This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

On Visible Adversarial Perturbations &
Digital Watermarking

Jamie Hayes
University College London
j.hayes(dcs.ucl.ac.uk

Abstract

Given a machine learning model, adversarial perturba-
tions transform images such that the model’s output is clas-
sified as an attacker chosen class. Most research in this area
has focused on adversarial perturbations that are impercep-
tible to the human eye. However, recent work has considered
attacks that are perceptible but localized to a small region of
the image. Under this threat model, we discuss both defenses
that remove such adversarial perturbations, and attacks that
can bypass these defenses.

1. Introduction

Neural networks are known to be vulnerable to adversar-
ial examples: perturbations that when combined with data
inputs, cause intentional misclassifications. Most research
has focused on studying small £, perturbations that remain
visually imperceptible when applied to an input. FGSM [13],
L-BFGS [35], DeepFool [25], Carlinig, ¢y [8], PGD [24]
and EAD [9] are all examples of attacks that modify each
pixel in an image by a small amount, while attacks such as
JSMA [26] and Carlinig, [8], perturb a small subset of pixels
in an image.

Recent work by Brown et al. [5] and Karmon et al. [20]
have studied adversarial examples under a new threat model
- an attacker that crafts perturbations that are not bounded by
an e value but are bounded to a small region or location in the
image. Clearly, this removes the visually imperceptible prop-
erty that most other attacks possess. However, as noted by
both Brown et al. [5] and Karmon et al. [20], attackers may
not be concerned with this property; ML models are often
not validated by humans, and thus visual indistinguishability
between adversarial and clean examples may not a highly
sought after property of the attack. Furthermore, humans
may not recognize the adversarial examples as adversarial,
viewing the small visual perturbations as natural corruption
or noise within the image.

Brown et al. [5] introduced an attack, Adversarial Patch,

that finds a “universal” adversarial perturbation that can be
applied to any image and cause a misclassification of the
adversaries choice. They show that it is possible to create
a small adversarial “patch” that is invariant to location (on
the image) and rotation. Furthermore, they show the attack
transfers to the physical world - it is possible to construct a
patch, print it out and retain its adversarial properties.

In parallel, Karmon et al. [20] introduced an attack, La-
VAN, that creates localized and visible adversarial perturba-
tions. Broadly, both attacks are equivalent; Adversarial Patch
is trained under a pre-processing stage that is applied to the
patch, which outputs a new rotated and scaled patch, which
is then applied to the image at a randomly chosen location.
LaVAN is similar, however the location, rotation and scale is
randomly chosen once at the beginning of the attack and is
then left unchanged. The authors also discuss transferability
properties of their method, and show that applying a similar
pre-processing stage at each iteration of the attack can create
perturbations that are invariant to location or rotation.

In this work, we discuss the difficulties in defending
against such attacks. Because both Adversarial Patch and La-
VAN radically change small regions of an image, defending
against such attacks is very closely aligned to the problem of
inpainting and watermark removal. We may think of the per-
turbation as a watermark placed in the image by the attacker.
The goal of a robust defense is then to remove this water-
mark, or at least render it as safe to the target model. Quiring
et al. [28] have also drawn connections between the research
fields of adversarial examples and digital watermarking, in
the context of traditional e-ball attacks.

We show that localized and visible adversarial perturba-
tions can be defended against using simple principles from
inpainting research. Our intuition is that the influence signal
of pixels within an image containing localized and visible
adversarial perturbations are dominated by the perturbations,
and thus we can use this dominating factor to detect and
defend. We show an attacker is unable to modify their attack
to successfully bypass the defense if they are confined to
perturb only a small subset of pixels. We then introduce a
trivial attack that can break this defense, highlighting the
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Figure 1: Toaster patch for Inception-V3.

need to consider a variety of potential attacks if deploying
models to safety critical tasks.

2. Localized and Visible Adversarial Perturba-
tions

Here we give an overview of two recently proposed local-
ized and visible adversarial perturbation attacks, Adversarial
Patch and LaVAN.

2.1. Adversarial Patch

Adversarial Patch creates a universal “patch” that can
be applied to any image z in a dataset X, and cause a tar-
geted misclassification in a model f, regardless of the scale,
orientation or location of the patch.

Given a patch p, an image v € X, a target class ¢, a
sampled location in the location space of images [ € L, and
a transformation over a set of transformations ¢t € T, an
operator A(p,z,l,t) is defined that re-scales and rotates a
patch and is then applied to an image at a location [. The
attacker updates the patch iteratively by optimizing the ob-
jective function:

p=argmaxE,x i1~ 10[log Pr(g|A(p, x, 1, t)]
P

By optimizing over the Expectation over Transforma-
tion [2], a patch is found that remains adversarial regardless
of scale, location or orientation.

Experimental results are reported on a patch crafted over
an ensemble of ImageNet classifiers (Inception-V3, ResNet-
50, Xception, VGG-16, and VGG-19), single models, and
in black-box attacks - where the patch is trained on four
models and results reported on the fifth. With a patch size
of 10% of the image, over 90% of images were successfully
misclassified as the patch target class. We re-implemented
the authors work and were successfully in replicating these
results, an example of an “Adversarial Patch” is shown in
Figure 1.

2.2. LaVAN

LaVAN takes a different approach to Adversarial Patch,
computing an adversarial perturbation that is dependent on

the chosen location and the image under attack '. The La-
VAN attack takes as input: a confidence threshold «, a mask
m € {0,1}", animage € X, amodel f, and a target class
9. At each iteration, the attacker updates the perturbation by
the following method:

1. Apply the current perturbation to the image:
(1 _m) Ozr+mop,

where © is element-wise multiplication.

2. Find the target class output, f(x)
source classification f(z)l,.

¢ and the clean image

3. Update the perturbation by:

(@ 9@y
or ox

The attack is terminated when f(x)|; > k.

The authors reported that when attacking the Inception-
V3 model on 100 ImageNet images, and restricting pertur-
bations to be 2% of the total image size, they were success-
ful at causing a targeted misclassification in 79% of 110
configurations tested, when x is equivalent to 90%. We
re-implemented the authors work and were successfully in
replicating these results. However, we found attacks were
more successful when removing the e multiplier in step (3)
since gradient values are already orders of magnitude smaller
than the acceptable input range of the classifier, thus in fur-
ther experiments we update the perturbation omitting the e
coefficient:

_(3f($)|g B af(x)\y)
or ox

The authors also stop the attack after 10,000 iterations
or when the confidence threshold is met. We introduce an
early stopping criteria - terminating the attack if the objective
function fails to decrease. We found this improved the speed
of the attack by a factor of 10-20X without harming success.

Finally, LaVAN is not designed to create a universal
“patch” and thus, we were able to compute both non-targeted
and targeted attacks. Non-targeted attacks are equivalent to
targeted attacks, with the target class chosen to be the second
most likely class and with no specified confidence threshold.

3. Threat Model

We aim to defend against an attacker who has white-box
access to a target model, f, and can manipulate a subset of
pixels in an image x in a dataset X . We restrict the attacker

I'The authors also discuss methods to make their approach transferable
across images, however we omit a full analysis of that here. The method is
almost identical to Adversarial Patch.
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to only manipulate pixels within a small region of the image
- the attacker may choose the location of the area, but may
not perturb pixels outside of this location.

We consider two attack settings for our defense: (1) the
attacker is not aware that a defense is being used (2) the
attacker is aware of the defense and crafts adversarial per-
turbations to avoid detection. In (1), we report results from
an attack that pre-constructs adversarial examples against an
undefended model, and apply these inputs to the defended
model, while in (2) the attack has access to the defense
while constructing the perturbations. This is similar to Ker-
choff’s principle in Cryptography, which states that a scheme
should be secure even if an attacker has full knowledge of
the scheme in use, but is not aware of the key, or in our case,
the hyperparameters of the defense.

4. Defenses

We wish to both detect and remove localized and visible
adversarial perturbations, simultaneously. The problem of
removing adversarial perturbations is closely aligned with
the problem of watermark removal, or sometimes referred
to as inpainting. In a classical inpainting problem, an image
has been corrupted through scratches or random noise and
the task is to restore the image and remove such noise. This
is exactly the same problem as defending against adversarial
perturbations - we have a corrupted copy of an image and
wish to remove the noise and restore the image. Previous
work [3,4,6,10, 11,12, 14, 15,16, 17,18, 19,21, 22,23,

, 29,30, 31, 33, 38, 40] has attempted to defend against
classical adversarial examples, where the adversarial noise
is distributed over the entire image and is designed to remain
visually imperceptible. Unfortunately, these techniques have
been shown to degrade under attacks with knowledge of the
underlying defense [, 7, 37]. However, our threat model
allows us to revisit proposed noise reduction defenses such
as inpainting since the adversarial perturbation is confined
to a small region of the image and provides a larger signal
than in non-localized attacks.

The inpainting problem can generally be classified into
two categories:

Non-blind. In non-blind image inpainting, the recon-
struction process is given the location of the areas to be
inpainted along with the corrupted image.

Blind. In blind image inpainting, the reconstruction
process is given only the noisy image. The areas to be
inpainted must be discovered before inpainting can be-
gin. Blind inpainting is a strictly more difficult problem
than non-blind inpainting.

While we anticipate the blind setting to be the most realistic,
we study defenses in both settings.

In both non-blind and blind settings, our aim is to con-
struct a pre-processing function b : RWxhxc _ Ruwxhxe
such that arg max f(h(z + p)); = arg max f(x);, where p

7 3
is a localized and visible adversarial perturbation, x € X
and f is the classifier under attack.

4.1. Non-blind

In the non-blind setting, the pre-processing step h, has
access to a mask m € {0, 1} that contains the location of
noise to be inpainted in addition to the adversarial example
x + p. There are many options for traditional non-blind
watermark removal, however our primary criteria for this
preprocessing step is that it is fast, and renders the adversarial
perturbation ineffective. Although original image fidelity
is certainly aligned with these criteria, it is not exactly the
same. We thus choose an inpainting method, developed by
Alexandru Telea [36], that is optimized for speed rather than
accurate inpainting.

The method works as follows: Define the region to be
inpainted as €2 and the boundary of the region as 9f2. Given
some point u on Jf, take the e-ball of the known image
around u, Be(u) = {v € z [[lu —v|[, < €,v ¢ Q}. For
small e, we consider a first-order approximation I, (u) of the
image at point u, given the image I (v) and gradient VI (v)
at values of point v:

I,(u) = I(v) + vVI(v)(u —v)

The point u is inpainted by summing all points in B (u),
weighted by a normalized function w(u, v):

|Be (u)]
>, w(u,n)(I(n) + VI(n)(u—n))

I(u) = "= (%)

[Be(u)]
w(u, v)
n=1
To inpaint all of £2, (%) is iteratively applied to all un-
known points on 0f2 in increasing distance from the starting
position, and then advances into  until = §.

4.2, Blind

If the defense does not have access to a mask giving the
location of the perturbation, it must first find the areas that
contain the adversarial perturbations, before sanitization can
begin. To detect localized and visible adversarial pertur-
bations, we note that for such images, their saliency maps
generally have very dense clusters around the location of
the perturbation. This is because the classification of the
image is almost entirely influenced solely by this small area,
while in natural images, pixels that influence classification
are more sparsely distributed. We use this observation to
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Figure 2: A flow diagram of the steps to defend against a localized and visible adversarial perturbation in a blind setting. We
first find the saliency map of the image. The following two steps constructs a mask that is applied to the adversarial image,

blocking the adversarial perturbation.

Algorithm 1: Pseudocode for blind defense.
Input

rimage z,

classifier f,

predicted label §j = arg max f(z),
Y

pixel threshold i € R,
contour area threshold ¢ € R
Output :image x’
1 sal < Get saliency map of = with respect to ¥;
2 for p € sal do

0, ifp>p
3 b= .
1, otherwise
4 end
5 sal’ + ((sal ® B) © B)", where n € Z*,
11
e[

6 Find contiguous contours in sal’. If contour area
< ¢, zero out.

7 m <+ ((sal’ ® B) © B)"
8 forp € mdo

{0, ifp=1
p= .

1, otherwise

10 end
nzr+—zeOm
12 return z’

detect unnaturally dense regions that contribute to classifi-
cation, constructing a mask that covers these regions and so
remove their influence on classification.

To create an overview of which areas of the image are
influencing classification, we construct a saliency map of
the image using the guided backpropagation method [34].
Simonyan et al. [32] use the gradient of the output class with
respect to the input image to construct a saliency map. When
backpropagating the influence signal through ReLU activa-
tion units, the signal is zero’d if the input in the forward pass
was below zero. In parallel, Zeiler & Fergus [39] construct a
similar saliency map but zero out the signal if it is negative
in the backwards pass, ignoring any information through the
ReLU unit in the forward pass. Guided backpropagation

combines both of these approaches, zeroing the influence
signal if either the forward or backward pass through a ReLU
unit is negative.

Once a saliency map for the input has been found, we
use a combination of erosion and dilation to remove small
“holes” 2. Finally, we find the contour area of positive
regions within the updated saliency map, and if the contour
area is below a threshold, we zero out this area. Finally, we
use the remaining positive regions of the saliency map as
locations to mask the adversarial image. The pseudo-code of
the defense is given in Algorithm 1, and a flow diagram from
adversarial example to benign example is shown in Figure 2.

5. Experimental Results

We compare our non-blind and blind defenses across a
number of ImageNet models: VGG-19, ResNet-101 and
Inception-V3, and the two proposed attacks: Adversarial
Patch and LaVAN. We re-implemented both attacks and ver-
ified we could replicate their results. All results are reported
on 400 randomly chosen images in the ImageNet validation
set.

For the LaVAN attack, we craft both non-targeted and
targeted adversarial examples. For a non-targeted attack,
we terminate when any misclassification is found, however
for targeted attacks we specify a target class and a target
threshold confidence score (k) that must be met before the
attack is stopped. Since Adversarial Patch finds a universal
adversarial perturbation, we only study targeted attacks. For
each image under a LaVAN targeted attack, we randomly
chose a target class, whereas for Adversarial Patch we chose
a target of the toaster class and the golf ball class. A robust
defense must both remove adversarial perturbations from
adversarial images and not affect the classification of clean

2 Erosion is denoted by @ and is defined by:

vev:=]JU

veV

Dilation is denoted by © and is defined by:
UeV:= ) U

veV

Where U,V € 7101} and U, denotes the translation of U by v.
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Table 1: Results for non-blind defense.

| VGG-19 | RESNET-101 | INCEPTION-V3
Attack X Perturbation Advesarial Reconstructed . Advesarial Reconstructed . Advesarial Reconstructed .
Type K (%) Accuracy Accuracy Time (s) Accuracy Accuracy Time (s) Accuracy Accuracy Time (s)
2 0.970 0.990 0.006 0.875 0.986 0.006 0.818 0.985 0.011
Non-targeted R 5 0.995 0.935 0.010 0.988 0.947 0.010 0.983 0.959 0.016
10 1.000 0.880 0.015 1.000 0.902 0.015 0.998 0.910 0.025
25 1.000 0.685 0.030 1.000 0.690 0.030 1.000 0.715 0.053
2 0.714 0.992 0.007 0.675 0.981 0.006 0.575 0.978 0.011
5 0.882 0.934 0.010 0.940 0.944 0.010 0.907 0.956 0.016
LAVAN 0.0 10 0.998 0.880 0.015 0.988 0.901 0.015 0.990 0.909 0.025
25 1.000 0.685 0.031 1.000 0.690 0.031 1.000 0.715 0.053
Targeted
2 0.543 0.992 0.007 0.675 0.981 0.007 0.573 0.983 0.010
0.99 5 0.889 0.934 0.010 0.938 0.947 0.010 0.900 0.956 0.016
10 0.998 0.880 0.015 0.993 0.902 0.015 0.985 0.909 0.026
25 1.000 0.685 0.030 1.000 0.690 0.030 1.000 0.715 0.053
2 0.551 0.971 0.005 0.296 0.923 0.006 0.198 1.000 0.009
0.90 5 0.684 0.921 0.009 0.556 0.910 0.013 0.678 0.953 0.016
10 0.910 0.887 0.017 0.882 0.751 0.018 0.804 0.896 0.020
25 1.000 0.662 0.033 1.000 0.589 0.029 1.000 0.606 0.040
ADVERSARIAL PATCH
(TOASTER) Targeted
2 0.210 0.971 0.007 0.138 0.875 0.006 0.099 1.000 0.010
0.99 5 0.652 0.926 0.010 0.436 0.923 0.015 0.662 0.950 0.019
10 0.765 0.893 0.020 0.690 0.907 0.022 0.872 0.893 0.031
25 0.934 0.701 0.041 0.901 0.454 0.045 0.918 0.664 0.060
2 0.384 0.970 0.005 0.226 0.923 0.006 0.298 0.978 0.010
0.90 5 0.614 0.881 0.009 0.446 0.853 0.053 0.568 0.900 0.018
10 0.933 0.809 0.021 0.910 0.781 0.019 0.844 0.922 0.028
25 1.000 0.600 0.032 1.000 0.442 0.031 1.000 0.589 0.045
ADVERSARIAL PATCH
(GOLF BALL) Targeted
2 0.301 0.932 0.009 0.111 0.772 0.006 0.109 1.000 0.012
0.99 5 0.714 0.902 0.018 0.331 0.771 0.014 0.699 0.901 0.019
10 0.785 0.838 0.026 0.678 0.619 0.029 0.888 0.800 0.031
25 0.935 0.709 0.044 0.943 0.578 0.045 0.957 0.445 0.060

Table 2: Results for blind defense on VGG-19.

Attack Adversarial Reconstructed

. Perturbation Ti
Type " (%) Accuracy Accuracy ime (s)
2 0.995 0.630 0314
. 5 1.000 0.403 0313
Non-targeted 10 1.000 0.301 0.311
25 1.000 0.136 0.309
2 0.711 0.980 0.190
5 0.827 0.934 0.248
LAVAN 0.0 10 0.968 0.672 0.340
25 0.995 0.153 0.338
Targeted
2 0.453 0.935 0.347
0.99 5 0.805 0.884 0.327
) 10 0.968 0.639 0.244
25 0.995 0.129 0.195
2 0.551 0.959 0.382
5 0.684 0.761 0.371
0.0 10 0.910 0.538 0.389
25 1.000 0.090 0.299
ADVERSARIAL PATCH Tareeted
(TOASTER) argete

2 0.210 0.957 0.297
0.99 5 0.652 0.881 0.365
) 10 0.765 0.422 0.320
25 0.934 0.062 0.041

images. Our non-blind defense leaves clean images unaf-
fected since the defense has access to a mask with locations
of perturbations, which will be empty in this case. Our blind
defense, currently misclassifies 12% of clean images. For
example, this reduces VGG-19 top-1 accuracy from 74.2%
to 65.4%, which is approximately equivalent to VGG-11 top-
1 accuracy. Our blind defense may also be combined with
other detection mechanisms in the future, a problem that is
strictly easier than simultaneous detection and removal.

In both non-blind and blind experiments we report: attack

type - targeted or non-targeted, k, adversarial accuracy -
the fraction of adversarial images that were successful in
fooling the classifier, reconstructed accuracy - the fraction
of successfully defended adversarial images, and time - the
average time to remove the adversarial perturbation from the
image.

5.1. Non-blind

Table 1 gives the adversarial success of both Adversarial
Patch and LaVAN, and the reconstruction success of our
non-blind defense against the attacks. For both attacks we
vary the area that the localized adversarial perturbation can
cover from 2% to 25% of the image.

Both attacks are overwhelmingly successful even for very
small areas, however this also results in an easier reconstruc-
tion task since fewer pixels need to be inpainted. However,
we can still successfully remove the adversarial perturba-
tions in over 68% of images when the perturbation covers a
quarter of the image. The average time taken to reconstruct
the image is also negligible, e.g. 6ms for a perturbation size
of 2% on VGG-19.

5.2. Blind

Table 2 gives the adversarial success of both LaVAN
and Adversarial Patch, and the reconstruction success of
our blind defense against the attacks. For both attacks we
vary the size of the localized adversarial perturbation from
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Table 3: Results for improved LaVAN attack on blind de-
fense on VGG-19.

Bounding Area Perturbation Advesarial Reconstructed

ke (%) (%) Accuracy Accuracy Time (s)
2 2 0.711 0.980 0.190
5 2 0.708 0.912 0.188
0.90 10 2 0.723 0.733 0.192
25 2 0.741 0.299 0.199
100 2 0.805 0.046 0.173

2%-25% of the image.

Compared to the non-blind setting, the defense is weaker
and slower, however we still achieve strong results for small
perturbations; successfully removing the adversarial pertur-
bations in 95% of targeted LaVAN and Adversarial Patch
attacks when the perturbation covers 2% of the image. For
the LaVAN non-targeted attack we successfully remove 63%
of adversarial examples for a 2% perturbation. Interestingly,
since our defense relies upon strong gradient signals, it is
more difficult to defend against weaker attacks such as the
non-targeted attacks that terminate as soon as a misclassifi-
cation is found, while our defense is resilient against strong
attacks. As reported by Karmon et al. [20], we found Adver-
sarial Patch generally performs worse than LaVAN in terms
of adversarial example success. This is because Brown et
al. [5] focused on constructing perturbations that succeed
against black-box models and that can be physically printed
out.

5.3. Bypassing the defense

The evaluated defenses have so far assumed that the at-
tacker did not have direct access to the defense when con-
structing the adversarial perturbations. However, recent
work [1, 7, 37] have shown many defenses can be trivially
bypassed if incorporated into the attack pipeline. Thus, we
now evaluate an attack that constructs perturbations against
a model using the blind defense. However, we do not reveal
the hyperparameters used in the defense, such as the contour
threshold area. Instead, they are empirically estimated by
the attacker during the attack. We show that an attacker
can estimate sensitive defense attributes and thus bypass the
defense.

An attacker who simply applies the same targeted attack
to the defended model will not be successful in crafting
adversarial perturbations, given some confidence threshold
K. As soon as the perturbation triggers the contour area
threshold, the perturbation will be masked before being input
into the classifier, and so no further information will be
provided from which to optimize the attack. Experimentally,
we found this triggering to often occur well before the image
is classified as the adversaries target class. Indeed, as we can
see from Table 2, 63% of non-targeted adversarial examples
are successfully defended against for an area of 2% of the

image, while the difference between most confident and
second most confident class is very small.

To bypass the defense, the locations of adversarial pixels
must be sparse enough to bypass the erosion and dilation
processes, and so fall below the contour area threshold. We
define a pre-processing function: g : RWx/x¢ 5 Rwxhxe
that removes dense areas of adversarial pixels in order to
bypass the defense. Essentially the attacker aims to construct
the inverse of the function A, such that when erosion, dila-
tion and contour filling is applied by h, the threshold is not
reached and will not be successfully masked.

Ideally, the attacker would like to maximize the minimum
neighbour distance between adversarial pixels. There are
many options for choosing pixels according to this criteria
such as Poisson-disk sampling or Halton sequences. How-
ever, we observed that choosing a set of pixels uniformly
at random and performing the inverse of the erosion and
dilation operations (commonly referred to as morphologi-
cal opening) to separate adversarial pixels, provided a good
approximation.

To construct this new attack, we include another hyperpa-
rameter, the bounding area the attacker can manipulate and
additionally, the percentage of pixels the attacker chooses to
manipulate. By removing clusters of pixels within this area
we can sparsify the adversarial pixels, as shown in Figure 3.

Table 3 shows the success of LaVAN modified under
this new approach; varying bounding areas and number of
adversarial pixels. For small bounding areas, we found that
the defense was able to resist this modified attack in general.
For example, with a bounding area of 5% of the image,
and modification of 2% of image pixels (restricted to be
contained in the bounding area) the adversarial success if
70.8%, which is almost identical to 71.1% in the unmodified
attack, while the reconstructed accuracy drops to only 91.2%.
However, if we increase the bounding area, and so increase
potential sparsity of adversarial pixels, the defense suffers
dramatically. Manipulating 2% of image pixels within a
bounding area of 25% reduces reconstruction success from
98.0% to 29.9%. In the most extreme case, if we allow
the attacker to modify 2% of pixels anywhere in the image,
both adversarial success improves (71.1% to 80.5%) and
reconstruction success deteriorates (98.0% to 4.6%).

6. Discussion, Limitations & Conclusion

We can trivially defeat the defense if we no longer restrict
adversarial pixels to be contained in a small area of an image.
The attacker can distribute the location of adversarial pixels,
removing the dense saliency regions that the defense relies
upon. This threat model is not altogether unrealistic, it is
unlikely that an attacker would be restricted to a bounding
area in a real attack. For example, an attacker modifying an
image to be sent to a Machine Learning as a Service model
will invariably have access to the entire image and so not
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Figure 3: Each image has 2% adversarial pixels while we vary the bounding area. All were classified as the “Hare” class with

90% confidence by VGG-19, using the LaVAN attack.

limit themselves to a small area if they suspect a defense is
in use.

The defense is sufficient to defend against localized and
visible attacks in their current form, however we have shown
that granting some latitude to the attacker results in bypass-
able defenses. Motivating the need for further research on
how best to defend against such attacks. One may again
consider exploiting the natural structures of images versus
the unnatural structure of adversarial perturbations. For ex-
ample, empirically we observed that nearly all salient figures
for ImageNet samples contained thin but continuous regions
that defined the most influential parts of the image, while our
modified attack produces a sparse noisy structure. However,
further research is needed to show this kind of reasoning
can be extrapolated to defend against localized and visible
adversarial perturbations in other domains.
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