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Abstract

Reliable facial expression recognition plays a critical
role in human-machine interactions. However, most of
the facial expression analysis methodologies proposed to
date pay little or no attention to the protection of a user’s
privacy. In this paper, we propose a Privacy-Preserving
Representation-Learning Variational Generative Adversar-
ial Network (PPRL-VGAN) to learn an image representa-
tion that is explicitly disentangled from the identity infor-
mation. At the same time, this representation is discrimina-
tive from the standpoint of facial expression recognition and
generative as it allows expression-equivalent face image
synthesis. We evaluate the proposed model on two public
datasets under various threat scenarios. Quantitative and
qualitative results demonstrate that our approach strikes a
balance between the preservation of privacy and data util-
ity. We further demonstrate that our model can be effec-
tively applied to other tasks such as expression morphing
and image completion.

1. Introduction

The recent proliferation of sensors in living spaces is
propelling the development of “smart” rooms that can sense
and interact with occupants to deliver a number of bene-
fits such as improvements in energy efficiency, health out-
comes, and productivity [11]. Automatic facial expression
recognition is an important component of human-machine
interaction. To date, a wide variety of methods have been
proposed to accomplish this, however they typically rely on
high-resolution images and ignore the visual privacy [24] of
users. Growing privacy concerns will prove to be a major
deterrent in the widespread adoption of camera-equipped
smart rooms and the attainment of their concomitant ben-
efits. Therefore, reliable and accurate privacy-preserving
methodologies for facial expression recognition are needed.

One approach to increase visual privacy is to reduce
identity traits within a face image via modification or redac-
tion methods such as pixelization or blurring. However, this
will also reduce the visual quality of the modified image
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Figure 1: Basic functionality of PPRL-VGAN: given an input
face image I, the network produces an identity-invariant repre-
sentation f(I) , suitable for facial expression recognition, and an
expression-preserving face image with another identity specified
by identity code c.

and an algorithm’s ability to accurately recognize the facial
expression from it. Another extreme approach is to with-
hold releasing the face image altogether and only release
an estimate of the facial expression. While this approach
guarantees visual privacy, it provides no visual utility. In
order to strike a balance between privacy and data utility,
we propose a third radically different approach: seamlessly
replace the user-identity in an image without significantly
degrading its visual quality or the ability to accurately in-
fer facial expression. We leverage variational generative-
adversarial networks (VGANS) to learn an identity-invariant
representation of an image while enabling the synthesis of
a utility-equivalent, realistic version of this image with a
different identity (Fig. 1). We call this framework Privacy-
Preserving Representation-Learning Variational Generative
Adversarial Network (PPRL-VGAN). Beyond its applica-
tion to privacy-preserving visual analytics, our approach
could also be used to generate realistic avatars for anima-
tion and gaming.

Our proposed framework combines the generative power
of two models: the Variational Auto-Encoder (VAE) [18]
and the Generative Adversarial Network (GAN) [13]. A
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VAE consists of two networks: the encoder, which maps
a data sample to a latent representation, and the decoder,
which maps this representation back to data space. VAE
networks are trained by minimizing a cost function that en-
courages learning a latent representation which leads to re-
alistic data synthesis while ensuring sufficient diversity in
the synthesized data. Like a VAE, a GAN also consists
of two networks: a generator network (G) which aims to
synthesize realistic data from a random noise input vector
and a discriminator network (D) which aims to differen-
tiate between real and synthetic data. GANs are trained
via a game between GG and D in which G aims to fool D
into believing that the data samples synthesized by it are
realistic, and D which aims to accurately distinguish be-
tween real and “fake” samples. In this work, we combine
VAEs with GANs by replacing the generator in a conven-
tional GAN, which uses random noise as input, with a VAE
encoder-decoder pair, which takes a real image as an input
and outputs a synthesized image. As shown in Fig. 2, the
encoder learns a mapping from a face image I to a latent
representation f(I). The representation is subsequently
fed into the decoder to synthesize a face image with some
target identity (specified by identity code c) but with the
same facial expression as the input image. The discrimina-
tor includes multiple classifiers that are trained to (i) distin-
guish real face images from synthesized ones, (ii) recognize
the identity of the person in a face image and (iii) recog-
nize the expression in a face image. During training, feed-
back signals from D guide G to create realistic expression-
preserving face images. In addition, as the identity of the
synthesized images is determined by the identity code c,
the network will learn to disentangle the identity-related in-
formation from the latent representation.
This paper makes the following contributions:

1. We propose a framework for learning an identity-
invariant representation for a face image.  This
representation is discriminative for facial expression
recognition and generative for expression-preserving,
identity-altered face image synthesis.

2. We thoroughly evaluate our approach under three
threat scenarios to demonstrate that our method strikes
a balance between privacy and data utility.

3. We demonstrate that our model can synthesize new
face images with or without an input image, and illus-
trate how our model can also be applied to other image
processing tasks such as expression morphing and im-
age completion.

2. Related Work

Privacy-Preserving Visual Analytics: There is a grow-
ing body of research on methods to perform various visual
analysis tasks from data in a manner that does not disclose
subject’s identity. According to how privacy is protected,

the literature can be broadly classified as reversible and ir-
reversible approaches [5].

Reversible methods include scrambling and encryp-
tion [12, 32, 35, 36] that permit exact data recovery, but are
also prone to exposing the original data to possible hacks.
In particular, methods for recognizing facial expression di-
rectly in the encrypted domain have been proposed [3, 28].
However, these methods rely upon public-key homomor-
phic cryptosystems, such as Paillier [25], which are known
to be computationally heavy due to their use of large en-
cryption and decryption keys. In order to relieve the com-
putational burden, lightweight algorithms based on random-
ization techniques have been proposed in [29]. Although
methods proposed in [3, 28, 29] perform well for facial
expression recognition in the encrypted domain, no tests
have been conducted to ascertain whether the identity in-
formation is indeed removed in the encrypted domain. It
is unclear whether a classifier that is trained on encrypted-
domain images will fail to recognize the identity of a person
from the encrypted image.

Irreversible methods include image processing and fil-
tering techniques [7, 8, 11, 15, 19, 26, 31]. However, it
has been shown that simple filtering methods do not fool
identity-recognition algorithms if they are trained using im-
ages that have the same distortion as the test images [23]. A
face de-identification method was proposed in [ | 6] wherein
several face images with appearance attributes similar to the
target image are fused by minimizing a cost function pro-
moting attribute preservation and de-identification. A re-
cent line of irreversible methods makes use of adversarial
networks [0, 27, 30]. In [6], the focus is on full-body de-
identification without an additional utility criterion such as
accuracy of facial expression. Their methodology also re-
lies upon a segmentation algorithm to accurately extract the
silhouette of the person to be de-identified. Moreover, the
synthesized images are blurry. While [30] uses adversarial
networks to jointly optimize privacy and utility objectives,
it focuses on the relatively simple task of detecting and re-
moving a QR code embedded in an image. Moreover, the
synthesized images are poor-quality renderings of the input
image. The approach in [27] is similar in spirit to [30] but
the output is not required to look realistic. Our approach dif-
fers from these methods in that we use a VAE within a GAN
in order to explicitly learn an identity-invariant facial ex-
pression representation with the explicit goal of expression-
preserving identity replacement in the synthesized output
image which is required to look realistic. As we show,
our learned representation is not only discriminative for ex-
pression recognition, but also robust to both human and
algorithm-based privacy attacks. Our framework can also
be used for other tasks such as expression morphing.

Disentangled Representation Learning: A number of
models have been proposed in the literature to learn a so-
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called “disentangled representation”. In early work, a bi-
linear model was proposed to separate content and style for
face and text images [33]. An autoencoder (AE) augmented
with simple regularization terms during training was pro-
posed in [9] and demonstrated to discover and explicitly
learn various latent factors of variation. Methods proposed
in [17,21] use VAEs in a semi-supervised manner. Their
models disentangle label information from the latent repre-
sentation by providing additional labels as input to the de-
coder. However, methods based on AE/VAE tend to pro-
duce blurry images due to the pixel-wise reconstruction er-
ror used in the loss function. Our model may be viewed as
replacing the image reconstruction error with an adversar-
ial loss to improve the visual quality of synthesized images.
Recently, a two-stage pipeline was proposed [20] to learn
disentangled image representations of background, fore-
ground, and pose to generate novel person images. How-
ever, this method requires a pre-processing step to estimate
a coarse pose mask of the input image.

Among works on disentangled representation learning,
perhaps the closest to ours are those in [22, 34]. The ap-
proach proposed in [22] addresses the problem of disen-
taglement by combining a deep convolutional VAE with a
form of adversarial training. It can disentangle the latent
factors of variation within a labeled dataset, and separate
them into complementary codes. However, it has not been
tested on a real-world dataset. Our approach is different
from that in [22] as we completely discard the VAE’s re-
construction error in the objective function. Instead, we em-
ploy the adversarial loss from a GAN for high-quality im-
age synthesis and improved representation learning. In [34],
a disentangled representation-learning GAN was proposed
for pose-invariant face recognition. The proposed model
is a fusion of an AE and a GAN. It explicitly disentangles
the identity representation from pose variation by passing a
pose code to the decoder during training. The major differ-
ence between this model and ours is that in PPRL-VGAN
we use a VAE instead of an AE which permits learning a
probability distribution over the latent space. This enables
our model to synthesize new images without an input im-
age; all we need to do is generate a latent vector from the
prior distribution and pass it to the decoder along with an
identity code.

3. Background Material

3.1. Variational Autoencoder Network

A VAE network consists of two neural networks: an en-
coder network (Enc) and a decoder network (Dec). The
encoder is a randomized mapping of a data sample x to a
latent representation z while the decoder is a randomized
mapping z from a latent representation back to data space:

z ~ Enc(z) = q(z|x) (1)

Z ~ Dec(z) = p(z|z) (2)

In practice, these randomized mappings are implemented
via deterministic maps (given by the neural networks) with
additional inputs which provide the source of randomness.
For example, it is common to set z = p, + Azw where
the vector pt,, and the square matrix A,, are the outputs of a
neural network with input , and w ~ A(0, I), a standard
multivariate Gaussian, is the source of randomness. Then,
q(z|x) = N(p,, AzAL). VAE networks are trained by
minimizing a cost function which is additive over all training
data samples. The cost function for a single data sample
is given by

Ly = —Fg(zimlog p(]2)]+ K L(g(2|2)|[p(2)) (3)

where K L is the Kullback-Leibler divergence and p(z), the
marginal distribution of the latent representation, is typi-
cally taken to be A(0,I). The first term encourages the
decoder to assign higher probability to the observed data
samples x. In practice, the expectation in the first term is
replaced by an empirical average across a small batch of in-
dependent and identically distributed z for a given . The
K L term encourages the encoder ¢(z|x) to be close to a tar-
get p(z) which has sufficient spread (diversity) in the latent
space. The K L term has a closed analytic form since both
its arguments are Gaussian [18]. The total cost across all
data samples is typically minimized via mini-batch gradient
descent.

3.2. Generative Adversarial Network

A standard GAN consists of a generator neural network
G and a discriminator neural network D that are trained by
making them compete in a two-player min-max game. The
discriminator network D adjusts its weights so as to reliably
distinguish real data samples  ~ py(x) from fake data
samples G(z) generated by passing z, randomly sampled
from some distribution p,(z), through the generator net-
work G. The generator network G adjusts its weights to fool
D. The discriminator D assigns probability D(x) € [0, 1]
to the event that x is a “real” training data sample and the
probability 1 — D(x) to the event that x is a “fake” sample
synthesized by the generator. The two networks are trained
iteratively using a loss function given by

['GAN(Ga D) = Emwpd(m) [log D(m)] +
Eyp.(z)log(l = D(G(2))] 4

with G aiming to minimize Lgan (G, D) and D aiming
to maximize it. In practice, the expectations are replaced
by empirical averages over a mini-batch of samples and the
loss function is alternately minimized and maximized from
one mini-batch to the next as in mini-batch gradient descent.
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Figure 2: Schematic diagram of the proposed PPRL-VGAN (& represents concatenation).Training alternates between optimizing the
weights of D keeping G fixed and vice-versa. Both original and synthesized images with their labels are used during training.

4. Formulation of PPRL-VGAN

Given a face image I with an identity label y*¢ =

1,...,N;q and an expression label y¢ = 1,..., N., where
N;q and N, are the numbers of distinct subjects and facial
expressions, respectively, the proposed model has two ob-
jectives: 1) to learn an identity-invariant face image repre-
sentation f(I) for facial expression recognition, and 2) to
synthesize a realistic face image T with the same facial ex-
pression as in I and target identity specified by a one-hot
encoded identity code ¢ € {0, 1}V,
Discriminator: Different from the discriminator network
in a conventional GAN, the discriminator D = (D%, D2,
D?) in PPRL-VGAN is a multi-task classifier consisting of
three separate neural networks (Fig. 2): 1) the D! network
classifies an input face image I as real or synthetic, 2) the
D? network estimates the identity of the person in the in-
put face image, and 3) the D? network classifies the facial
expression in the input face image. The weights of the net-
works in D are trained to classify real face image inputs I as
real and accurately recognize the person’s identity and the
facial expression. They are also trained to classify synthetic
image inputs I as fake. This is accomplished by adjusting
the network weights to maximize the following discrimina-
tor cost function:

Lp(G,D) = A {Erp,nllog D*(I)] +
Elrpa(),e~p(eylog(1 = DY(G(I,0)))]} +
E(1,y)~pa(1,y) [)‘2D log Diid(I) + >‘3D log Dze (] &

where D?, D} are the predicted probabilities of the ith class
for identity and facial expression, respectively. The tuning
parameters AP, AP and A control the relative importance
between image quality, identity recognition, and expression
recognition objectives.

Generator: In contrast to the generator in a conventional
GAN which directly maps a “noise” vector to a synthesized
image, the generator G in a PPRL-VGAN maps a real in-
put image I with identity ' and expression ¢ to a syn-
thesized output image I = G(I,c) with a target identity

y'(¢) and the same expression y©. This is accomplished via
a VAE-like encoder-decoder structure. Specifically, the en-
coder aims to learn an image representation f(I) from I
via a randomized mapping f(I) ~ q(f(I)|I) parameter-
ized by the weights of the encoder neural network. Simi-
larly to a VAE, the cost function for training the generator
includes K L divergence between a prior distribution on the
latent space p(f(I)) ~ N(0, I) and the conditional distri-
bution ¢(f(I)|I)). Training attempts to minimize this K L
term. The generator cost function also includes a term that
encourages the decoder to learn to synthesize a face image
I ~ p(I|f(I),c) that can fool D into classifying it as a
real face image having the same facial expression ¢ as the
input image I, but with a target identity y’(c) determined
by c. Specifically, the generator network weights are ad-
justed during training to minimize the following generator
cost function:

La(G,D) =

E(Ivy)’“pd(I’y)acNP(c) [/\%Y log(1 — Dl(G(L c)))+

A5 log(1 = Dy, o) (G(I, 0))) + A log(1 — Dy (G(I, )]

+ AT KL(a(F(D)|D)Ip(£(1))) ()

where A§', A, A§ and \{ are tuning parameters of the loss
functions for D', D2, D3 and K L divergence respectively.
A key difference compared to the cost in Eq. 3 is that first
term (reconstruction error) in Eq. 3 has been replaced with
a perceptual loss term for the discriminator D' in Eq. 6.
Training alternates between maximizing Eq. 5 with re-
spect to the weights of the networks in D and minimizing
Eq. 6 with respect to the weights of the networks in G. As
the target identity code ¢ ranges over all N;q4 distinct sub-
jects, N4 synthetic images I are produced for each training
or test image I. As in the training of VAEs and GANSs, the
expectations are approximated by empirical averages com-
puted from a mini-batch of training examples. Over succes-
sive training epochs, G learns to fit the true data distribution
and create a realistic face image that can fool D! having the
same facial expression as the input image, which can be
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correctly recognized by D3, and identity 3’(c), which can
be correctly recognized by D2, As the latent code ¢ deter-
mines the identity of I, the encoder is encouraged to disen-
tangle the identity information from f(I). Moreover, as I
retains information about facial expression, the encoder is
also encouraged to embed as many expression attributes as
possible into f(I). As a consequence, f(I) is a generative
representation that is not only invariant to identity, but also
discriminative for facial expression recognition.

5. Experimental Evaluation
5.1. Datasets

In order to validate the effectiveness of the proposed
model, we conducted experiments on two public facial ex-
pression datasets: FERG [4] and MUG [2]. FERG is a
database of cartoon characters with annotated facial expres-
sions containing 55,769 annotated face images of six char-
acters. The images for each character are grouped into 7
types of cardinal expressions, viz. anger, disgust, fear, joy,
neutral, sadness and surprise. The MUG database is video-
based. It consists of realistic image sequences of 86 subjects
performing the same 7 cardinal expressions. For the sake
of computational efficiency, we chose the 8 subjects hav-
ing the most image samples as our training and testing data.
In each image sequence, we removed the first and last 20
frames which mostly correspond to the neutral expression.
We used 11,549 images in total. In experiments with both
datasets, we randomly selected (without replacement) 85%
images of each expression from each subject for the train-
ing set. The remaining 15% of images were used as testing
data. We also resized each RGB image to 64 x 64-pixel
resolution.

5.2. Training Details

We used the same network architecture for both datasets.
Details of PPRL-VGAN structure are listed in Table 1. We
implemented our algorithm in Keras [ 1 0] and trained all net-
works from scratch. The weights were initialized to be zero-
mean Gaussian with a small standard deviation of 1072
We used a batch size of 256 and performed batch normal-
ization after each convolutional/deconvolutional layer ex-
cept the last deconvolutional layer in the decoder. We set
a = 0.2 for LeakyReLLU’s across the network. We used
RMSprop optimizer [ 14] with a learning rate of 0.0002. We
observed that network training is very sensitive to the choice
of the tuning parameters in the generator and discriminator
cost functions. We optimized these parameters using grid
search. We found that the following values: AP = 0.25,
AP = 05, AP = 0.25 for discriminator training and
¢ = 0.108, \§ = 0.6, \§ = 0.29, A = 0.002 for
generator training work well. In conventional GAN:S, it is
common to optimize the discriminator more frequently than

the generator. However, we update the generator twice as
frequently as the discriminator in training because the class
labels used in PPRL-VGAN provide additional labeled data
that help the discriminator training. The source code, addi-
tional implementation details and more experimental results
are available on our project website [1].

5.3. Threat Scenarios

We evaluate privacy-preserving performance of the pro-
posed PPRL-VGAN under three threat scenarios.

Attack scenario I: This is a simple scenario in which
the attacker has access to the unaltered training set
(Ttrain, yi2,;,,). However, the attacker’s test set consists of
all images in the original test set affer they have been passed
through the trained PPRL-VGAN network. Thus, the at-
tacker never gets to see the original test image I'.s: but only
its privacy-protected version I;. ;. Also, the test set for the
attacker contains all V4 distinct privacy-protected versions
I.s of each 1.4 corresponding to N;4 distinct values of
the identity code c.

Attack scenario II: This is a more challenging scenario
(from the perspective of protecting privacy) where the at-
tacker has access to the privacy-protected training images
I qin and knows their underlying ground-truth identi-
ties yid . . Therefore, the attacker can train an identifier
on training images that have the same type of identity-
protecting transformation as the test images. If the pro-
posed privacy-preserving transformation is weak and the
identifier has sufficient learning capacity, it may be possible
for a trained identifier to correctly predict the underlying
ground-truth identity even from a privacy-protected test im-
age. Similarly to scenario I, there are N;, images for each
training and testing image.

Attack scenario III: In this scenario, the attacker gets ac-
cess to the encoder network and can obtain the latent repre-
sentation f(I) for any image I. Then, if the produced la-
tent representation is not void of identity traits, the attacker
can train an identifier using (£ (I¢rain), ¥i%,;,) and apply it
to f(Iiest) for identification. Although more challenging
than scenario II, because the attacker can access the “more
pristine” f, there are fewer training and test samples avail-
able since the identity code ¢ does not enter into the picture
and thus Lhere is no V,;4-fold dataset expansion. Moreover
whereas I resembles a real image, f needs not (and typi-
cally does not).

In terms of utility, we train a dedicated facial expression
classifier in each scenario with the available format of train-
ing data and the corresponding ground-truth expression la-
bels. Then, we apply this classifier to test data and measure
the facial expression recognition performance.
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Table 1: Architecture of PPRL-VGAN. | and 1 represent down- and upsampling operations, respectively. D*, D? and D? share the
weights of all convolutional layers and of the first fully-connected layer.

Layer Encoder Decoder Discriminator
1 5 x 5 x 32 conv. |, BNorm, LeakyReLU 2048 FC layers Res—hape> 4 x4 x 128, LeakyReLU 5 x 5 x 32 conv, BNorm, LeakyReLU
2 5 x 5 x 64 conv. |, BNorm, LeakyReLU 5 X 5 x 256 deconv. T, BNorm, LeakyReLU 5 %X 5 x 64 conv, BNorm, LeakyReLU
3 5 x 5 x 128 conv. |, BNorm, LeakyReLU 5 x 5 x 128 deconv. 1, BNorm, LeakyReLU 5 %X 5 x 128 conv, BNorm, LeakyReLU
4 5 x 5 x 256 conv. |, BNorm, LeakyReLU 5 x 5 x 64 deconv. 1, BNorm, LeakyReLU 5 %X 5 x 256 conv, BNorm, LeakyReLU
5 128 fully-connected (FC), Linear 5 x 5 x 3 deconv, tanh 256 fully-connected, LeakyReLU
6 D': 1FC, D*: N;y FC, D*: N. FC

5.4. Privacy Preservation versus Data Ultility

We first conduct a detailed evaluation of the proposed
framework with respect to privacy preservation and data
utility. We use correct classification rate (CCR) in person
identification to measure how much privacy is preserved
(the lower the CCR, the better) and also in facial expres-
sion recognition to measure the utility of data (the higher
the CCR, the better). Table 2 summarizes the performance
of the proposed approach on the FERG and MUG datasets
under a privacy-unconstrained scenario (training and test-
ing sets are both unaltered), under a random-guessing at-
tack and under the three attack scenarios described earlier.
In each scenario, the identification and facial expression are
estimated separately by different neural network classifiers.
Table 2: Person identification and facial expression recognition

performance in different scenarios on FERG and MUG datasets.
Identification Expression Recognition

Scenario FERG MUG  FERG MUG
Privacy Unconstrained ~ 100% 100% 100% 87.90%
Random Guess 16.67% 12.50%  14.29% 14.29%
Attack Scenario I 17.01% 12.80%  93.02% 82.33%
Attack Scenario II 28.30% 22.08%  95.00% 85.14%
Attack Scenario III 22.42%  20.62% 100.00% 87.58%

For attack scenario I, we train an identifier using the
original training set (I qin, yi%,,,) and apply it to privacy-
protected test images T test- The identifier has the same
structure as D? (Fig. 2). We first observe that the identifi-
cation CCRs are 17.01% for FERG and 12.80% for MUG.
Both are llose to a random guess (16.67% for FERG since
there are 6 characters and 12.50% for MUG since we se-
lected 8 subjects). However, the same classifier applied to
the privacy-unconstrained test images results in 100% iden-
tification performance on both datasets. Such a huge perfor-
mance gap confirms the proposed model effectively protects
users’ privacy when the attacker has no information about
the applied privacy-preserving transformation. For utility
evaluation, we train a dedicated facial expression classi-
fier, with the same structure as D3, using (ILtrain, Y5rain)
pairs and test it on I, test images. The resulting expression
recognition accuracies are 93.02% for FERG and 82.33%
for MUG. These results are close to those achieved in the
privacy-unconstrained scenario, which indicates that the
synthesized images look realistic and retain the expression
of the input images.

In attack scenario II, we use the privacy protected train-

ing data I, train, and the corresponding ground-truth identity
labels to train an identity recognizer and the ground-truth
expressions to train a facial expression classifier (having the
same architectures as in scenario I). We first observe that the
identification accuracy in scenario II is about 11% higher
than that of a random guess for both datasets, which sug-
gests that some identity-related information is leaked into
the synthesized images, but this is still much lower than in
the privacy-unconstrained scenario. With respect to facial
expression recognition, the performance in scenario II is
consistently better than that in scenario I. This is likely be-
cause the number of training samples in scenario II is N;q4
times that in scenario I, which benefits the training of the
facial expression classifier.

In attack scenario III, we assume the attacker can access
the latent representations of the training and probe images.
We simulate this attack scenario by training an identifier us-
ing (f(Iirain), yi%,;,) and test it on f(I.s;). However, as
f(I) is a 1-D vector, the 2-D ConvNet classifiers we used
before are not suitable. We have experimented with 3 classi-
fiers for f(I), namely a Support Vector Machine (SVM), a
customized 1-D ConvNet and a customized Artificial Neu-
ral Network (ANN). The customized ANN (3 hidden layers,
each with 256 nodes) performed best in terms of identifica-
tion and expression recognition accuracy. Therefore, only
results for the customized ANN classifier are reported. As
shown in Table 2, the identification performance is reduced
in comparison with scenario II. However, the expression
recognition performance in scenario III is the best among
the three attack scenarios. Effectively, this suggests that the
learned image representation f(I) contains crucial facial
expression information, but is largely disentangled from the
identity information.

Identity Replacement/Expression Transfer: In addition
to producing an identity-invariant image representation,
PPRL-VGAN can be applied to an input face image of any
identity to synthesize a realistic, expression-equivalent out-
put face image of a target identity specified by the latent
code c (see Fig. 3). This may also be equivalently viewed
as “transferring” an expression from one face to another.
Unlike in a standard GAN, the synthesized image contains
a lot of detail about the target identity due to the incorpo-
ration of the identifier D? and the expression classifier D3.

1688



C1 C,

Input

Cs Cy

Input

Figure 3: Examples of identity replacement for both datasets. In each row, from left to right, is an input image followed by synthesized

images with identity code ¢;,7 = 1, ..., N,q4.

5.5. Image Synthesis

Face Image Synthesis without Input Image: Once
trained, our model can also synthesize face images with-
out using an input image. This is due to the constraint we
impose on the encoder which forces the distribution of the
latent representation to follow a prior distribution (in our
experiments: f(I) ~ N(0,I)). To generate a new face
image, we simply sample a latent vector from the prior dis-
tribution and concatenate it with an identity code. Then,
we feed the concatenated vector into the decoder for image
generation. As shown in Fig. 4, the synthesized images are
realistic and the identities are consistent with the identity
code c. While the current model is incapable of controlling
the facial expression of a generated image when no input
image is given, we believe the synthesized images are useful
for other applications, e.g, augmenting the original dataset.
Face Image Synthesis for Left-Out Expression: In order
to further evaluate the generative capacity of PPRL-VGAN,
we conducted experiments where we intentionally left out

all samples of a specific facial expression e from subject ¢
in training (images of expression e from other subjects are
still used) and then synthesized the left-out expression for
subject ¢ after the model had been trained. This was done
by feeding the generator G an image with expression e from
subject 7, j # i, and an identity code ¢; with ith entry equal
to 1 and all other entries 0.

Figure 5 shows examples of left-out expression synthe-
sis. While artifacts are clearly visible, the synthesized im-
ages capture the essential traits of a left-out expression, thus
validating the generative capacity of PPRL-VGAN.

Expression Morphing: Facial expression morphing is a
challenging problem because a human face is highly non-
rigid and significantly deforms across expressions. Most
methods perform face morphing in image space. Here, we
leverage the latent representation and apply linear interpo-
lation in latent space. Let I, I, be a pair of source images
with different expressions for subject i and f(I1), f(I2)
their corresponding latent representations. First, we linearly
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Figure 4: Image synthes1s without input image; f (I

Fear

Disgust
(a) FERG

Surprise

(b) MUG

Figure 5: Image synthesis of left-out expressions (left: synthe-
sized image of a left-out expression; right: corresponding ground-
truth image).

interpolate f(I1) and f(I2) in the latent space to obtain a
series of new representations f(I;perp) as follows:

FTinterp) = (1 =) f(I) + af(I2), a<[0,1] (7)

Then, we feed f(I;pierp) and identity code ¢; into the de-
coder to synthesize images. Figure 6 shows two examples
of expression morphing. We can see that in both cases, the
facial expression changes gradually from left to right. These
smooth semantic changes indicate the model is able to cap-
ture salient expression characteristics in f (I

Figure 6: Examples of expression morphing for FERG (top) and
MUG (bottom) datasets. The first and last images in each row
are the source images, while those in-between are synthesized by
linear interpolation in latent space.

Image completion: PPRL-VGAN can be also applied to
an image completion task. We tested two different masks
(Fig. 7): one covering the eyebrows, eyes and nose, and the
other covering the mouth (each mask occupies ~ 7% of
the image). To complete the missing content of a query
image I, of subject j, we first pass I, to the encoder
to produce a latent representation f(I,). Then, we feed
f(I,) and ¢; to the decoder for synthesizing a new image

) is sampled from NV (0, I) with identity code ¢;,7 = 1,.

(a) Examples of successful image completion

(b) Examples of unsuccessful image completion
Figure 7: Example of image completion for FERG and MUG
datasets. From left to right: original image, masked image and im-
age completion result. Note that the original images are excluded
from the training set.

I' ~ Dec(f(1,),c;). Finally, we replace the missing pixel
values of I, with values from corresponding locations in I".

Examples of both successful and unsuccessful image
completions are shown in Fig. 7. Figure 7a shows exam-
ples for which our model was able to accurately estimate the
missing image content. This demonstrates that our model
learns correlations between different facial features, for ex-
ample that opening the mouth is likely to appear jointly with
raising eyebrows. However, our model occasionally fails
(Fig. 7b). One possible reason for this is that some critical
facial features (e.g., lowered eyebrows and narrowed eyes
in the angry expression) are missing. A distortion may also
occur when a face in the synthesized images is not accu-
rately aligned with the one in the query image.

6. Conclusion

We presented a PPRL-VGAN for privacy-preserving fa-
cial expression recognition and face image synthesis. We
proposed a novel architecture combining a VAE and a GAN
to create an identity-invariant representation of a face image
that also permits synthesis of an expression-preserving and
realistic version. Experimental results on two public facial
expression datasets demonstrate that our approach strikes a
balance between privacy preservation and data utility. In
addition, the proposed model can support a variety of ap-
plications like expression morphing and image completion.
Generalizing the proposed framework to handle input im-
ages from unseen persons is part of our ongoing research.

1690



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

Boston University: Privacy-Preserving Smart-Room An-
alytics. vip.bu.edu/projects/vsns/privacy-smartroom/facial-
expression-vgan. 2018. 5

N. Aifanti, C. Papachristou, and A. Delopoulos. The mug
facial expression database. In Image Analysis for Multime-
dia Interactive Services (WIAMIS), 2010 11th International
Workshop on, pages 1-4. IEEE, 2010. 5

S. Aina, Y. Rahulamathavan, R. C.-W. Phan, and J. A. Cham-
bers. Spontaneous expression classification in the encrypted
domain. arXiv preprint arXiv:1403.3602, 2014. 2

D. Aneja, A. Colburn, G. Faigin, L. Shapiro, and B. Mones.
Modeling stylized character expressions via deep learning.
In Asian Conference on Computer Vision, pages 136—153.
Springer, 2016. 5

A. Badii, A. Al-Obaidi, M. Einig, and A. Ducournau. Holis-
tic privacy impact assessment framework for video privacy
filtering technologies. Signal & Image Processing, 4(6):13,
2013. 2

K. Brkic, I. Sikiric, T. Hrkac, and Z. Kalafatic. I know that
person: Generative full body and face de-identification of
people in images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, vol-
ume 1, page 4, 2017. 2

J. Chen, J. Wu, J. Konrad, and P. Ishwar. Semi-coupled
two-stream fusion convnets for action recognition at ex-
tremely low resolutions. In Applications of Computer Vision
(WACV), 2017 IEEE Winter Conference on, pages 139-147.
IEEE, 2017. 2

J. Chen, J. Wu, K. Richter, J. Konrad, and P. Ishwar. Esti-
mating head pose orientation using extremely low resolution
images. In Image Analysis and Interpretation (SSIAI), 2016
IEEE Southwest Symposium on, pages 65-68. IEEE, 2016. 2
B. Cheung, J. A. Livezey, A. K. Bansal, and B. A. Olshausen.
Discovering hidden factors of variation in deep networks.
arXiv preprint arXiv:1412.6583,2014. 3

F. Chollet. keras. https://github.com/fchollet/
keras, 2015. 5

J. Dai, J. Wu, B. Saghafi, J. Konrad, and P. Ishwar. Towards
privacy-preserving activity recognition using extremely low
temporal and spatial resolution cameras. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 68-76, 2015. 1, 2

F. Dufaux and T. Ebrahimi. Scrambling for video surveil-
lance with privacy. In Computer Vision and Pattern Recog-
nition Workshops, pages 160-160. IEEE, 2006. 2

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Information
Processing Systems, pages 2672-2680, 2014. 1

G. Hinton, N. Srivastava, and K. Swersky. Rmsprop: Di-
vide the gradient by a running average of its recent mag-
nitude. Neural Networks for Machine Learning, Coursera
lecture 6e,2012. 5

A.Jalal, M. Z. Uddin, and T.-S. Kim. Depth video-based hu-
man activity recognition system using translation and scal-

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

1691

ing invariant features for life logging at smart home. /EEE
Transactions on Consumer Electronics, 58(3), 2012. 2

A. Jourabloo, X. Yin, and X. Liu. Attribute preserved face
de-identification. In Biometrics (ICB), 2015 International
Conference on, pages 278-285. IEEE, 2015. 2

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.
Semi-supervised learning with deep generative models. In
Advances in Neural Information Processing Systems, pages
3581-3589, 2014. 3

D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114,2013. 1, 3

S. Krinidis, G. Stavropoulos, D. Ioannidis, and D. Tzovaras.
A robust and real-time multi-space occupancy extraction sys-
tem exploiting privacy-preserving sensors. In Communica-
tions, Control and Signal Processing (ISCCSP), 2014 6th In-
ternational Symposium on, pages 542-545. IEEE, 2014. 2
L. Ma, Q. Sun, S. Georgoulis, L. Van Gool, B. Schiele,
and M. Fritz. Disentangled person image generation. arXiv
preprint arXiv:1712.02621, 2017. 3

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644,
2015. 3

M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprech-
mann, and Y. LeCun. Disentangling factors of variation
in deep representation using adversarial training. In Ad-
vances in Neural Information Processing Systems, pages
5040-5048, 2016. 3

E. M. Newton, L. Sweeney, and B. Malin. Preserving pri-
vacy by de-identifying face images. IEEE transactions on
Knowledge and Data Engineering, 17(2):232-243, 2005. 2
J.R. Padilla-Lépez, A. A. Chaaraoui, and F. Flérez-Revuelta.
Visual privacy protection methods: A survey. Expert Systems
with Applications, 42(9):4177-4195, 2015. 1

P. Paillier et al. Public-key cryptosystems based on com-
posite degree residuosity classes. In Eurocrypt, volume 99,
pages 223-238. Springer, 1999. 2

S. Park and H. A. Kautz. Privacy-preserving recognition of
activities in daily living from multi-view silhouettes and rfid-
based training. In AAAI Fall Symposium: Al in Eldercare:
New Solutions to Old Problems, pages 70-77, 2008. 2

F. Pittaluga, S. J. Koppal, and A. Chakrabarti. Learning
privacy preserving encodings through adversarial training.
arXiv preprint arXiv:1802.05214, 2018. 2

Y. Rahulamathavan, R. C.-W. Phan, J. A. Chambers, and
D. J. Parish. Facial expression recognition in the encrypted
domain based on local fisher discriminant analysis. IEEE
Transactions on Affective Computing, 4(1):83-92, 2013. 2
Y. Rahulamathavan and M. Rajarajan. Efficient privacy-
preserving facial expression classification. [EEE Transac-
tions on Dependable and Secure Computing, 14(3):326-338,
2017. 2

N. Raval, A. Machanavajjhala, and L. P. Cox. Protecting vi-
sual secrets using adversarial nets. In Computer Vision and
Pattern Recognition Workshops, pages 1329-1332. IEEE,
2017. 2

D. Roeper, J. Chen, J. Konrad, and P. Ishwar. Privacy-
preserving, indoor occupant localization using a network of


https://github.com/fchollet/keras
https://github.com/fchollet/keras

(32]

(33]

[34]

(35]

(36]

single-pixel sensors. In Advanced Video and Signal Based
Surveillance (AVSS), 2016 13th IEEE International Confer-
ence on, pages 214-220. IEEE, 2016. 2

A.-R. Sadeghi, T. Schneider, and 1. Wehrenberg. Efficient
privacy-preserving face recognition. In Information, Secu-
rity and Cryptology — ICISC, volume 9, pages 229-244.
Springer, 2009. 2

J. B. Tenenbaum and W. T. Freeman. Separating style and
content. In Advances in Neural Information Processing Sys-
tems, pages 662—668, 1997. 3

L. Tran, X. Yin, and X. Liu. Disentangled representation
learning gan for pose-invariant face recognition. In Com-
puter Vision and Pattern Recognition, volume 4, page 7,
2017. 3

W. Wang, C.-M. Vong, Y. Yang, and P.-K. Wong. Encrypted
image classification based on multilayer extreme learning
machine. Multidimensional Systems and Signal Processing,
28(3):851-865, 2017. 2

M. T. L. Ziad, A. Alanwar, M. Alzantot, and M. Srivastava.
Cryptoimg: Privacy preserving processing over encrypted
images. In Communications and Network Security (CNS),
2016 IEEE Conference on, pages 570-575. IEEE, 2016. 2

1692



