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Abstract

This paper presents an approach to estimate the rigid

transformation between two point clouds using a linear

least squares solution termed as the optimal linear attitude

estimator (OLAE). It is shown that by parameterizing the

relative orientation between point clouds of interest using

the Classical Rodrigues Parameters (CRP), the OLAE ap-

proach transforms the nonlinear attitude estimation prob-

lem into a linear problem. These linear equations are solved

efficiently with closed form solution without any expensive

matrix decomposition or inversion. This paper also shows

that the 3 degree of freedom (DOF) special case of OLAE

that is of interest for aligning point clouds sensed by road

vehicles in self-driving car applications can be effectively

solved as a linear function with only 1 unknown variable.

This formulation enables the 1D RANSAC that can effec-

tively remove outliers in the measurement.

1. Introduction

Advances in microelectronics coupled with Moore’s law

enabled rapid progress in the sensor technologies to esti-

mate 3D geometry [16, 35]. Estimation of 3D geometry

from image and other sensor data has been a topic of inter-

est in the past three decades [26, 15, 21, 46]. The sensed ge-

ometry is used by autonomous systems in a wide variety of

applications including robotic path planning, terrain map-

ping, autonomous landing and simultaneous location and

mapping [43, 48, 32, 28, 25, 29, 24, 33, 47]. For self driv-

ing cars, manufacturing, robotics, planetary exploration, au-

tonomous satellite operations and a variety of proximity op-

erations applications, sensing 3D geometry provides an im-

portant modality for relative navigation.

Modern designs of autonomous vehicle systems are usu-

ally equipped with multi-camera systems and LIDAR sens-

ing systems. Both of these sensors are capable of gener-

ating a densely sample point cloud about its surrounding

environment. A multi-camera system solves the point cloud

based on multiview geometry [8, 40, 21] and LIDAR di-

rectly measures the point cloud with time of flight of a laser

beam. The measured point clouds are subjected to various

algorithms for application such as object detection[31], 3D

mapping[42], odometry[52] etc. Majority of these tasks in-

volve the point cloud registration[37, 34, 3] as an interme-

diate step. The goal of the point cloud registration is to esti-

mate the transformation between the point clouds such that

they can be transformed into a common coordinate system.

The point cloud registration generally comprise two

steps. Firstly the point cloud correspondence is determined,

and then motion estimation is carried out to compute the

transformation. Recent developments on point cloud reg-

istration mainly focus on the correspondence problem due

to the fact that it has greater impact to the performance of

registration.

Iterative closest point(ICP)[4] method assumes the near-

est neighbors yield close correspondences. The measure-

ment point clouds with motion estimates are transformed

and iteratively updated to improve upon the correspondence

estimates. The normal distribution transform (NDT)[5] first

partitions the point cloud into a fixed size grid tree. A

Gaussian model is then fitted when there are more than

3 points in a grid. Ultimately, the point cloud geometry

is transformed into a piecewise linear Gaussian mixture

model. This Gaussian mixture model is applied to com-

putes a matching score with the query point cloud, the mo-

tion is thus computed as the optimal solution that maximizes

the matching score. Another NDT based method known as

distribution to distribution matching[45] applies the NDT

to both query and template point cloud, the motion is esti-
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mated as optimal solution that minimize the L2 distance be-

tween two Gaussian mixture models. LIDAR odometry and

mapping(LOAM)[52] extracts edges and planar features

from the point cloud and determines the correspondence on

a nearest neighbor basis. When the point cloud is gener-

ated from multi-cameras system, one can utilize the extra

information from image texture for better correspondence

estimation. This include the method that utilizes spatial and

temporal invariant feature descriptor such as ORB[36, 30],

SIFT[27, 2], deep descriptor[7] etc. Methods that utilize the

optical flow for feature matching [51, 14, 23], and also di-

rect methods that form the motion estimate and correspon-

dence determination as one optimization problem[12, 11].

Instead of the well studied point cloud correspondence

determination problem, this paper focuses on the discussion

of the motion estimation part. Given two set of point clouds,

the transformation of points is governed by rigid body trans-

formation model.

pk = Rpk−1
+ t (1)

where pk ∈ IR3 is the coordinate of a 3D points in k mea-

surement frame specified as Cartesian coordinate, R is a

3 × 3 rotation matrix, and t ∈ IR3 is the translation vector.

When the point cloud correspondence is known, motion es-

timation is computed as the optimal solution that minimizes

the least square cost function given in Eq.2.

min
R,t

J =
1

2
||
[

pk −Rpk−1
− t

]

||2 (2)

There is only one optimal solution to the least square

cost function, but there are multiple parameterization to

the attitude with each of them yielding different properties.

Thus, the procedure that solves the optimization problem

yields different run-time and numerical precision perfor-

mance. Common attitude parameterization include but not

limited to rotation matrix, Euler angle, quaternion, axis an-

gle, Rodriguez parameters etc.

Euler angles requires 3 parameters to represent the orien-

tation, but it is non-linear and experiences singularities. Due

to the non-linearity of Euler angle, Eq.2 is solved with non-

linear least square approaches such as Gauss-Newton and

Levenberg Marquardt method[10]. Methods that directly

apply the rotation matrix consider that each element in ma-

trix R and vector t as an unknown variable. These methods

convert Eq.1 into a set of 12 linear equations and uses the

pseudo- inverse to compute the unknown variables[18]. The

orthonormal constraint of the rotation matrix is enforced by

the nearest orthogonal matrix that uses the singular value

decomposition(SVD) of the unknown vector matrix. A dif-

ferent approach introduced by Arun et. al.[1] first compen-

sates the translation thorough the alignment of point cloud

centroids and constructs the structure matrix with the point

clouds. The product of left and right singular vector matrix

of the structure matrix is the rotation matrix. Due to its sim-

plicity and efficiency, Arun’s method has been commonly

applied to estimates point cloud transformation. The orig-

inal solution of Arun’s method suffered from the mirroring

ambiguity. Umeyama[49] solves this issue by ensuring the

orientation as proper with determinant of positive 1 of the

estimated rotation matrix. A mirror solution that yields a

negative determinate value is corrected by flipping the sign

of the singular vector that corresponds to the least singular

value. A Quaternion parameterizes the attitude with a 4× 1
unit vector that is singularity free, but its unit vector con-

straint is non-linear. Other than the non-linear least square

method, Horn [22] introduces a closed form solution to esti-

mate the quaternion from given point cloud measurements,

but his method is generally slower than Arun’s Method.

This paper proposes a different approach that utilizes

Classical Rodriguez parameters (CRP)[41] as an attitude

parameterization to solve for the orientation and translation.

This method is referred to optimal linear attitude estima-

tor (OLAE). CRP is similar to quaternion, but includes the

scalar term with the Euler parameters.

q = [e1, e2, e3]
T tan(θ/2) (3)

where unit vector [e1, e2, e3] is the principle axis of rotation

and θ is known as principle angle of rotation. CRP is not fa-

vored with respected to quaternion due to its singularity is-

sue when the rotation about the principle axis of rotation at

π rad. However, the ICP algorithm requires that the trans-

formation between two point clouds has to be close enough

for the nearest neighbor assumption to be valid. This condi-

tion implies that the point cloud that satisfy ICP prior con-

dition has to be within the non-singularity range of CRP.

CRP and rotation matrix can be converted to each other ef-

ficiently with Cayley Transform[9]. Exploiting the unique

properties of the CRP along with the unique matrix structure

of the pseudo-inverse formulation, we present a method for

estimating the transformation between two point clouds that

yields a closed form solution while simultaneously giving

the exact attitude estimation instead of a nearest orthonor-

mal approximation.

Point cloud measurement is a standard technique for au-

tonomous vehicle system to sense the surrounding environ-

ment. Motion model of a road vehicle can be approximated

as a planar motion model that has only 3 degree of free-

dom(DOF) motion, i.e. tx, ty , and q3. One of the most

important advantage to utilizes a 3DOF motion model for

motion estimation of a road vehicle is the reduction of so-

lution space. Davide[39] introduces a visual odometry al-

gorithm for camera in planar motion with only 1 unknown

variable, that leads to a highly efficient 1D RANSAC algo-

rithm for outlier ejection. Inspired by Davide’s work, this

paper shows that the 3DOF OLAE can be transformed into a

linear equation with only 1 unknown variable. This enables
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the use of iterative robust fitting method such as RANSAC

to remove outliers in the measurement.

Our contribution in this paper is the OLAE method that

provide accuracy of the iterative methods while maintaining

the computational efficiency of a closed form solution, and

a 1D function that enables efficient outlier ejection for point

cloud measurement from a planar motion platform.

The rest of this paper is organized as follows. Section

2 presents the mathematical detail of the OLAE. Section 3

derive the 3DOF OLAE with 1D outliers ejection. Section

4 shows the experiment result that demonstrate the perfor-

mance of the proposed algorithm through the ICP registra-

tion of point cloud collected from stereo camera and LIDAR

sensor. At last we draw the conclusion in section 5.

2. Motion Estimation

Let vector q = [q1, q2, q3] denote the CRP, the rotation

matrix R in term of q can be obtained with Cayley trans-

form as:

R = (I + [q×])
−1

(I − [q×]) (4)

where I ∈ IR3×3 is an identity matrix, and operator [q×] ∈
IR3×3 converts a vector into a skew symmetric matrix form

written as:

[q×] =





0 −q3 q2
q3 0 −q1
−q2 q1 0



 (5)

Substituting Eq.4 into Eq.1, we get:

(I + [q×]) pk = (I − [q×]) pk−1
+ (I + [q×]) t (6)

With some simple manipulation, we can rewrite the Eq.6

into:

pk − pk−1
= −[q×]

(

pk + pk−1

)

+ (I + [q×]) t (7)

Note that last term of Eq.7 is a bilinear equation of

q and t, [51] proposed to replace it with a new vector

b = (I + [q×]) t, such that Eq.7 is linear solution and the

unknowns q and b are solved with pseudo-inverse. Solution

of t is solved in a following step as t = (I + [q×])
−1

b.

His method required to invert a 6 × 6 matrix that leads

to efficiency reduction. In order to maintain the efficiency

we take the approach of centroid alignment implemented in

previous literature[22, 1]. Note that transforming the point

clouds to align with their centroid do not completely com-

pensate the translation. However, the least square solution

Eq.2 can still converge to the global minimum where the

remaining translation effect will be treated as an additive

error.

All points at time k and k − 1 can be centroided using

the following relations:

µ =
1

n

n
∑

i=1

pi (8a)

p̃i = pi − µ (8b)

Two point clouds that are aligned to their centroid is as-

sumed as translation free, i.e. t = 0. Thus, Eq.6 becomes:

p̃k − p̃k−1
≈ −[q×]

(

p̃k + p̃k−1

)

(9)

For sake of compactness, define:

ζ = p̃k − p̃k−1
(10a)

ρ = p̃k + p̃k−1
(10b)

By noting that the matrix vector multiplication of a skew

symmetric operator can be interchange as [q×]ρ = −[ρ×]q,

Eq.6 becomes:

ζ = [ρ×]q (11)

Note that matrix [ρ×] is a rank deficient matrix that cannot

directly be inverted to calculates q. It requires at least 3

points (n > 3) to calculate the least squares solution with

the pseudo-inverse. Eq.12 governs the procedure to calcu-

late the pseudo-inverse solution to the point cloud motion

estimation.

B =
n
∑

i=1

[ρi×]T [ρi×] (12a)

C =

n
∑

i=1

[ρi×]T ζ (12b)

q = B−1C (12c)

where B is a 3× 3 symmetric matrix that has a closed form

solution to its inverse matrix. Combine Eqs.8 and 12, we

present the OLAE method that estimates the relative orien-

tation between two point clouds in a computationally effi-

cient manner. Given the estimated CRP, rotation matrix is

computed with Cayley Transform with Eq.4 and translation

is computed as:

t = µk −Rµk−1 (13)

For the remaining of this section, we analyze the run-

time performance of the proposed algorithm. The point

cloud centroid alignment take 3n summation, 3n subtrac-

tion, and 3 deviation. Calculation of ρ and ζ totally spend
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6n summation and subtraction. Matrix B take 6n multipli-

cation and 6n + 3 summation after exploiting the sparsity

and symmetric properties of the skew symmetric matrix.

While calculation of matrix C take additional 6n multipli-

cation and 6n summation. The 3 × 3 matrix inversion of a

symmetric matrix has complexity of Θ(24), and the com-

plexity of matrix-vector multiplication is 9. Thus the total

complexity of OLAE is Θ(42n+ 42)
Due to the n matrix-matrix and matrix-vector multipli-

cation in construction of B and C matrix, the presented

algorithm do not have significant run-time advantage over

to the Arun method that involve only n vector vector outer

product and a highly optimized 3× 3 SVD decomposition.

However, the presented algorithm estimates the precise at-

titude parameterization in CRP form instead of a nearest

orthonormal matrix. This enable a more accurate attitude

estimation over the existing closed form solution but more

computationally efficient over the iterative based method.

This extra accuracy has show improvement in ICP conver-

gence properties that is demonstrated in experiment section.

3. 3DOF OLAE

Assume that the transformation between two sequen-

tial point cloud measurement is planar motion. Thus, t =
[tx, ty, 0] and q = [0, 0, q

3
]. Let the centroid alignment part

remain identical to 6DOF case, we can show that Eq.11 can

be rewritten as:

[

ζ1
ζ2

]

=

[

−ρ2
ρ1

]

q3 (14)

Eq.14 show that after compensates the translation with

centroid alignment, the system of equations of 3DOF

OLAE reduced to 2 linear equations with only q3 as un-

known. Two equations in Eq.14 can be effectively combine

into one straight line equation:

y(ζ) = qx(ρ) (15)

where y(ζ) and x(ρ) is two 2n × 1 vectors with ζ1, ζ2, ρ1,

and ρ2 as variables following to the definition in Eq.14.

Thus, estimation of CRP becomes a straight line fitting

problem. Eq.15 can be applied to robust fitting algorithm

such as RANSAC[13], Least Median of Square[44] to re-

move outliers, or directly computes the median of all q3
from Eq.15 as the attitude estimation result.

Planar motion model is only an approximation to the ac-

tual vehicle motion model that is not always truth in prac-

tice. However, as being pointed out by Davide[39], the pla-

nar motion model is still an good approximation model to

remove outliers from measurement. A practical approach is

to use the RANSAC result of Eq.15 to remove outliers, and

utilizes the inliers to Eq.12 to estimate the vehicle motion.

The performance of this approach will be demonstrated in

number of points OLAE (sec) Arun (sec)

1e3 0.007 0.007

5e3 0.0017 0.0017

1e4 0.0035 0.0023

1e5 0.0261 0.00218

Table 1: Simulation run time comparison between OLAE

and Arun method in sec

experiment section with LIDAR measurement from KITTI

dataset.

4. Experiment

This section show the experiment result of an ICP al-

gorithm that is modified to use OLAE for motion estima-

tion, we only compare our result to the SVD based Arun’s

method with Umeyama’s mirror ambiguity fixed due to the

fact that it is the commonly used method in practical ICP ap-

plication. Firstly, we show a run time comparison between

OLAE and Arun method with simulation with known points

cloud correspondence. Both methods are tested with a set

of randomly generated 3D points and random motion within

the ICP range.

The simulation result in Tab.1 shows that OLAE yield no

speed advantage to the Arun’s method. This was expected

result when it come to the simply point to point transforma-

tion with no iterative correspondence update. This simula-

tion is performed in Matlab where the algorithm run-time is

measured by Matlab’s profiling tool.

Next, we present the experimental result for demonstrate

the application of OLAE to point clouds registration with

measurement from a stereo-camera. Measurement for this

experiment is 200 sequential stereo camera frames of a man

made simulated terrain inside a laboratory, 3 out of 200 pair

of stereo images are shown in Fig.1. The ground truth of

this experiment is measured from a VICON motion capture

device[50]. The measurement sensor is a calibrated Point

Grey Bumblebee XB3 stereo camera[19]. The Stereo Point

cloud is estimated with the PCL[38] stereo reconstruction

function. The ICP algorithm is a standard ICP with KD-

Tree from nanoflann library[6], where the linear algebra

function including the SVD for the SVD based method are

from Eigen library[20]. Note that the OLAE ICP can serve

as an independent simultaneous localization and mapping

(SLAM) solution, but the only intention of this implemen-

tation is to compare the with the SVD based motion estima-

tion method, and thus is not optimize to compare with the

other state of the art SLAM algorithm. During the stereo

registration, the relative pose between the stereo frames are

first approximated by a visual odometry method. This vi-

sual odometry method is a naive implementation that first

extract image features with ORB method, performs feature

1612



case OLAE ICP Arun ICP

total 200 Frames 300.217 sec 422.2 sec

Avg. ICP iteration 16 20

per frame (∼ 15e3 Pts.)

Table 2: Run time comparison between OLAE and Arun

method on stereo camera registration experiment

tracking over all four images (Left,Right at time k and k-

1) with pyramid LK method. Given the feature track, we

estimate the corresponding 3D points location with trian-

gulation, and ultimately use OLAE method to estimate the

translation. Due to the inaccurate feature tracking and less

number of points involve, the visual odometry output is gen-

erally not an accurate measurement of the camera motion.

However, it is sufficient to provide an initial guess to trans-

form the point cloud such that the prerequisite of the ICP

can satisfied. The initial condition of ICP can also be ini-

tialized with identity rotation matrix and zero translation,

but ICP with this configuration has potential of convergence

failure. The ICP registration with visual odometry as initial

condition is solved at every frames, but only every 5 frames

the transformed point cloud is save to the global map to save

the memory space.

The experiment result is concluded in Tab.2 and Figs.2-

3. This experiment results show that ICP with OLAE yield

speed advantage over the ICP with SVD based method.

Where the reconstructed global 3D surface in Figs.2 show

the 3D object reconstructed from ICP algorithm with OLAE

and SVD. Fig.3 show the error in estimate camera trajectory

from the OLAE and SVD based ICP, the increment in esti-

mation error is due to the odometry drift. The comparison

of trajectory error shown in Fig.3 show that the increment

of error between each measurement is very similar between

two solution, that indicates the accuracy of both algorithm

is similar. The large increment of error around 40th frame

is a result of sudden increment in motion magnitude. Larger

error in 40th frame indicates that the OLAE ICP is able to

converge from larger motion offset. Note that measurement

from this experiment do not satisfy planar motion

Second set of experiment utilizes the Velodyne LIDAR

measurement from KITTI odometry dataset[17]. Unlike the

stereo data set, we can not use VO to compute the initial

guess for the relative motion. We utilizes the vehicle kine-

matic assumption to derive the initial guess in this experi-

ment. The vehicle kinematic assumption states that the dy-

namic properties of the road vehicle under normal operat-

ing condition prohibits the dramatic change in its kinematic

states. Thus, given a sufficient sampling rate, the vehicle

motion at current measurement should be similar to previ-

ous measurement. Base on this observation, we can use the

previous estimation as the initial guess for current motion

estimation. This assumption guarantees the LIDAR mea-

surements satisfy the ICP prerequisite and improve the con-

vergence rate and accuracy of ICP. On the other hand, we

remove all LIDAR points with height lower than -1.5m from

the raw measurements to removes the ground points that are

not useful to the ICP algorithm. An estimated 3D map from

LIDAR measurement of KITTI sequence 00 from time step

0-50 second is shown in Figs.4 and the run-time comparison

is given in Tab.3. The estimated trajectory comparison of

the measurement for 0-200 second is shown in Fig.5. Ow-

ing to the fact that the LIDAR do not computes points cloud

from expensive stereo matching and a lesser number of

points as the result of simple artifact removal based on point

height, the run-time of ICP algorithm on LIDAR is much

faster then on stereo camera measurement. These experi-

ment results show that OLAE with 1D RANSAC provide

the best accuracy over OLAE and SVD but slowest in run

time. OLAE yield accuracy improvement while maintain-

ing similar run-time performance over Arun’s method. The

run-time comparison result in Tab.3 indicates that the incre-

ment of runtime of OLAE+1D RANSAC is not only due to

the RANSAC algorithm, but also the result of increase ICP

iteration. This is due to the fact that 1D RANSAC removes

outliers during every ICP iteration, the reduction in number

of measurement leads to large variation of residual error.

Therefore, the OLAE ICP with 1D RANSAC take longer to

achieve convergence criteria.

case OLAE Arun OLAE

RANSAC

total run time (sec) 47.897 47.518 107.4957

Avg. ICP 3.386 3.364 5.1540

iteration per frame

Table 3: Run time comparison between OLAE+1D

RANSAC, OLAE and Arun method on LIDAR measure-

ment of 500 frames

A comparison of the accuracy and run-time performance

over 11 KITTI sequences(0-10) with ground truth measure-

ments are summarized in Figs.6-8. Fig.6 show that ICP

utilizes OLAE to estimate point cloud transformation yield

accuracy improvement, while Figs.7 -8 show that the av-

erage and total run-times for ICP with both configurations

are similar to each other. Note that the large drift error in

sequence 01 was caused by the rotation motion at the first

few measurements in the sequence, this initial rotation error

leads to relatively large drifting error. In the same figures,

we also demonstrate the performance of OALE ICP with

3DOF OLAE outliers ejection. These experiments results

show that ICP with 3DOF OLAE outliers ejection greatly

improve the overall accuracy. The run-time of ICP with

OLAE outliers ejection is higher than the original ICP due

to the fact that an extra algorithm is running along with the

original implementation.
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(a) Left frame 1 (b) Left frame 100 (c) Left frame 200

(d) Right frame 1 (e) Right frame 100 (f) Right frame 200

Figure 1: 3 out of 200 pair of stereo images input to experiment

(a)

(b)

(c)

(d)

Figure 2: 3D object reconstructed by (a-b) SVD ICP, (c-d) OLAE ICP

5. Conclusion and Future work

This paper present the mathematical detail of OLAE and

its application ICP registration of point cloud generated

from stereo camera. The simulation and experiment result

are presented to demonstrate the advantage in run-time and

accuracy of the ICP with OLAE over the classical ICP that

utilized SVD base motion estimation. We also presents the

formulation and experiment result of a 1D RANSAC out-

liers ejection technique that is based on the 3DOF OLAE.

Current implementation of OLAE ICP does not opti-

mized for real time odometry and localization application

but only as a proof of concept to the OLAE ICP. The future

work is to expand the application of OLAE to state of the

art point cloud registration method that is capable for real

time performance.
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Figure 3: Comparison of trajectory error for stereo point

cloud experiment

(a)

(b)

(c)

Figure 4: LIDAR 3D map of KITTI sequence 00 frames

1-500 reconstructed by (a)OLAE ICP + 1D RANSAC

(b)OLAE ICP (c) SVD ICP
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