
Semantic Metric 3D Reconstruction for Concrete Inspection

Liang Yang 1,2, Bing Li 2, Wei Li 3, Biao Jiang 2,4, and Jizhong Xiao 1,2,∗

1 State Key Laboratory of Robotics, Shenyang Institute of Automation, UCAS
2CCNY Robotics Lab, City College of New York, 3 Amazon AWS AI, 4 Hostos Community College

lyang1, bli, bjiang, jxiao@ccny.cuny.edu, wayl@amazon.com
∗

Abstract

In this paper, we exploit the concrete surface flaw inspec-

tion through the fusion of visual positioning and semantic

segmentation approach. The fused inspection result is rep-

resented by a 3D metric map with a spatial area, width, and

depth information, which shows the advantage over general

inspection in image space without metric info. We also re-

lieve the human labor with an automatic labeling approach.

The system is composed of three hybrid parts: visual po-

sitioning to enable pose association, crack/spalling inspec-

tion using a deep neural network (pixel level), and a 3D ran-

dom field filter for fusion to achieve a global 3D metric map.

To improve the infrastructure inspection, we released a new

data set for concrete crack and spalling segmentation which

is built on CSSC dataset [27]. To leverage the effectiveness

of the large-scale SLAM aided semantic inspection, we per-

formed three field tests and one baseline test. Experimental

results show that our proposed approach significantly im-

proves the capability of 3D metric concrete inspection via

deploying visual SLAM. Furthermore, we achieve an 82.4%
MaxF1 score for crack detection and 88.64% MaxF1 score

for spalling detection on the relabeled dataset.

1. Introduction

The public concrete structure is affected by gradual and

wide aging problem, which requires periodic inspection and

evaluation in a formal routine [21], and early detection of

defects is very important for long-term maintenance. How-

ever, this routine inspection has been long time performed

by the human in a manual approach to carrying large and

heavy equipment. According to the US Federal Highway

Administration (FHWA)’ latest bridge element inspection

manual [2], New York Bridge Inspection Manual [21], and

Tunnel Operations, Maintenance, Inspection, and Evalua-

tion (TOMIE) Manual [3], during a routine inspection of

such bridge and tunnel, it is required to identify, measure,
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Figure 1. This paper only concerns the crack(a), spalling with ex-

posed rebar(b), and pure spalling(c) three kinds of concrete flaws.

The condition states of these flaws consist of CS1 (good), CS2

(fair), CS3 (poor), and CS4 (severe) four degrees.

and record information of condition state (CS). Such CS in-

cluding Spall (delamination, patched area), exposed rebar,

cracking, abrasion (Wear), and damage etc (see in Fig.1).

Our motivation is to develop the automatic inspection using

a visual camera and associate with visual positioning infor-

mation to enable large-scale metric encoding.

Visual inspection approach has been proved to be the

most easy access and effective way since last century [1].

perform inspection in the pixel level due to the fact of

lacking odometry information. Visual positioning (Visual

Odometry or SLAM) has been heated studied since EKF

mono-SLAM research [6], and later the pure optimization

based SLAM with motion assumption [ [14] enables the

possibility of real-time processing. ORB-SLAM [19] which

deploys Bag of Words and parallel threads for tracking

and optimization enables on-line real-time and large-scale

SLAM. Direct approach of minimizing Photometric Error

[10, 8] performs pose estimation over all pixels, which is

more robust in certain circumstance including image blur

compared with feature approach [19]. However, there exist

only one research of using SLAM to assist concrete inspec-

tion [26], and no research has been done to perform accurate

semantic metric reconstruction for concrete inspection.

For visual inspection [1], deep learning based approach

has been proved to be able to provide a more robust inspec-

tion performance [26, 4] compared with traditional edge

detection with regression approach [12]. However, there

does not exist such a publicly available dataset for concrete
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spalling and crack inspection, especially a pixel level la-

beled dataset for end-to-end pixel-wise segmentation train-

ing.

To achieve large-scale metric semantic inspection and

measurement for the concrete structure, efficient 3D seman-

tic reconstruction using video frame is another main issue.

Authors in [15] firstly proposed probability associated oc-

cupied voxels to represent the real world in a semantic ap-

proach, and they proposed to use the conditional random

field (CRF) to perform recursive fusion from frame to frame

in a modeless Bayesian approach. Later authors in [28] pro-

posed to achieve automatic semantic segmentation using a

deep neural network with both RGB and depth images. Re-

cent work by John McCormac et al [18] proposed a new

3D representation approach by introducing 3D surfels. The

3D surfels representation is proved to be much more stor-

age efficient and dense compared with voxel representation

approach. More recent research on using a recurrent neural

network (RNN) to perform large-scale 3D semantic fusion

also shows promising performance [24].

However, the following challenges still exist and are ur-

gently needed to be solved: 1) high-quality dataset of con-

crete visual spalling and crack defects; 2) a semantic seg-

mentation approach to support efficient pixel-level detec-

tion, with metric information of flaw areas such as width,

depth, and area size. 3) 3D semantic reconstruction and de-

tection updating from continuous frames. In this paper, we

present a large-scale semantic 3D reconstruction method for

concrete structure spalling and crack detection with metric

measurement, which is composed of three parts: SLAM as

positioning association, deep neural network as defects seg-

mentation, and conditional filter approach for sequence fu-

sion as 3D semantic reconstruction.

2. Method

In this section, we discuss the framework of 3D seman-

tic reconstruction system for concrete spalling and crack

metric measurement. It is illustrated in Fig.2, where the

3D metric concrete inspection system is composed of three

parts, which are visual SLAM system of deploying visual

positioning, a deep neural network for inspection, and a

Bayesian filter for 3D semantic fusion. The visual SLAM

is performing through a front-end estimation and back-end

optimization pipe-line to provide real-time positioning, then

the pose is used to perform 3D data association and registra-

tion for large-scale metric estimation. We also discuss the

data preparation and tools in detail, and we further release

our source code and data 1. Finally, we discuss the 3D se-

mantic fusion in a filter approach to obtain sequence-based

metric reconstruction.

1https://github.com/ccny-ros-pkg/inspectionNet_

Segmentation

Figure 2. 3D metric inspection system framework. The input is

RGB-D sequence, then visual SLAM and deep inspection are per-

formed to achieve data association. Finally, a Bayesian filter is

used to obtain 3D metric map fusion.

2.1. SLAM and Data Association

We choose RGB-D cameras to perform our visual po-

sitioning, which is inspired by our previous research on

RGB-D based visual odometry [7] and local/global closing

proposed in ORB-SLAM2 [19]. For each newly obtained

frames (RGB image and depth image), the visual SLAM

system is to perform pose estimation. The transformation

between two consecutive frames as R ∈ SO(3) as (where

SO(3) special Lie rotation group), and t ∈ R3 denotes the

translation in the world coordinate system. Each step mo-

tion of two consecutive frames is achieved using ICP for in a

feature cloud domain. Given two consecutive frames Ip and

Iq with corresponding features F̧Ip
, F̧Iq

, the transformation

can be represented as:

{R, t} =R,t

∑

i∈{1,...,N}

Lρ(F̧Ip
(i)− π(||R · F̧Iq

(i) + t)||2∑)

(1)

where denotes a linear regression process toward mini-

mal, Lρ(·) is the Huber loss cost function, and ||∑ denotes

the covariance weighted sum toward a robust convergence.

Then, the pose TF of each current frame is obtained through

a cumulative approach. A co-visibility graph is also con-

structed locally and globally to perform local and global

optimization to maintain scale and decrease long-term drift.

Pre-association between the raw images and the pose TF

as SP = {FRGBD, FDepth, T
F } is the main issue of se-

mantic SLAM, where FRGB , FDepth denotes the raw image

an depth image. However, a simple depth registration of the

point cloud does not meet the needs of our metric measure-

ment. We deploy CRF which is in the same approach as

described in [15] for octree-voxels fusion and [13] for sur-

fels fusion, to perform sequence map fusion. In this paper,

since our purpose is to obtain the metric information of the

defects area, we test both representation approaches.
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2.2. InspectionNet for Concrete Structure Inspec­
tion

To associate SLAM pose, pixel-level concrete defects in-

spection using the deep neural network is proposed in our

system. Unlike the region based detection, which was pro-

posed in work [26], we aim to provide a pixel-level seg-

mentation with 3D reconstruction toward the area, width,

and length measurement as requested by N.Y DOT [21].

To offer a possible answer to such challenge, we re-labeled

the CSSC dataset [26] and discussed in detail in Section.3,

and we also proposed a new minor edge oriented network

in Section.4.

2.3. CRF as Fusion

For 3D semantic reconstruction M , each surfel (or

voxel) ℑ is designed to save the distribution probability

PC = {Pci |çi, i = 1, ..., Ç}, where Ç denotes the number

of classes which is trained in the network.

Figure 3. Illustration of merging of two frames with the semantic

label. The blue rectangle region denotes the overlapping region of

two frames, and two frames are illustrated on the right side.

The general approach of fusing two frames is illustrated

in Fig.3, where each ℑ denotes a 3D unit of the map which

initialized with the left single image at the right side. For

each image frame FRGB , the semantic prediction is per-

formed via using the InspectionNet, that is, each pixel

I(u, v) in FRGB will be labeled overall class labels with

probabilistic distribution P (I(u, v) = çi|Ç), where (u, v)
is the coordinate in an image frame FRGB . The prediction

of each unit is independent of other frames [16, 15] which

is just conditional distribution without generative measure-

ment model requirement called CRF. For each unit ℑ, we

initialize with uniform possibility over each class as P (ℑ).
Then, the next frame overlapping region, we perform a pro-

jection via deploying a general homogeneous transforma-

tion:

Ij(u, v) = π(ℑ, Depth(ℑ), Tij) (2)

Where Depth(ℑ) the depth of unit ℑ in the current im-

age frame, and Tij is the transformation from the last frame

to current frame. Then, the corresponding pixel proba-

bilistic prediction of ℑ in the current frame as P (Ij =
çi|FRGB(j)), and we can update the probabilistic distribu-

tion following a recursive Bayesian update procedure:

P (ℑ = çi|F ) = P (Ii(u, v))P (Ij) (3)

The posterior update is carried over all units, which must

be activated at the current frame. It can also be seen from

Fig.3, the 3D space with surfel (or voxel) description also

needs partition which can be found in [15].

3. Spalling/Cracking Data Annotation and

Segmentation Model

3.1. Dataset Annotation

The dataset to be annotated is provided by Liang Yang

et al [26], called Concrete Structure Spalling and Crack

(CSSC) database. However, the spalling image in CSSC

was initially proposed to do region-based classification us-

ing fine-tuned VGGNET [23]. This paper performed fur-

ther annotation on the dataset to do semantic segmentation.

We defined the following guidelines to be the key for high-

quality annotation: (1) only concrete spalling and crack-

ing meaningful regions should be annotated; (2) annotation

only perform at targeted spalling and cracking region, other

regions should be annotated as background. (3) the spalling

region should be annotated with polygons; (4) crack region

should be detailed annotated in pixel level, especially un-

clear cracking. These guidelines enable us to label carefully

with spalling and cracking.

(1) Spalling annotation: CSSC dataset is only labeled

with eroded steel region (as illustrated in Fig.4.b). In this

paper, we introduce to use Labelme to do spalling region

labeling. We name the spalling region as ‘spalling’, and

each annotator is asked to follow the definition provided by

civil engineers to label the corresponding spalling region.

The annotation only performs on such region which can be

named as spalling, where the boundaries should be able to

provide a clear comparison. Thus, multiple polygons exist

for spalling in one image, and we name the other regions as

background (Fig.4.c). Finally, we further process the labels

to generate expected ground truth images.

(2) Crack annotation Crack region tends to more scale

variant and with low contrast, and we further checked the

CSSC dataset which already provides the part of labeled im-

ages. Annotators are asked to label the minor crack regions

over all the images with the semantic name tag. Besides,

we should pay attention that if a crack region is blurred, the

visible crack regions should all be annotated.

(3) Data augmentation To increase the network robust-

ness and desired invariance for both orientation and illumi-

nation, especially when only limited data is given for train-

ing. For our concrete inspection case, rotation and illumi-
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Figure 4. (a) concrete spalling is the flaw that concrete breaks

down into small spalls from the concrete body. (2) The label from

CSSC dataset. (3) Our newly labeled image using a closed poly-

gon to describe the spalling part.

nation are main issues affecting the accuracy. According

to [26] that illumination and image blur affect the detec-

tion accuracy a lot. We perform the following augmenta-

tion techniques: 1) flipping and rotation, an approach to in-

crease rotation robustness; 2) gamma transformation [11]

with X
′

= 255 · (1 + X/255)γ , where X denotes the im-

age, γ is designed to correct the intensity and we increase

the contrast of image to increase the illuminance robustness;

3) sub-sampling, to increase the robustness with input scale.

3.2. Related Segmentation Networks

The InspectionNet is motivated by HED and U-net, and

these two deep neural networks are end-to-end fully pixel-

level segmentation for edge segmentation (InspectionNet is

illustrated in Fig.5).

3.2.1 HED Network

HED improved VGGNET with the following aspects: 1)

it connects side output from conv1 2, conv2 2, conv3 3,

conv4 3, and conv5 3 to the last convolutional layer. 2)

it trimmed 5th pooling layer as well as all the following

fully-connected layers. For all the 5 side outputs S, where

each layer have to perform deconvolution to do upsam-

pling, their corresponding classification weights are ws =
{ws

1, ..., w
s
5}. Thus, the objective function is a linear fusion

which is defined as:

L(W,w) =
5∑

j=1

αjℓ
j(W,wj) (4)

where α· = 0.2, W denotes the kernel parameters,

ℓj(W,wj denotes the image-level loss function for side-

outputs. The loss function in [25] in this case is defined

as an evaluation over all pixels of ground truth compared

to predicted output, especially, the paper defines a class-

balanced cross-entropy loss function for each side-output.

ℓj(W,wj) = −β
∑

i∈Y+

logPs(yi = 1|X;W,wj)

−(1− β)
∑

i∈Y−

logPs(yi = 0|X;W,wj)
(5)

where yi = 0, 1 is edge information and background in-

formation respectively, Y− and Y+ denote edge and non-

edge label in ground truth image, β = |Y−|/|Y |, and Ps(·)
is the sigmoid activation output on side-outputs.

3.2.2 U-Net

U-net [22] was proposed to perform end-to-end segmenta-

tion without fully connected layer. It consists of 4 groups

of convolutional layer with max-pooling, 4 groups of con-

volutional layers with ‘up-sampling’, and a final group of

convolutional layers with 1 ∗ 1 convolutional kernels. Each

group has two convolutional layers with a 3× 3 kernel and

Relu. Besides, each convolutional layer performs convolu-

tion without padding, thus leads to a final 388× 388 output

if given 572× 572 input.

U-net introduces a pixel-wise soft-max to perform loss

calculation over predicted feature map with given ground

truth. Given image set X = {Xm|Xm = {xm
i , i =

1, ..., |Xm|},m = 1, ...,M}, the soft-max in [22] is defined

as

pk(x
m
i ) = exp(ak(x

m
i ))/(

K∑

k
′=1

exp(ak′ (xm
i ))) (6)

where ak(x
m
i ) denotes the activation at feature channel

k at pixel position xm
i , K denotes the number of clusters,

pk(x
m
i ) denotes the approximate maximum-function. The

loss based on the cross entropy is defined as

E =
∑

xm
i
∈Xm

wU (x)log(p(k)(xm
i
)(x

m
i )) (7)

where (k) ∈ {1, ...,K} is the label of each pixel, and

wU is the corresponding importance weight.

Remark: The best of HED is an end-to-end edge de-

tection, and it trimmed the traditional fully connected lay-

ers, which thus increased the time performance and de-

creased the model size. For U-net, it is end-to-end pixel

level prediction by combining spatial and contextual infor-

mation [5]. U-net has a total of 19 convolutional layers with

a cross-entropy based loss function. The network obtains

up-sampling with convolutional kernel to perform accurate

prediction of region-based prediction compared to HED.
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Figure 5. The InspectionNet model, the model has a total 37 layers which is motivated by U-net and HED net.

4. InspectionNet Model

4.1. Crack/Spalling Model Overview

Our model is a highly hybrid model which consists of

two components, illustrated in Fig.5. The two parts are

jointly trained end-to-end to optimize our semantic spalling

and crack segmentation quality by employing edge infor-

mation. The network combines the merits of U-net [22] and

HED [25], U-net structure act as an end-to-end pixel-wise

prediction and HED side-outputs performs edge extract in-

termediate layers to enable further feature exploiting.

We consider using VGGNet to fit the U-net structure

as the first component, with a total 27 convolutional lay-

ers (inherit from Vgg-16 for left side) [20]. The original

VGGNet is also trimmed following HED by only obtaining

the first five group of convolutional layers. For each de-

convolutional layer, the number of features is doubled with

a concatenation from previous encoder layers. We deploy

a padding for each convolutional layer, thus guarantees a

complete pixel-wise mapping from input to output. Each

convolutional layers is followed by an element-wise recti-

fied linear non-linearity (ReLU) max(0, x), and the max-

pooling has a stride 2 and 2 × 2 window size. The de-

convolutional layers with a stride of 2 and kernel size of

3 to densify the sparse activations obtained by performing a

convolution-like operation with learned filters.

The second component of our network is that we in-

troduced the side-output convolutional (total 10 layers) as

HED of concatenation with the final convolutional layer

to introduce edge feature estimation. It is illustrated in

Fig.5 that the blue diagram is the side-layer, which performs

pixel-wise estimation by using convolution with a 1×1 size

kernel and bilinear interpolation. The bilinear interpolation

may be performed several times due to the different size of

the original side-output, and the convolutional layer is also

followed by a Relu to remove negative values. We also de-

ploy a loss calculation for each side-output to perform side

optimization as proposed in [25]. Then, the five edge fea-

tures will be concatenated with a final convolutional layer

to perform the pixel-wise prediction.

We highly take advantage of Vgg-16 pre-trained model

and transfer the entire low-level features to do prediction.

The model performs a complete same size convolution with

padding to guarantee a complete mapping from input 2D

dimension to output prediction. Our model introduces a to-

tally 27 convolutional layers to perform feature exploration,

which is much deeper compared to HED and U-net. Fur-

thermore, the side-output prediction involves a better esti-

mation of contour compared to U-net. We also take full ad-

vantage HED net pre-trained weighted of side-output con-

volutional layers.

4.2. Loss Design and Training

Segmentation seeks the high pixel-wise overlapping be-

tween the prediction and ground truth. The cross-entropy

based on the pixel-wise estimation probability Ps(·) (as dis-

cussed in Equ. (2) and Equ. (3)) is commonly used as the

loss function, where the probability of Ps(·)) is usually a

weighted probability as discussed in Equ.5 and Equ.7. In

our paper, the spalling and cracking do not commonly hap-

pen in one image and we only care about the cracking or

spalling region, thus we adjust the objective function from

Equ.1 from [25] as

L(W,w) =
6∑

j=1

α
′

jℓ
j(W,wj) (8)

where the weightα
′

· is adjusted to shift higher weight to

the final convolutional layer output.

The training is a two-step procedure. Firstly, we re-train

the HED in the same way as proposed in [25] using Berke-

ley Segmentation Dataset and Benchmark (BSDS 500) [17]

dataset which has 200 training, 100 validation, and 200
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testing images. Then, we use the side-convolutional lay-

ers weight to initialize the model’s side-convolutional layers

and use Vgg-16 weight to initialize the weight of our model

first five groups’ convolutional layers. The decoding layers

(the right side layers) are randomly initialized. For all the

layers, the parameters are allowed to be able to update.

4.3. Evaluation

We aim at developing measurements to quantify algo-

rithm performance on our dataset, and also performs an

evaluation of the performance of proposed network us-

ing such measurements. Since the spalling and cracking

region detection behaves as a region-based segmentation,

we compare with the following perspectives: 1) F1 score:

F1 = 2∗(precision∗recall)/(precision+recall); 2) av-

erage precision to indicate the average pixel-wise accuracy

of the evaluation: AP = Truepositive/(Truepositives+
Falsepositive). We also evaluate the intersection over

union (IOU) and enable the visualization of the cross-

entropy loss as well the training precision.

5. Experimental Evaluation

To provide a comparative and quantitative measurement

of our system, we begin by performing model training and

validation performance comparison with the current most

successful algorithm to provide a basic baseline for peer re-

searcher. We also demonstrate the performance of our large

semantic segmentation aid reconstruction based on SLAM.

For all the algorithm, we run on a GPU server with GTX

1080, and a Core I7 computer with 32G memory. Field test

demo of semantic 3D reconstruction with inspection is as

shown in demo video 2.

5.1. Model Training Analysis

Dataset Based on the CSSC dataset, in which 278
spalling images with exposed rebar labeling and 954 crack

image with 104 labeled images, we further expand spalling

images to 298. For training purpose, we have a total 298
spalling image with pixel level labeling, and 522 crack im-

ages with pixel level labeling. In addition to the original

labeled images, we further cropped the large image size to a

maximum of 1, 600 × 1, 100, and we also perform flipping

to augment the images. Then, we get a total of 4, 473 im-

ages for the crack model, where 3, 147 images for training,

498 for cross-validation, and 828 for testing. For spalling

detection, we have 627 for training, 90 for cross-validation,

and 177 for testing. Inspection performance of both spalling

and cracking model is measured using batch concurrent ac-

curacy, average precision, and max F1 score [9].

Crack Model

2https://youtu.be/juOwwwROPN0

Figure 6. We provide a comparative training on InspectionNet us-

ing (a) partial dataset with 104 crack images. (b) the complete

dataset with 522 crack images, and batch concurrent accuracy, av-

erage accuracy, and max F1 score are compared for the two cases.

Figure 7. The comparison of training loss and entropy of Inspec-

tionNet with (a) partial dataset and (b) the complete dataset.

For crack inspection, we performed several comparisons

with FCN-8s and Unet, where the Unet is a modified of

using VGG-16 as initialization (we released the whole net-

work to perform automatic updating with transfer learning).

we found that FCN-8s is not able to detect the crack, and it

is illustrated in Table.1 that VGG-Unet (since we use Vgg-

16 as initialization) can achieve 76.67% average accuracy,

and a 58.89% maxF1 score. To validate the performance

of performing training on different scale dataset, we also

trained using the partial training dataset which is provided

by CSSC origin dataset with 104 images to build the train-

ing and testing dataset. It is illustrated in Fig.6 that the raw

concurrent batch accuracy can reaches 95% within 1, 000
iterations. However, as one can see in the graph that the

InspectionNet can only reach 83.58% average precision of

complete dataset compared to 91.5% of performing training

on whole 522 images generated the dataset. For loos and en-

tropy, as shown in Fig.7, the partial training dataset can lead

to faster convergence. In this graph, it also shows that the

loss of performing complete dataset using InspectionNet is

harder to converge. However, we validate in the field test

that the partial model has a much higher False Positive ratio

compared with complete dataset trained model.

Spalling Training

Spalling training is also executed in 12, 000 steps, and
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Table 1. Comparison Of InspectionNet In the perspective of Accuracy Performance. E MaxF1 is evaluation MaxF1 score, E AP is

evaluation average precision, T MaxF1 is training MaxF1 score, T AP is training average precision, T BAP is training concurrent

precision, AF is the average frequency.

InspectionNet VGG-Unet FCN-8s

Crack Spalling Crack Spalling Crack Spalling

E MaxF1 82.40 88.64 76.76 88.72 - 88.68

E AP 83.59 91.69 80.96 91.71 - 91.54

T MaxF1 60.60 96.69 58.89 96.79 - 96.64

T AP 55.70 93.81 55.70 93.94 - 93.78

T BAP 98.00 95.00 94.00 95.00 - 94.5

AF 8.02 6.53 6.48 6.78 - 6.48

Figure 8. Comparison between (a) VGG-Unet model and (b) our

InpectionNet. The perspectives of batch concurrent accuracy, av-

erage accuracy and max F1 score are compared.

also in a transfer learning approach of using the VGG-16

model parameter and HED to initialize the InspectionNet.

To provide a baseline for the spalling detection, we com-

pared the performance of InspectionNet with the FCN-8s

net and HED network. The comparative result of average

precision, the max F1 score is represented in Table.1. As

one can see that all models can achieve an average precision

over 90% and maxF1 score 88.64% within 4, 000 iterations,

and the average precision and MaxF1 of InspectionNet for

spalling detection are almost the same compared with other

two models. For long-term performance, we can see that

the InspectionNet is more stable compared with VGG-Unet

since our InspectionNet has a higher order feature informa-

tion to assist residue passing (see in Fig.8).

5.2. Dataset Test and Field Test

The evaluation of the visual inspection system is per-

formed in two steps. First, we test the detection perfor-

mance on the test dataset and evaluate the average accuracy.

In the second step, we perform field tests in several places

located in Manhattan, New York, with semantic reconstruc-

tion. In the field tests, we consider both normal illumination

and low illumination situation to perform inspection and 3D

reconstruction.

The performance of performing detection on relabeled

CSSC dataset is illustrated in Fig.9. In this figure, DT 1 de-

notes test on the dataset, where DT 1 : (1) (5) are spalling

detection result and DT 1 : (5) (10) are crack detection re-

sult. For crack detection on the dataset, we have an aver-

age precision of 76.41%. The average precision of spalling

detection is 87.9319%. FT 1 and FT 2 denotes two sets of

test. FT 1 : (1) (10) illustrate that the InspectionNet can

perform detection very well on field data, where the minor

cracks can be easily segmented out. FT 2 : (1 5) indicate the

segmentation of original image for defects. FT 2 : (6 10)
denotes the detection with dark illumination. Comp de-

notes the segmentation comparison between InspectionNet

((1) (5)) and VGG-Unet (6) (10), where we can see In-

spectionNet has a better performance with the minor crack

inspection.

3D Metric Semantic Registration

We perform two tests which are represented in Fig.10.

The 3D reconstruction is performed by coupling the image

frames with pose (achieve through SLAM) and time, where

the frames are key-frames for SLAM. Then, the Inspection-

Net detects the region of defects. Thus we can register to

3D space with the semantic labeled image. However, a pure

voxels based registration without fusion does not able to

provide clear result for civil engineers (see in Fig.11.(a)),

and thus this paper introduces the filter based fusion ap-

proach to perform 3D fusion as illustrated in Fig.11.(b). We

further show two detailed reconstruction in Fig.11.(c) and

(d). We can see in Fig.11 that the fusion approach can pro-

vide higher level of details than a pure voxels registration.

Besides, we also performed two more field test as illustrated

in Fig.10, where Fig.10.(a) and Fig.10.(c) are the real sce-

nario overlayed with color, and Fig.10.(b) and Fig.10.(d) are

the semantic 3D map.

6. CONCLUSION

In this paper, a semantic metric 3D reconstruction based

concrete inspection system is developed for the civil engi-
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Figure 9. An illustration of detection results on relabeled dataset and field collected data. The green color denotes the defects region of the

original image, the red color is used to highlight the defect region, and the white and black image is the original output of the InspectionNet.

Figure 10. 3D semantic reconstruction generated by our system,

which performs fusion with association from SLAM and deep neu-

ral network. (a) and (b) show the same area, where (a) is the re-

construction based on original data and (b) is the semantic map.

(c) and (d) also show the same area with the same meaning as (a)

and (b).

neering application. A state-of-the-art dataset with pixel-

level labeling and an InspectionNet network were designed

for semantic segmentation. Furthermore, we bridge the gap

between perception and localization using CRF as 3D fus-

ing to perform 3D reconstruction, where the detected results

can be registered in 3D model to provide metric information

for concrete structure condition assessment. To evaluate the

system, we executed both field tests and dataset test. The

system can achieve as high as over 80% accuracy with both

Figure 11. The illustration and comparison of filter based fusion

and pure registration using voxel. (a) is pure 3d registration, (b) is

filter based fusion, (c) and (d) are 3D fusion results.

crack and spalling inspection for 3D information retrieve.
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