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Abstract

In this paper, we show how absolute orientation mea-

surements provided by low-cost but high-fidelity IMU sen-

sors can be integrated into the KinectFusion pipeline. We

show that integration improves both runtime, robustness

and quality of the 3D reconstruction. In particular, we use

this orientation data to seed and regularize the ICP regis-

tration technique. We also present a technique to filter the

pairs of 3D matched points based on the distribution of their

distances. This filter is implemented efficiently on the GPU.

Estimating the distribution of the distances helps control the

number of iterations necessary for the convergence of the

ICP algorithm. Finally, we show experimental results that

highlight improvements in robustness, a speed-up of almost

12%, and a gain in tracking quality of 53% for the ATE

metric on the Freiburg benchmark.

1. Introduction

Automated 3D reconstruction of geometry from images

is a highly versatile field of research with applications in

archeology [11], topography [12], urban planning [27],

robotics [19] and entertainment [31]. The ubiquity of this

core vision task stems primarily from decades of advances

in reconstruction algorithms [30, 39, 7, 16] and acquisition

devices [1, 10, 8, 17, 37, 5]. With the latest advent of low-

cost consumer-class RGB-D cameras, 3D scene understand-

ing and reconstruction has become a pervasive mass market

technology.

Simultaneous Localization and Mapping (SLAM) tech-

niques are based on a registration step, i.e., they seek to

properly align pairs of images or point clouds. This registra-

tion step consists of finding a 6-DoF rigid body transforma-

tion M ∈ SE(3) composed of a rotation matrix R ∈ SO(3)
and a translation vector t ∈ R

3 such that overlapping parts

of a scene can be superimposed, thereby minimizing the

distances between pairs of matched points. It is clear that

the process of finding the best-possible rigid transformation

Figure 1. Reconstruction of a Kitchen environment using an abso-

lute orientation prior to seed the ICP algorithm. Top Left: Photo

of the Kitchen environment. Top Right: Original KinectFusion re-

construction. Bottom: IMU-seeded KinectFusion reconstruction.

M = (R, t) is affected by noise, occlusion, matching qual-

ity, and outliers. Therefore, it remains intrinsically ambigu-

ous and complex to solve (R,t) in a robust and computa-

tionally efficient fashion. The main reason is that solving

for both R and t simultaneously is a non-convex problem.

We believe that non-convexity is principally introduced by

the orientation component. The problem can be linearized,

however, if a rough estimate of the orientation is available.

Point cloud registration, be it frame-by-frame or frame-

to-model, is the foundation for 3D reconstruction, since sep-

arate acquisitions have to be aligned. The original Kinect-

Fusion algorithm [28] makes use of a coarse-to-fine ICP

method [2] with a fixed number of iterations, using a linear

approximation [23] that minimizes for the point-to-plane

metric [35].
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In this work, we present a modified KinectFusion frame-

work that integrates an absolute orientation measurement

provided by an off-the-shelf IMU. The orientation prior is

leveraged in the ICP method and the original problem is

solved with a regularization term for the orientation com-

ponent. Also, correspondences between closest points are

filtered based on an efficient estimate of the median dis-

tance between pairs of points implemented on a GPU. As

such, we observe improvements in quality, runtime, and ro-

bustness in the 3D reconstruction process. We characterize

the uncertainty model for the orientation measurement ac-

cording to the ISO JCGM 100:2008 [6], and we apply such

model to the Freiburg dataset [38] in order to evaluate the

quality of our reconstruction pipeline.

2. Related work

Visual-Inertial SLAM is a hot topic with direct applica-

tions to robotics, for which the setup usually includes cam-

eras and IMUs. Here, we review works focusing on Navi-

gation and Mapping, dual topics applied to robotics.

Navigation focuses on estimating the system’s ego-

motion, i.e., its own trajectory in space and time. Many

important navigation methods use extended Kalman filter

(EKF) techniques [32, 42, 15, 21]. They define and up-

date a system state based on visual and inertial measure-

ments using advanced and complex Kalman filtering tech-

niques [26, 25, 22]. Paul et al. [32] recently conducted a

comparative study between monocular and stereo visual-

inertial EKF-based techniques, but do not mention any

RGB-D devices. Other methods such as [20, 9, 34] focus

on solving a global optimization problem minimizing for a

combined cost function. In those techniques, the transla-

tion is estimated by integrating the IMU acceleration mea-

surements twice. However, since integration may amplify

noise, such double integration generally produces signifi-

cant drifts. Leutenegger et al. [20] modeled the noise in

a probabilistic way, but residual drift inevitably affects the

method’s stability negatively. In contrast, we show that ori-

entation measurements can be estimated robustly and con-

sistently using a 9-DoF IMU. In Visual-Inertial Navigation

techniques, the IMU data can be loosely-coupled, i.e., an in-

dependent measurement in the problem [18, 41] or tightly-

coupled, optimizing over all sensor measurements in the

optimization [20] and EKF pipelines [26, 42]. Finally, it

is worth noting that navigation techniques mostly make use

of monocular or stereo cameras, but do not rely on direct

depth measurements, mainly because the quality of the 3D

reconstruction is usually out-of-scope for navigation tasks.

Mapping. While Navigation tries to solve for ego-

motion, Mapping focuses attention on the 3D reconstruc-

tion of the surrounding environment. Zhang et al. [43] re-

cently presented a pipeline that estimates ego-motion while

building an accurate representation of the surrounding en-

vironment. Similar to Navigation, it is common practice to

rely on EKF [3] or global optimization [24] techniques. Ma

et al. [24] presented a solution for large-scale Visual-Inertial

reconstruction using a volumetric representation similar to

KinectFusion. Concha et al. [4] created a real-time, fully

dense reconstruction based on an RGB camera and an IMU.

Visual Inertial KinectFusion. Nießner et al. [29] fol-

lowed similar considerations by using an IMU from a smart-

phone to initialize both (R,t) in the ICP step of Kinect-

Fusion. While achieving some improvement in runtime,

reliable position information cannot be extracted from an

IMU alone, since the accelerometer’s noise leads to signif-

icant drift. Smartphones therefore use a fusion of multiple

triangulation techniques based on measurements including

GSM, WiFi, and GPS (outdoors). Nevertheless, the position

information is of very low fidelity, especially indoors. We

argue that since ICP is generally sensitive to its initializa-

tion, providing it with such noisy measurements can only

lead to limited improvement (or even degradation) in many

acquisition scenarios. In contrast to requiring an expen-

sive, full sensor array as found in smartphones, our method

only relies on a cheap and modular IMU that produces high-

fidelity absolute orientation measurements in real-time.

Datasets. Pfrommer et al. [33] recently released a

dataset for visual-inertial benchmarking. However, this

dataset strictly focuses on odometry along long distances,

but not on small range reconstructions as KinectFusion-

based algorithms do. Sturm et al. [38] released multiple ver-

sions of their well-known Freiburg benchmark, albeit with-

out orientation measurements. We will present a way to

generate such measurements using the ground truth orienta-

tion and an empirical uncertainty model of our sensor.

Contributions. While the existing literature focuses on

solving the problem for both position and orientation from

the IMU raw measurements, we argue that orientation alone

is sufficient to improve overall performance. Our contribu-

tions are: (i) We overcome the non-convexity of the joint

problem induced by the unknown rotation R by seeding the

ICP algorithm with an orientation estimate from the IMU.

(ii) We present a regularized point-to-plane metric in the

coarse-to-fine ICP alignment. (iii) We use a novel filter that

estimates the median distance between closest points effi-

ciently on the GPU in order to reject outliers and control

ICP convergence. (iv) We provide an uncertainty model of

the IMU measurements and apply our model to the Freiburg

dataset.

3. Proposed method

The original KinectFusion algorithm is based on a

coarse-to-fine ICP between a newly acquired frame and the

model reconstructed so far. The current frame is aligned by

solving the non-linear least squares minimization problem

shown in Eq. (1) using the point-to-plane metric to find the
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optimal transformation matrix M ∈ SE(3), composed of an

orientation R ∈ SO(3) and a translation t ∈ R
3.

Mopt = argmin
M

∑

i

(
(Mpi − qi)

⊤
ni

)2

, (1)

where pi and qi are pairs of matched points belonging

to the current frame and the model respectively. In our

method, we use the orientation measurement from the IMU

to pre-orient the point pi beforehand. Inspired by Low et

al. [23], who proposed a linear solution to this problem by

assuming small angles (α ≃ 0, β ≃ 0, γ ≃ 0), transfor-

mation M is approximated by M̂ according to Eq. (2), in-

tended to solve for small angle after applying the IMU seed.

M ≃




1 −γ β tx
γ 1 −α ty
−β α 1 tz
0 0 0 1


 := M̂. (2)

In this small orientation setting, the optimization of

Eq. (1) can be reformulated into the linear least square

shown in Eq. (3), where x = (α, β, γ, tx, ty, tz)
⊤ and A

is a n × 6 matrix. Please refer to the original implementa-

tion by Low et al. [23] for further details on A and b.

xopt = min
x

1

2
‖Ax− b‖2

2
(3)

To solve Eq. (3), A⊤A and A⊤b are efficiently com-

puted on the GPU using a parallel reduction [13]. The re-

sulting 6×6 linear system A⊤Ax = A⊤b is efficiently

solved using a Singular Value Decomposition (SVD) per-

formed on the CPU.

3.1. Regularized formulation of the problem

After leveraging the orientation prior, we propose to

solve the regularized formulation shown in Eq. (4).

xopt = min
x

1

2n
‖Ax− b‖2

2
+ λ‖Px‖2

2
. (4)

We set P =
[
I3|03

]
to regularize only the 3 angles α,

β and γ to be close to zero. Such a constraint enforces the

small angle hypothesis presented in the original formulation

(2), but also allows for small rotations to compensate for the

noise in the IMU orientation measurement. The regularized

linear system that we solve is presented in Eq. (5).

(A⊤A+ 2λnP⊤P)x = A⊤b (5)

The regularized term 2λnP⊤P is efficiently computed

on the GPU. λ is a hyper-parameter that leverages the use

of the IMU prior; it can be fixed (constant) or a function of

n. The regularized formulation of the linearized problem is

solved using an SVD on the CPU. The process is repeated

in an ICP framework.

3.2. Distribution of closest­point distances

In the original problem, the number of good matches n
in Eq. (4) is unknown. To both estimate n and identify in-

consistent correspondences, we exploit the probability den-

sity function (PDF) of closest point pairs, which gathers the

point-to-point distances into a histogram. The PDF and its

cumulative (CDF) are efficiently computed on the GPU and

are used in the next steps. Figure 2 shows a PDF extracted

from a single iteration in the ICP framework.

3.3. Median­based filtering

We also propose a filtering method for the closest-point

correspondences based on the median distance. This me-

dian is estimated from the CDF of the distances obtained

up to the resolution of the used histogram. We argue that,

by correcting the orientation, the distribution of the closest

point distances should be clustered around the distance cor-

responding to the translation between the two point clouds.

In other words, the distances should be gathered around

d̄ =
√
t2x + t2y + t2z after orientation correction.

The closest point estimation is performed using a normal

shooting technique, with normals estimated using an inte-

gral image method [14]. Such a normal estimation is prone

to error especially on the border of the depth frame and on

the edges of objects in the scene. The algorithm may look

for the closest point along a wrong direction. We thus fil-

ter out pairs of points that do not gather around the median

distance, identifying them as erroneous. Figure 2 illustrates

such median-based filtering. Here, the PDF of the distances

is plotted with the good pair distances in green and the fil-

tered out ones in red.

Figure 2. Median Filtering performed on a distance distribution.

In this specific case, we are keeping around 75% of the pairs.

3.4. Convergence verification

The median distance used for the filtering is subse-

quently used to control the convergence of the ICP. Since

we seed the ICP with the orientation, we observe that the

coarse-to-fine ICP requires less iterations for convergence

than before. To assess the proper alignment, we loop until

the median converges instead of performing a fixed num-

ber of iterations. The convergence of a given level of the

coarse-to-fine ICP is achieved when the median no longer

changes within its resolution for 3 successive iterations.
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4. Experiments

We use the state-of-the-art IMU BNO055 manufactured

by Bosch, which is typically designed for embedded appli-

cations, such as flight control and motion capture. It has

a small footprint of a few mm2 and comes on a 1cm-sized

board. We mounted the IMU on a Kinect V1 (Figure 3 right)

and its pose has been calibrated with the reference system

of the 3D camera using the hand-to-eye calibration method

proposed by Tsai et al. [40]. The Kinect V1 grabber has

been modified to include the IMU orientation in the point

cloud. We used the KinectFusion implementation available

in the Point Cloud Library [36].

Figure 3. BNO055 board on a Kinect V1 RGB-D Camera.

4.1. Evaluation of ICP Variants

We tested different versions of ICP using an illustrative

Desktop example for the registration, shown in Figure 4.

Here, we consider two consecutive frames in the Desktop

sequence and evaluate how well each ICP variant registers

the input point cloud to the target point cloud.

From Figure 4c, it is evident that ICP may converge to

an undesirable local minimum if the IMU is not used, espe-

cially if the initial guess of the matched point correspon-

dences is unreliable. Here, even though the IMU-Based

metrics have a worse initial value, it lies in a more linear

and more convex neighbourhood of the global optimal so-

lution, hence it converges faster and more robustly to the

desired solution.

Figure 5 compares the results of the alignment of two

point clouds, as well as, the distribution of the closest point

distance over iterations, using a plain ICP and our IMU-

Based ICP both with and without regularization. In this ex-

ample, the original ICP gets stuck in a local minimum and

does not align the two point clouds properly (Figure 5a);

the distribution of distances does not converge after 50 iter-

ations. In Figures 5b and 5c we show how our system con-

verges when initialized with the orientation measurement.

Using a strong regularization (b), the orientation is not op-

timized, the distribution does converge, but, in this case,

the translation t is computed without taking into account

the eventual noise in the orientation. Without regularization

(c), the robustness is decreased, i.e. the ICP can converge

to a local minimum, but an eventual error in the orientation

measurement is corrected, which produces a narrower PDF.

(a) Input point cloud.

(b) Target point cloud. (c) ICP convergence over iterations

Figure 4. Input (a) and target (b) point clouds with IMU measure-

ments, the convergence (c) of ICP metric (median) without IMU

vs. IMU-Based methods.

(a) Original ICP

(b) IMU-Based ICP (strongly regularized λ ≫ 0)

(c) IMU-Based ICP (not regularized λ = 0)

Figure 5. ICP alignment and distance distribution over iteration.

4.2. Angular convergence

In order to show the sensitivity of KinectFusion to angu-

lar motion, we considered 20 consecutive frames from the

Desktop environment. Between pairs of frames, we rotate

the 3D camera by a specific angle θ ∈ {5◦, 10◦, . . . , 60◦}.

The rationale is to simulates angular shifts in acquisition.

We then feed the data to KinectFusion and inspect the re-

sulting 3D reconstruction for obvious errors such as dupli-

cation of scene geometry. Figure 6 plots the median of the

residual error over iterations, for a predefined set of intra-

frame angles. Clearly, KinectFusion’s original ICP cannot
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Figure 6. Original ICP (left) and our implementation (right) con-

vergence over time (top) and iteration (bottom) for different intra-

frame angles.

Table 1. Failure rate across intra-frame acquisition angles.
Desktop 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 40◦ 50◦ 60◦

Original 0% 10% 25% 55% 75% 90% 100% 100% 100%

Ours 0% 0% 10% 0% 10% 0% 5% 10% 100%

cope with orientation changes of more than 20◦ between

consecutive frames and shows an increasing degradation.

In contrast, our IMU-based approach maintains the same

convergence quality over angle.

Table 1 summarizes the failure rate (averaged across 20
pairs of frames) for each angular shift during the acquisi-

tion. Clearly, our IMU-based version of KinectFusion is

more robust, since it has a much lower failure rate for most

rotations. Our method degrades more gracefully than clas-

sical KinectFusion and total failure only occurs at θ = 60◦,

when the point clouds do not overlap anymore.

4.3. Improvements in reconstruction

For the same reason we have mentioned above, the re-

construction deteriorates with the scanning pace; a fast

scanning at a fixed frame rate creates larger gaps between

consecutive frames than a slow scanning. Figure 8 shows

the ICP convergence for a slow and fast pace reconstruction.

Clearly, for slow motion (small angles between consecutive

frames), both versions of ICP tend to converge to similar re-

sults, with the IMU-based version being faster to converge

(refer to Figure 8a). However, for fast motion (large angles

between consecutive frames), ICP tends not to converge in

the 19 iterations at its disposal (refer to Figure 8b). Because

error rampantly propagates, a single instance where acqui-

sition is too fast can lead to a completely erroneous model

(refer to Fig. 1 (red background)). In comparison, Kinect-

Fusion with IMU-based ICP converges to a much better so-

lution and in a shorter time for the same acquisition (refer

to Fig. 1 (green background)).

In order to assess our hypothesis, we asked different

users to perform several reconstructions on multiple scenes

with our setup. To prevent bias, the users were not given

intricate instructions about the acquisition strategy they

should use. Note that the users were visualizing the recon-

struction as it was being incrementally created. As a result,

they scanned the scene at a speed that they considered suit-

able for reconstruction.

Figure 1 shows some qualitative results for the Kitchen

dataset, while Figure 7 shows results for the People, Show-

case and Desktop environments. A red background indi-

cates an erroneous reconstruction performed by the original

KinectFusion algorithm and a green background shows the

reconstruction performed by our implementation. In these

particular examples, we only used the IMU as a seed to the

ICP without any regularization, median filtering nor con-

vergence check. We can already see an improvement in the

reconstruction quality.

We notice for the People model in Figure 7a that a fast

rotation along the camera principal axis (model on the mid-

dle) or an horizontal axis (model on the right) creates an in-

consistent reconstruction. At a certain point, the coarse-to-

fine ICP is not able to align the newly acquired point cloud

with the model within the 19 iterations at its disposal. As

a result, it duplicates the scene and overwrites the weight

of the TSDF cube that stores the reconstruction. For the

Showcase scene in Figure 7b, a fast motion aligned a frame

on the wrong seat, creating a shift in the overall reconstruc-

tion, duplicating the objects. Using the orientation provided

by the IMU helped in keeping track of the reconstruction.

For the Desktop scene shown in Figure 7c, a bad alignment

has created a duplication of the desktop in two different lev-

els. The first part of the point cloud streaming reconstructed

a model of the desk, but after a bad alignment occurred, a

second model was built.

For all the previous examples, our implementation

(green background) was able to cope with the difficulties

of the different datasets, showing improved robustness in

the presence of fast motion.

4.4. Considerations on convergence timings

The original KinectFusion method uses a fixed cadence

(4, 5, 10) of coarse-to-fine ICP iterations, since computing

the residual error on a GPU is an expensive log-reduce op-

eration. By feeding the ICP with an initial orientation from

the IMU, we can reduce the number of iteration to (2, 2, 3)
without reducing the performance. Table 2 shows the im-

provement in time, which corresponds to 61%–70% of the

time used for the ICP alone and 35%–43% of the overall

KinectFusion pipeline.

Since less ICP iterations result in improved speed, we

can use this saved time to estimate the PDF of the closest-

point distances. Such an operation can be time consuming if

performed on the CPU, so we take advantage of the multiple
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(a) People (∼150 frames)

(b) Showcase (∼300 frames)

(c) Desktop (∼200 frames)

Figure 7. KinectFusion reconstruction of multiple scenes, each with (green background) and without IMU (red background).

(a) ICP convergence for slow motion (b) ICP convergence for fast motion

Figure 8. ICP convergence plot representative for more than 95%

of our data, for slow (a) and fast (b) camera motion. Adding an

IMU substantially improves both cases.

Table 2. KinectFusion runtime with custum number of iterations

on NVIDIA K6000 and GTX850M GPUs.
K6000 GTX850M

ICP KinFu ICP KinFu

Original (4,5,10) 10.58 ms 15.74 ms 27.17 ms 43.41 ms

Ours (2,2,3) 4.07 ms 10.22 ms 8.22 ms 24.72 ms

Improvement −61.53 % −35.07 % −69.75 % −43.05 %

GPU cores available to build the distance PDF on the GPU

as well. Figure 9 shows the timing for different versions of

KinectFusion, while reconstructing the Freiburg scenes (a

total of 15,793 alignments). In blue, we show the distribu-

tion of the time required by the original KinectFusion, with

an average of 15.55ms. Adding the estimation of the PDF

at each ICP iteration (red distribution), the average time in-

creases to 25.62ms. However, once we use the PDF to esti-

mate its median value and stop the alignment after a conver-

gence is detected, our method requires only 11.54 iterations

on average to converge, whereas the original KinectFusion

requires 19 iterations. Since our method converges in less

iterations, it only requires an overall average of 13.71ms for

alignment, which corresponds to an improvement of 11.8%

on the original time. Furthermore, Table 3 shows the timing

details for different datasets.

5. Performance on the Freiburg Benchmark

We evaluate our implementation on the Freiburg

dataset [38], which is commonly used to benchmark large-

scale SLAM techniques. Since this dataset does not provide

any measured orientation, we first characterize the uncer-

tainty model of our IMU in order to apply such a model to

the ground truth orientation.
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Figure 9. Computational time for the original KinectFusion (blue),

KinectFusion with PDF estimation for distant point removal (red)

and KinectFusion with PDF estimation and median value conver-

gence check (yellow).

Table 3. KinectFusion runtime for the original KinectFusion, our

version using a fixed number of iteration (4,5,10) and our version

with a control of the convergence.
Original Fixed Until Impro-

Dataset nPC KinFu iteration Converg. vements

fr1/desk 571 16.0 ms 26.6 ms 12.8 ms −19.6 %

fr1/desk2 609 16.1 ms 25.8 ms 14.1 ms −12.6 %

fr1/plant 1117 15.4 ms 25.4 ms 14.9 ms −3.1 %

fr1/room 1351 15.8 ms 25.7 ms 13.8 ms −12.3 %

fr1/rpy 689 15.4 ms 25.8 ms 12.9 ms −16.3 %

fr1/teddy 1398 15.4 ms 25.1 ms 13.1 ms −15.1 %

fr1/xyz 789 15.8 ms 26.4 ms 13.1 ms −17.0 %

fr2/desk 2173 15.7 ms 25.8 ms 14.4 ms −7.9 %

fr2/dishes 2940 15.3 ms 25.1 ms 14.2 ms −6.8 %

fr2/ms2 1834 15.6 ms 25.5 ms 13.1 ms −15.8 %

fr3/teddy 2322 15.6 ms 25.3 ms 12.7 ms −18.0 %

AVG 15793 15.6 ms 25.6 ms 13.7 ms −11.8 %

5.1. Metrological Characterization of the IMU Ori­
entation

To model the IMU noise and include it in the Freiburg

dataset, we characterize the uncertainty of the IMU under

static conditions according the Guide to the Expression of

Uncertainty in Measurement (GUM) [6]. We used a 6-DoF

anthropomorphic robot ABB IRB 1200 to stress the IMU

in rotation along the three main axes, within a ±180◦ range

and a 5◦ angular step. The reference orientation has a 0.01◦

resolution on each axis, which is several orders of magni-

tude better in resolution than the expected IMU uncertainty.

For the static characterization, the IMU was positioned

in space with a controlled orientation with respect to its ref-

erence system (Earth). The Z-axis vertical was aligned to

top, and the X- and Y- axes orthogonal and horizontal. In

particular, the X- axis was aligned with the north direc-

tion. After a stabilization time of 5 seconds, 1000 orien-

tation measurements are performed at the IMU frequence

of 100Hz. Uncertainty was measured as a combination of

a random error represented by the standard deviation of

the 1000 measurements and a systematic error measured by

comparison to the ground truth orientation provided by the

robotic arm.

Figure 10. Uncertainty characterization of the BNO055 IMU along

X-, Y- and Z- axes for the systematic (top) and random (bottom)

errors. Note the different scales.

Results presented in Figure 10 show that the uncertainty

has an important systematic error, but no random error. The

absence of a random component in the uncertainty is due to

a strong low pass filter occurring on the IMU for the ori-

entation estimation. The systematic error is mainly due to

the internal calibration between the sensors. For reference,

the IMU orientation around the horizontal X- and Y- axes

are extracted using the combination of a magnetometer, an

accelerometer, and a gyroscope, which provide accuracy

around ±3◦. Orientation around the vertical Z-axis is ex-

tracted using the magnetometer only, which provides lower

quality measurement with uncertainty measured to be about

±10◦. The test was repeated several times with different

initial orientations for the IMU leading to similar trends.

5.2. Methods and Results

We used multiple datasets from the Freiburg bench-

mark [38], focusing on 3D object reconstructions rather

than large environments. The list of datasets we used

is shown in Table 5. We adapted the parameters of the

KinectFusion such that the reconstructions can fit inside a

512× 512× 512 TSDF cube, with a maximum side length

of 6m. We chose identical parameters to run instances of

the original KinectFusion and our pipeline using the ground

truth orientation, with and without the systematic error that

we characterized in the uncertainty model.

We tested our model over different values of λ to fig-

ure out the best regularization. Table 4 shows the average

improvement for Absolute Trajectory Error (ATE) metrics

(in %) with respect to the original KinectFusion algorithm,

over all the datasets used. Our results clearly indicate that

larger regularization results in better accuracy.

Table 5 details the ATE and the Relative Pose Estimation
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Table 4. Comparison of the average RMSE Absolute Trajectory

Error (ATE) of our method respect to the original KinectFusion

one using different regularizations parameter λ. Values are given

in percentage of improvement over all the datasets.
c = 0.05 0.20 1.00 2.00 5.00 AVG

c −30% 5% −29% −33% −44% −26%

c/
√
n −26% −31% −33% −46% −46% −36%

c/n −6% −11% −51% −41% −29% −28%

c/n2 20% −2% −45% −34% −41% −20%

-c ln(n) 72% −32% −16% −34% −41% −10%

AVG 6% −14% −35% −38% −40% −24%

(RPE) metrics for the different datasets. We only show the

improvement on the translational part, since the rotational

part is directly measured. We can see that the average ATE

error is reduced by 53% on the selected dataset and the RPE

is reduced by 21%. Figure 11 plots the trajectories resulting

from our method. They are consistent with the ground truth.

When using the original KinectFusion method, part of the

trajectory is not reconstructed due to tracking loss.

Table 5. ATE and RPE metrics for our method compared to the

original KinectFusion. Here we used regularization (λ = 5), me-

dian filtering and convergence control
ATE (RMSE) (m) RPE (RMSE) (m)

dataset Ours Ours

Orig. IMU +noise Orig. IMU +noise

fr1/desk 0.073 0.030 0.044 0.738 0.745 0.739
fr1/desk2 1.162 0.293 0.444 1.288 0.838 0.870
fr1/plant 0.569 0.134 0.176 0.707 0.655 0.632
fr1/room 0.533 0.292 0.370 0.573 0.568 0.576
fr1/rpy 0.144 0.026 0.039 0.190 0.147 0.155
fr1/teddy 0.772 0.033 0.136 1.107 0.562 0.552
fr1/xyz 0.022 0.018 0.032 0.471 0.455 0.443
fr2/desk 1.399 1.087 1.107 0.513 0.325 0.411
fr2/dishes 1.118 0.268 0.619 0.394 0.239 0.323
fr2/ms2 1.126 0.141 0.142 0.426 0.321 0.329
fr3/teddy 0.396 0.097 0.292 0.430 0.392 0.397

AVG 0.665 0.220 0.309 0.622 0.477 0.494
Improv. - −67% −53% - −23% −21%

6. Conclusion

In this work, we have demonstrated the benefits of inte-

grating a cheap and modular IMU into the popular Kinect-

Fusion reconstruction pipeline. We used the IMU orien-

tation to seed the ICP algorithm, which allows us to lin-

earize/convexify the original problem more faithfully. We

used a regularized point-to-plane metric that constrains the

orientation within boundaries. We made sure the chosen

correspondences are consistent and free of outliers by ex-

ploiting their median distance as a basis for outlier removal.

We showed qualitative and quantitative improvements in the

robustness of our modified KinectFusion pipeline over the

original KinectFusion. In addition to improved reconstruc-

tion quality, speed is also improved by almost 12%. This

Figure 11. From top to bottom: Trajectories for some Freiburg

datasets. (black: ground truth, blue: estimated, red: difference)

From left to right: Original KinectFusion / our method without

regularization (λ = 0) / adding regularization (λ = 5) and con-

vergence check / using noisy orientation.

is due to a significant reduction in the number of ICP it-

erations needed for convergence. Finally, results on the

Freiburg benchmark show that the overall quality of the

tracking/reconstruction is improved by a factor of 2.
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