2 state-of-the-art meth-

ods for cross-domain image matching problems [13, 18, 6,

9, 24]. As a result, we use triplet neural network (DT)

as a strong baseline for our drone-view building identifi-

cation. After applying DT on the initial model (IG-City8-

Triplet), we can achieve further improvement owing to

training with more drone-view building images. Since the

query and database are in the different domains (ground-

level and drone-view), the proposed DT can mitigate the

mAP (%) LA LB LC WA WB

# Training 362 355 453 149 436

# Testing 223 230 132 436 149

ImageNet [7] 15.00 17.70 14.14 15.09 16.15

Places205 [27] 19.56 19.33 24.36 17.96 21.48

IG-City8 20.42 20.43 25.69 18.56 22.70

Baseline (DT) 22.89 24.07 26.72 32.19 43.79

CVDT (Max) 25.14 24.97 25.02 33.04 44.30

CVDT (CVP) 27.75 26.81 28.87 34.47 46.45

CVDT+Spatial 35.00 34.97 35.70 42.60 50.15
Table 3. Cross-view visual learning. mAP of different models on

each subset. LA means that DT and CVDT are trained on Loca-

tion B and Location C, and tested on Location A (i.e., buildings in

Location A are unseen). WA and WB have seen all the buildings

but trained and tested under different weather. # means the num-

ber of images. The results indicates our proposed CVDT+CVP

outperforms others on all subsets. (IG-City8 follows the same

training process as [18] and forms triplet by IG-City8. CVDT

(CVP)+Spatial is the method combines with Da +Dx+Dy.)

gap between them. Besides, by considering cross-view vi-

sual learning (CVDT), we can achieve the best accuracy

(+21% in LA) due to leveraging images in different views in

the learning process. Compared with unseen buildings, dif-

ferent weather can achieve larger performance gains. Nev-

ertheless, testing on unseen buildings is still better than

IG-City8-Triplet (+31% in LB) owning to learning com-

mon building features to identify unseen buildings. If our

models are trained with more training data, gains are sig-

nificantly improved (+105% in WB). Moreover, Location

B is the most challenging subset since we collect it un-

der the extreme weather (i.e., almost rainy and very sunny

days), which makes buildings blur and backlight. Still,

CVDT+CVP can have 31% relative gains.

We further conduct experiments on two pooling meth-

ods with our CVDT. One is max-pooling [22] (i.e., max-

pooling on different views), and the other is our proposed

CVP. In Table 3, CVDT+CVP is better than CVDT+Max

(Max-pooling) because max-pooling is easily influenced by

noise. Aerial and street-view images are greatly differ-
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Figure 7. Retrieval with relative spatial estimation: The retrieval accuracy of line charts is drawn by different top-ranked images on five

various subsets among different models. Each model is trained by other subsets. The value after line is mAP. The results show that our

proposed method (CVDT+Da+Dx+Dy) can achieve the best performance under various settings.

ent from drone-view and ground-level images. Since we

use mean-pooling layer on 3 views in the CVP, the per-

formance of CVDT is at least similar to DT with ground-

level images in the worse case (e.g., DT-ground-view in Fig-

ure 7). However, we can obtain useful information from

aerial and street-view images by our CVP. In conclusion,

our CVDT+CVP outperforms other learning methods.

Methods mAP (%) on 585 queries

Drone-angle (Da) 8.91

Drone-distance (Dx, Dy) 12.29

Drone-angle + Drone-distance 16.23

IG-City8-Triplet (visual) 21.61
Table 4. The performance of relative spatial estimation is worse

than visual features. Since there are multiple candidates with sim-

ilar angle and distance, it is hard to distinguish them based on

spatial estimation, which motivates us to leverage visual features.

7.3. Retrieval with Relative Spatial Estimation

Table 4 shows that simply considering relative spatial

estimation performs worse than visual features. To lever-

age the sensor data, we integrate cross-view visual learn-

ing with relative spatial estimation. In the following exper-

iments, we use CVDT+CVP in Figure 7 as visual features

since it is the most powerful. The results on Drone-BR in

5 subsets are revealed in Figure 7. Drone-angle (+Da) im-

proves the retrieval accuracy (0.28 to 0.32 in LA) owing to

filter out proposals which have large angle gaps. Drone-

distance (+Dx+Dy) also has the better retrieval accuracy

(0.28 to 0.33 in LA). It performs better than Da since Da

has more serious projection errors from geographic map to

drone-view. Finally, the model (CVDT+Da+Dx+Dy) per-

forms the best (0.35 in LA) on 5 diverse testing subsets. Our

relative spatial estimation improves more in lower perfor-

mance (0.27 to 0.35 in LB over 0.47 to 0.50 in WB). Thus,

it is more competitive in challenging drone-view data, like

unseen buildings or extreme weather.

On different ranking levels, our best model outperforms

other methods stably. The accuracy@1 (only if the 1st re-

trieved result hits) is the most vital for real-world applica-

tions. Yet our best model achieves 0.23 in LB and 0.39 in

WB which means this problem is still challenging. Besides,

if we inspect accuracy@10, our best model performs well

by achieving 0.61 in LB and 0.72 in WB which indicates re-

trieving more images improves more remarkably in harder

group (+166% in LB). To conclude, our method achieves

good retrieval accuracy in all conditions of limited dataset.

8. Conclusions

We collect drone-view datasets and design a brand-new

and challenging drone-view building identification prob-

lem, which helps drones understand their environment more

deeply. Due to the lack of annotated drone-view data,

we utilize external building dataset for cross-view image

matching and propose a cross-view visual learning model

for drone-view image matching. Besides, for measuring

the spatial relation between proposals (without geoloca-

tion) and the drone, we further integrate relative spatial

estimation to improve retrieval performance. Experiments

show that our methods (CVDT+Da+Dx+Dy) significantly

improve the retrieval accuracy over triplet neural network

(e.g., 22.9 to 35.0, +53% in LA).
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