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Abstract

Given a machine learning model, adversarial perturba-

tions transform images such that the model’s output is clas-

sified as an attacker chosen class. Most research in this area

has focused on adversarial perturbations that are impercep-

tible to the human eye. However, recent work has considered

attacks that are perceptible but localized to a small region of

the image. Under this threat model, we discuss both defenses

that remove such adversarial perturbations, and attacks that

can bypass these defenses.

1. Introduction

Neural networks are known to be vulnerable to adversar-

ial examples: perturbations that when combined with data

inputs, cause intentional misclassifications. Most research

has focused on studying small ℓp perturbations that remain

visually imperceptible when applied to an input. FGSM [13],

L-BFGS [35], DeepFool [25], Carlini{ℓ2,ℓ∞} [8], PGD [24]

and EAD [9] are all examples of attacks that modify each

pixel in an image by a small amount, while attacks such as

JSMA [26] and Carliniℓ0 [8], perturb a small subset of pixels

in an image.

Recent work by Brown et al. [5] and Karmon et al. [20]

have studied adversarial examples under a new threat model

- an attacker that crafts perturbations that are not bounded by

an ǫ value but are bounded to a small region or location in the

image. Clearly, this removes the visually imperceptible prop-

erty that most other attacks possess. However, as noted by

both Brown et al. [5] and Karmon et al. [20], attackers may

not be concerned with this property; ML models are often

not validated by humans, and thus visual indistinguishability

between adversarial and clean examples may not a highly

sought after property of the attack. Furthermore, humans

may not recognize the adversarial examples as adversarial,

viewing the small visual perturbations as natural corruption

or noise within the image.

Brown et al. [5] introduced an attack, Adversarial Patch,

that finds a “universal” adversarial perturbation that can be

applied to any image and cause a misclassification of the

adversaries choice. They show that it is possible to create

a small adversarial “patch” that is invariant to location (on

the image) and rotation. Furthermore, they show the attack

transfers to the physical world - it is possible to construct a

patch, print it out and retain its adversarial properties.

In parallel, Karmon et al. [20] introduced an attack, La-

VAN, that creates localized and visible adversarial perturba-

tions. Broadly, both attacks are equivalent; Adversarial Patch

is trained under a pre-processing stage that is applied to the

patch, which outputs a new rotated and scaled patch, which

is then applied to the image at a randomly chosen location.

LaVAN is similar, however the location, rotation and scale is

randomly chosen once at the beginning of the attack and is

then left unchanged. The authors also discuss transferability

properties of their method, and show that applying a similar

pre-processing stage at each iteration of the attack can create

perturbations that are invariant to location or rotation.

In this work, we discuss the difficulties in defending

against such attacks. Because both Adversarial Patch and La-

VAN radically change small regions of an image, defending

against such attacks is very closely aligned to the problem of

inpainting and watermark removal. We may think of the per-

turbation as a watermark placed in the image by the attacker.

The goal of a robust defense is then to remove this water-

mark, or at least render it as safe to the target model. Quiring

et al. [28] have also drawn connections between the research

fields of adversarial examples and digital watermarking, in

the context of traditional ǫ-ball attacks.

We show that localized and visible adversarial perturba-

tions can be defended against using simple principles from

inpainting research. Our intuition is that the influence signal

of pixels within an image containing localized and visible

adversarial perturbations are dominated by the perturbations,

and thus we can use this dominating factor to detect and

defend. We show an attacker is unable to modify their attack

to successfully bypass the defense if they are confined to

perturb only a small subset of pixels. We then introduce a

trivial attack that can break this defense, highlighting the
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Figure 1: Toaster patch for Inception-V3.

need to consider a variety of potential attacks if deploying

models to safety critical tasks.

2. Localized and Visible Adversarial Perturba-

tions

Here we give an overview of two recently proposed local-

ized and visible adversarial perturbation attacks, Adversarial

Patch and LaVAN.

2.1. Adversarial Patch

Adversarial Patch creates a universal “patch” that can

be applied to any image x in a dataset X , and cause a tar-

geted misclassification in a model f , regardless of the scale,

orientation or location of the patch.

Given a patch p, an image x ∈ X , a target class ŷ, a

sampled location in the location space of images l ∈ L, and

a transformation over a set of transformations t ∈ T , an

operator A(p, x, l, t) is defined that re-scales and rotates a

patch and is then applied to an image at a location l. The

attacker updates the patch iteratively by optimizing the ob-

jective function:

p̂ = argmax
p

Ex∼X,t∼T,l∼L[log Pr(ŷ|A(p, x, l, t)]

By optimizing over the Expectation over Transforma-

tion [2], a patch is found that remains adversarial regardless

of scale, location or orientation.

Experimental results are reported on a patch crafted over

an ensemble of ImageNet classifiers (Inception-V3, ResNet-

50, Xception, VGG-16, and VGG-19), single models, and

in black-box attacks - where the patch is trained on four

models and results reported on the fifth. With a patch size

of 10% of the image, over 90% of images were successfully

misclassified as the patch target class. We re-implemented

the authors work and were successfully in replicating these

results, an example of an “Adversarial Patch” is shown in

Figure 1.

2.2. LaVAN

LaVAN takes a different approach to Adversarial Patch,

computing an adversarial perturbation that is dependent on

the chosen location and the image under attack 1. The La-

VAN attack takes as input: a confidence threshold κ, a mask

m ∈ {0, 1}n, an image x ∈ X , a model f , and a target class

ŷ. At each iteration, the attacker updates the perturbation by

the following method:

1. Apply the current perturbation to the image:

(1−m)⊙ x+m⊙ p,

where ⊙ is element-wise multiplication.

2. Find the target class output, f(x)|ŷ and the clean image

source classification f(x)|y .

3. Update the perturbation by:

−ǫ · (
∂f(x)|ŷ

∂x
−

∂f(x)|y
∂x

)

The attack is terminated when f(x)|ŷ ≥ κ.

The authors reported that when attacking the Inception-

V3 model on 100 ImageNet images, and restricting pertur-

bations to be 2% of the total image size, they were success-

ful at causing a targeted misclassification in 79% of 110

configurations tested, when κ is equivalent to 90%. We

re-implemented the authors work and were successfully in

replicating these results. However, we found attacks were

more successful when removing the ǫ multiplier in step (3)

since gradient values are already orders of magnitude smaller

than the acceptable input range of the classifier, thus in fur-

ther experiments we update the perturbation omitting the ǫ
coefficient:

−(
∂f(x)|ŷ

∂x
−

∂f(x)|y
∂x

)

The authors also stop the attack after 10,000 iterations

or when the confidence threshold is met. We introduce an

early stopping criteria - terminating the attack if the objective

function fails to decrease. We found this improved the speed

of the attack by a factor of 10-20X without harming success.

Finally, LaVAN is not designed to create a universal

“patch” and thus, we were able to compute both non-targeted

and targeted attacks. Non-targeted attacks are equivalent to

targeted attacks, with the target class chosen to be the second

most likely class and with no specified confidence threshold.

3. Threat Model

We aim to defend against an attacker who has white-box

access to a target model, f , and can manipulate a subset of

pixels in an image x in a dataset X . We restrict the attacker

1The authors also discuss methods to make their approach transferable

across images, however we omit a full analysis of that here. The method is

almost identical to Adversarial Patch.
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to only manipulate pixels within a small region of the image

- the attacker may choose the location of the area, but may

not perturb pixels outside of this location.

We consider two attack settings for our defense: (1) the

attacker is not aware that a defense is being used (2) the

attacker is aware of the defense and crafts adversarial per-

turbations to avoid detection. In (1), we report results from

an attack that pre-constructs adversarial examples against an

undefended model, and apply these inputs to the defended

model, while in (2) the attack has access to the defense

while constructing the perturbations. This is similar to Ker-

choff’s principle in Cryptography, which states that a scheme

should be secure even if an attacker has full knowledge of

the scheme in use, but is not aware of the key, or in our case,

the hyperparameters of the defense.

4. Defenses

We wish to both detect and remove localized and visible

adversarial perturbations, simultaneously. The problem of

removing adversarial perturbations is closely aligned with

the problem of watermark removal, or sometimes referred

to as inpainting. In a classical inpainting problem, an image

has been corrupted through scratches or random noise and

the task is to restore the image and remove such noise. This

is exactly the same problem as defending against adversarial

perturbations - we have a corrupted copy of an image and

wish to remove the noise and restore the image. Previous

work [3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23,

27, 29, 30, 31, 33, 38, 40] has attempted to defend against

classical adversarial examples, where the adversarial noise

is distributed over the entire image and is designed to remain

visually imperceptible. Unfortunately, these techniques have

been shown to degrade under attacks with knowledge of the

underlying defense [1, 7, 37]. However, our threat model

allows us to revisit proposed noise reduction defenses such

as inpainting since the adversarial perturbation is confined

to a small region of the image and provides a larger signal

than in non-localized attacks.

The inpainting problem can generally be classified into

two categories:

Non-blind. In non-blind image inpainting, the recon-

struction process is given the location of the areas to be

inpainted along with the corrupted image.

Blind. In blind image inpainting, the reconstruction

process is given only the noisy image. The areas to be

inpainted must be discovered before inpainting can be-

gin. Blind inpainting is a strictly more difficult problem

than non-blind inpainting.

While we anticipate the blind setting to be the most realistic,

we study defenses in both settings.

In both non-blind and blind settings, our aim is to con-

struct a pre-processing function h : Rw×h×c → R
w×h×c

such that argmax
i

f(h(x+ p))i = argmax
i

f(x)i, where p

is a localized and visible adversarial perturbation, x ∈ X
and f is the classifier under attack.

4.1. Non­blind

In the non-blind setting, the pre-processing step h, has

access to a mask m ∈ {0, 1}n that contains the location of

noise to be inpainted in addition to the adversarial example

x + p. There are many options for traditional non-blind

watermark removal, however our primary criteria for this

preprocessing step is that it is fast, and renders the adversarial

perturbation ineffective. Although original image fidelity

is certainly aligned with these criteria, it is not exactly the

same. We thus choose an inpainting method, developed by

Alexandru Telea [36], that is optimized for speed rather than

accurate inpainting.

The method works as follows: Define the region to be

inpainted as Ω and the boundary of the region as ∂Ω. Given

some point u on ∂Ω, take the ǫ-ball of the known image

around u, Bǫ(u) = {v ∈ x | ‖u− v‖p < ǫ, v /∈ Ω}. For

small ǫ, we consider a first-order approximation Iv(u) of the

image at point u, given the image I(v) and gradient ▽I(v)
at values of point v:

Iv(u) = I(v) + ▽I(v)(u− v)

The point u is inpainted by summing all points in Bǫ(u),
weighted by a normalized function w(u, v):

I(u) =

|Bǫ(u)|
∑

n=1
w(u, n)(I(n) + ▽I(n)(u− n))

|Bǫ(u)|
∑

n=1
w(u, v)

(✷)

To inpaint all of Ω, (✷) is iteratively applied to all un-

known points on ∂Ω in increasing distance from the starting

position, and then advances into Ω until Ω = ∅.

4.2. Blind

If the defense does not have access to a mask giving the

location of the perturbation, it must first find the areas that

contain the adversarial perturbations, before sanitization can

begin. To detect localized and visible adversarial pertur-

bations, we note that for such images, their saliency maps

generally have very dense clusters around the location of

the perturbation. This is because the classification of the

image is almost entirely influenced solely by this small area,

while in natural images, pixels that influence classification

are more sparsely distributed. We use this observation to
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Figure 2: A flow diagram of the steps to defend against a localized and visible adversarial perturbation in a blind setting. We

first find the saliency map of the image. The following two steps constructs a mask that is applied to the adversarial image,

blocking the adversarial perturbation.

Algorithm 1: Pseudocode for blind defense.

Input : image x,

classifier f ,

predicted label ŷ = argmax
y

f(x),

pixel threshold µ ∈ R,

contour area threshold φ ∈ R>0

Output : image x′

1 sal← Get saliency map of x with respect to ŷ;

2 for p ∈ sal do

3 p =

{

0, if p > µ

1, otherwise

4 end

5 sal′ ← ((sal ⊕B)⊖B)n, where n ∈ Z
+,

B :=

[

1 1
1 1

]

6 Find contiguous contours in sal′. If contour area

< φ, zero out.

7 m← ((sal′ ⊕B)⊖B)n

8 for p ∈ m do

9 p =

{

0, if p = 1

1, otherwise

10 end

11 x′ ← x⊙m
12 return x′

detect unnaturally dense regions that contribute to classifi-

cation, constructing a mask that covers these regions and so

remove their influence on classification.

To create an overview of which areas of the image are

influencing classification, we construct a saliency map of

the image using the guided backpropagation method [34].

Simonyan et al. [32] use the gradient of the output class with

respect to the input image to construct a saliency map. When

backpropagating the influence signal through ReLU activa-

tion units, the signal is zero’d if the input in the forward pass

was below zero. In parallel, Zeiler & Fergus [39] construct a

similar saliency map but zero out the signal if it is negative

in the backwards pass, ignoring any information through the

ReLU unit in the forward pass. Guided backpropagation

combines both of these approaches, zeroing the influence

signal if either the forward or backward pass through a ReLU

unit is negative.

Once a saliency map for the input has been found, we

use a combination of erosion and dilation to remove small

“holes” 2. Finally, we find the contour area of positive

regions within the updated saliency map, and if the contour

area is below a threshold, we zero out this area. Finally, we

use the remaining positive regions of the saliency map as

locations to mask the adversarial image. The pseudo-code of

the defense is given in Algorithm 1, and a flow diagram from

adversarial example to benign example is shown in Figure 2.

5. Experimental Results

We compare our non-blind and blind defenses across a

number of ImageNet models: VGG-19, ResNet-101 and

Inception-V3, and the two proposed attacks: Adversarial

Patch and LaVAN. We re-implemented both attacks and ver-

ified we could replicate their results. All results are reported

on 400 randomly chosen images in the ImageNet validation

set.

For the LaVAN attack, we craft both non-targeted and

targeted adversarial examples. For a non-targeted attack,

we terminate when any misclassification is found, however

for targeted attacks we specify a target class and a target

threshold confidence score (κ) that must be met before the

attack is stopped. Since Adversarial Patch finds a universal

adversarial perturbation, we only study targeted attacks. For

each image under a LaVAN targeted attack, we randomly

chose a target class, whereas for Adversarial Patch we chose

a target of the toaster class and the golf ball class. A robust

defense must both remove adversarial perturbations from

adversarial images and not affect the classification of clean

2 Erosion is denoted by ⊕ and is defined by:

U ⊕ V :=

⋃

v∈V

Uv

Dilation is denoted by ⊖ and is defined by:

U ⊖ V :=

⋂

v∈V

U−v

Where U, V ∈ Z
{0,1} and Uv denotes the translation of U by v.
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Table 1: Results for non-blind defense.

VGG-19 RESNET-101 INCEPTION-V3

Attack
Type κ

Perturbation
(%)

Advesarial
Accuracy

Reconstructed
Accuracy Time (s)

Advesarial
Accuracy

Reconstructed
Accuracy Time (s)

Advesarial
Accuracy

Reconstructed
Accuracy Time (s)

LAVAN

Non-targeted -

2 0.970 0.990 0.006 0.875 0.986 0.006 0.818 0.985 0.011

5 0.995 0.935 0.010 0.988 0.947 0.010 0.983 0.959 0.016

10 1.000 0.880 0.015 1.000 0.902 0.015 0.998 0.910 0.025

25 1.000 0.685 0.030 1.000 0.690 0.030 1.000 0.715 0.053

Targeted

0.90

2 0.714 0.992 0.007 0.675 0.981 0.006 0.575 0.978 0.011

5 0.882 0.934 0.010 0.940 0.944 0.010 0.907 0.956 0.016

10 0.998 0.880 0.015 0.988 0.901 0.015 0.990 0.909 0.025

25 1.000 0.685 0.031 1.000 0.690 0.031 1.000 0.715 0.053

0.99

2 0.543 0.992 0.007 0.675 0.981 0.007 0.573 0.983 0.010

5 0.889 0.934 0.010 0.938 0.947 0.010 0.900 0.956 0.016

10 0.998 0.880 0.015 0.993 0.902 0.015 0.985 0.909 0.026

25 1.000 0.685 0.030 1.000 0.690 0.030 1.000 0.715 0.053

ADVERSARIAL PATCH

(TOASTER) Targeted

0.90

2 0.551 0.971 0.005 0.296 0.923 0.006 0.198 1.000 0.009

5 0.684 0.921 0.009 0.556 0.910 0.013 0.678 0.953 0.016

10 0.910 0.887 0.017 0.882 0.751 0.018 0.804 0.896 0.020

25 1.000 0.662 0.033 1.000 0.589 0.029 1.000 0.606 0.040

0.99

2 0.210 0.971 0.007 0.138 0.875 0.006 0.099 1.000 0.010

5 0.652 0.926 0.010 0.436 0.923 0.015 0.662 0.950 0.019

10 0.765 0.893 0.020 0.690 0.907 0.022 0.872 0.893 0.031

25 0.934 0.701 0.041 0.901 0.454 0.045 0.918 0.664 0.060

ADVERSARIAL PATCH

(GOLF BALL) Targeted

0.90

2 0.384 0.970 0.005 0.226 0.923 0.006 0.298 0.978 0.010

5 0.614 0.881 0.009 0.446 0.853 0.053 0.568 0.900 0.018

10 0.933 0.809 0.021 0.910 0.781 0.019 0.844 0.922 0.028

25 1.000 0.600 0.032 1.000 0.442 0.031 1.000 0.589 0.045

0.99

2 0.301 0.932 0.009 0.111 0.772 0.006 0.109 1.000 0.012

5 0.714 0.902 0.018 0.331 0.771 0.014 0.699 0.901 0.019

10 0.785 0.838 0.026 0.678 0.619 0.029 0.888 0.800 0.031

25 0.935 0.709 0.044 0.943 0.578 0.045 0.957 0.445 0.060

Table 2: Results for blind defense on VGG-19.

Attack
Type κ

Perturbation
(%)

Adversarial
Accuracy

Reconstructed
Accuracy Time (s)

LAVAN

Non-targeted -

2 0.995 0.630 0.314

5 1.000 0.403 0.313

10 1.000 0.301 0.311

25 1.000 0.136 0.309

Targeted

0.90

2 0.711 0.980 0.190

5 0.827 0.934 0.248

10 0.968 0.672 0.340

25 0.995 0.153 0.338

0.99

2 0.453 0.935 0.347

5 0.805 0.884 0.327

10 0.968 0.639 0.244

25 0.995 0.129 0.195

ADVERSARIAL PATCH

(TOASTER) Targeted

0.90

2 0.551 0.959 0.382

5 0.684 0.761 0.371

10 0.910 0.538 0.389

25 1.000 0.090 0.299

0.99

2 0.210 0.957 0.297

5 0.652 0.881 0.365

10 0.765 0.422 0.320

25 0.934 0.062 0.041

images. Our non-blind defense leaves clean images unaf-

fected since the defense has access to a mask with locations

of perturbations, which will be empty in this case. Our blind

defense, currently misclassifies 12% of clean images. For

example, this reduces VGG-19 top-1 accuracy from 74.2%

to 65.4%, which is approximately equivalent to VGG-11 top-

1 accuracy. Our blind defense may also be combined with

other detection mechanisms in the future, a problem that is

strictly easier than simultaneous detection and removal.

In both non-blind and blind experiments we report: attack

type - targeted or non-targeted, κ, adversarial accuracy -

the fraction of adversarial images that were successful in

fooling the classifier, reconstructed accuracy - the fraction

of successfully defended adversarial images, and time - the

average time to remove the adversarial perturbation from the

image.

5.1. Non­blind

Table 1 gives the adversarial success of both Adversarial

Patch and LaVAN, and the reconstruction success of our

non-blind defense against the attacks. For both attacks we

vary the area that the localized adversarial perturbation can

cover from 2% to 25% of the image.

Both attacks are overwhelmingly successful even for very

small areas, however this also results in an easier reconstruc-

tion task since fewer pixels need to be inpainted. However,

we can still successfully remove the adversarial perturba-

tions in over 68% of images when the perturbation covers a

quarter of the image. The average time taken to reconstruct

the image is also negligible, e.g. 6ms for a perturbation size

of 2% on VGG-19.

5.2. Blind

Table 2 gives the adversarial success of both LaVAN

and Adversarial Patch, and the reconstruction success of

our blind defense against the attacks. For both attacks we

vary the size of the localized adversarial perturbation from
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Table 3: Results for improved LaVAN attack on blind de-

fense on VGG-19.

κ
Bounding Area

(%)
Perturbation

(%)
Advesarial
Accuracy

Reconstructed
Accuracy Time (s)

0.90

2 2 0.711 0.980 0.190

5 2 0.708 0.912 0.188

10 2 0.723 0.733 0.192

25 2 0.741 0.299 0.199

100 2 0.805 0.046 0.173

2%-25% of the image.

Compared to the non-blind setting, the defense is weaker

and slower, however we still achieve strong results for small

perturbations; successfully removing the adversarial pertur-

bations in 95% of targeted LaVAN and Adversarial Patch

attacks when the perturbation covers 2% of the image. For

the LaVAN non-targeted attack we successfully remove 63%

of adversarial examples for a 2% perturbation. Interestingly,

since our defense relies upon strong gradient signals, it is

more difficult to defend against weaker attacks such as the

non-targeted attacks that terminate as soon as a misclassifi-

cation is found, while our defense is resilient against strong

attacks. As reported by Karmon et al. [20], we found Adver-

sarial Patch generally performs worse than LaVAN in terms

of adversarial example success. This is because Brown et

al. [5] focused on constructing perturbations that succeed

against black-box models and that can be physically printed

out.

5.3. Bypassing the defense

The evaluated defenses have so far assumed that the at-

tacker did not have direct access to the defense when con-

structing the adversarial perturbations. However, recent

work [1, 7, 37] have shown many defenses can be trivially

bypassed if incorporated into the attack pipeline. Thus, we

now evaluate an attack that constructs perturbations against

a model using the blind defense. However, we do not reveal

the hyperparameters used in the defense, such as the contour

threshold area. Instead, they are empirically estimated by

the attacker during the attack. We show that an attacker

can estimate sensitive defense attributes and thus bypass the

defense.

An attacker who simply applies the same targeted attack

to the defended model will not be successful in crafting

adversarial perturbations, given some confidence threshold

κ. As soon as the perturbation triggers the contour area

threshold, the perturbation will be masked before being input

into the classifier, and so no further information will be

provided from which to optimize the attack. Experimentally,

we found this triggering to often occur well before the image

is classified as the adversaries target class. Indeed, as we can

see from Table 2, 63% of non-targeted adversarial examples

are successfully defended against for an area of 2% of the

image, while the difference between most confident and

second most confident class is very small.

To bypass the defense, the locations of adversarial pixels

must be sparse enough to bypass the erosion and dilation

processes, and so fall below the contour area threshold. We

define a pre-processing function: g : Rw×h×c → R
w×h×c

that removes dense areas of adversarial pixels in order to

bypass the defense. Essentially the attacker aims to construct

the inverse of the function h, such that when erosion, dila-

tion and contour filling is applied by h, the threshold is not

reached and will not be successfully masked.

Ideally, the attacker would like to maximize the minimum

neighbour distance between adversarial pixels. There are

many options for choosing pixels according to this criteria

such as Poisson-disk sampling or Halton sequences. How-

ever, we observed that choosing a set of pixels uniformly

at random and performing the inverse of the erosion and

dilation operations (commonly referred to as morphologi-

cal opening) to separate adversarial pixels, provided a good

approximation.

To construct this new attack, we include another hyperpa-

rameter, the bounding area the attacker can manipulate and

additionally, the percentage of pixels the attacker chooses to

manipulate. By removing clusters of pixels within this area

we can sparsify the adversarial pixels, as shown in Figure 3.

Table 3 shows the success of LaVAN modified under

this new approach; varying bounding areas and number of

adversarial pixels. For small bounding areas, we found that

the defense was able to resist this modified attack in general.

For example, with a bounding area of 5% of the image,

and modification of 2% of image pixels (restricted to be

contained in the bounding area) the adversarial success if

70.8%, which is almost identical to 71.1% in the unmodified

attack, while the reconstructed accuracy drops to only 91.2%.

However, if we increase the bounding area, and so increase

potential sparsity of adversarial pixels, the defense suffers

dramatically. Manipulating 2% of image pixels within a

bounding area of 25% reduces reconstruction success from

98.0% to 29.9%. In the most extreme case, if we allow

the attacker to modify 2% of pixels anywhere in the image,

both adversarial success improves (71.1% to 80.5%) and

reconstruction success deteriorates (98.0% to 4.6%).

6. Discussion, Limitations & Conclusion

We can trivially defeat the defense if we no longer restrict

adversarial pixels to be contained in a small area of an image.

The attacker can distribute the location of adversarial pixels,

removing the dense saliency regions that the defense relies

upon. This threat model is not altogether unrealistic, it is

unlikely that an attacker would be restricted to a bounding

area in a real attack. For example, an attacker modifying an

image to be sent to a Machine Learning as a Service model

will invariably have access to the entire image and so not

1715



(a) 2% (b) 5% (c) 10% (d) 25% (e) 100%

Figure 3: Each image has 2% adversarial pixels while we vary the bounding area. All were classified as the “Hare” class with

90% confidence by VGG-19, using the LaVAN attack.

limit themselves to a small area if they suspect a defense is

in use.

The defense is sufficient to defend against localized and

visible attacks in their current form, however we have shown

that granting some latitude to the attacker results in bypass-

able defenses. Motivating the need for further research on

how best to defend against such attacks. One may again

consider exploiting the natural structures of images versus

the unnatural structure of adversarial perturbations. For ex-

ample, empirically we observed that nearly all salient figures

for ImageNet samples contained thin but continuous regions

that defined the most influential parts of the image, while our

modified attack produces a sparse noisy structure. However,

further research is needed to show this kind of reasoning

can be extrapolated to defend against localized and visible

adversarial perturbations in other domains.

References

[1] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a

false sense of security: Circumventing defenses to adversarial exam-

ples. arXiv preprint arXiv:1802.00420, 2018. 3, 6

[2] A. Athalye and I. Sutskever. Synthesizing robust adversarial examples.

arXiv preprint arXiv:1707.07397, 2017. 2

[3] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and

A. Criminisi. Measuring neural net robustness with constraints. In

Advances in neural information processing systems, pages 2613–2621,

2016. 3

[4] A. N. Bhagoji, D. Cullina, and P. Mittal. Dimensionality reduction

as a defense against evasion attacks on machine learning classifiers.

arXiv preprint arXiv:1704.02654, 2017. 3

[5] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer. Adversarial

patch. arXiv preprint arXiv:1712.09665, 2017. 1, 6

[6] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow. Thermometer

encoding: One hot way to resist adversarial examples. In International

Conference on Learning Representations, 2018. 3

[7] N. Carlini and D. Wagner. Adversarial examples are not easily de-

tected: Bypassing ten detection methods. In Proceedings of the 10th

ACM Workshop on Artificial Intelligence and Security, pages 3–14.

ACM, 2017. 3, 6

[8] N. Carlini and D. Wagner. Towards evaluating the robustness of neural

networks. In Security and Privacy (SP), 2017 IEEE Symposium on,

pages 39–57. IEEE, 2017. 1

[9] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh. Ead: elastic-

net attacks to deep neural networks via adversarial examples. arXiv

preprint arXiv:1709.04114, 2017. 1

[10] G. S. Dhillon, K. Azizzadenesheli, J. D. Bernstein, J. Kossaifi,

A. Khanna, Z. C. Lipton, and A. Anandkumar. Stochastic activation

pruning for robust adversarial defense. In International Conference

on Learning Representations, 2018. 3

[11] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner. Detecting

adversarial samples from artifacts. arXiv preprint arXiv:1703.00410,

2017. 3

[12] Z. Gong, W. Wang, and W.-S. Ku. Adversarial and clean data are not

twins. arXiv preprint arXiv:1704.04960, 2017. 3

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572, 2014. 1

[14] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel.

On the (statistical) detection of adversarial examples. arXiv preprint

arXiv:1702.06280, 2017. 3

[15] S. Gu and L. Rigazio. Towards deep neural network architectures

robust to adversarial examples. arXiv preprint arXiv:1412.5068, 2014.

3

[16] C. Guo, M. Rana, M. Cissé, and L. van der Maaten. Counter-

ing adversarial images using input transformations. arXiv preprint

arXiv:1711.00117, 2017. 3

[17] D. Hendrycks and K. Gimpel. Early methods for detecting adversarial

images. 2017. 3

[18] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári. Learning with

a strong adversary. arXiv preprint arXiv:1511.03034, 2015. 3

[19] J. Jin, A. Dundar, and E. Culurciello. Robust convolutional neural

networks under adversarial noise. arXiv preprint arXiv:1511.06306,

2015. 3

[20] D. Karmon, D. Zoran, and Y. Goldberg. Lavan: Localized and visible

adversarial noise. arXiv preprint arXiv:1801.02608, 2018. 1, 6

[21] X. Li and F. Li. Adversarial examples detection in deep networks

with convolutional filter statistics. CoRR, abs/1612.07767, 7, 2016. 3

[22] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang. Detecting

adversarial examples in deep networks with adaptive noise reduction.

arXiv preprint arXiv:1705.08378, 2017. 3

[23] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema,

G. Schoenebeck, M. E. Houle, D. Song, and J. Bailey. Character-

izing adversarial subspaces using local intrinsic dimensionality. In

International Conference on Learning Representations, 2018. 3

[24] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards

deep learning models resistant to adversarial attacks. arXiv preprint

arXiv:1706.06083, 2017. 1

1716



[25] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a

simple and accurate method to fool deep neural networks. In Pro-

ceedings of 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), number EPFL-CONF-218057, 2016. 1

[26] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and

A. Swami. The limitations of deep learning in adversarial settings. In

Security and Privacy (EuroS&P), 2016 IEEE European Symposium

on, pages 372–387. IEEE, 2016. 1

[27] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation

as a defense to adversarial perturbations against deep neural networks.

In Security and Privacy (SP), 2016 IEEE Symposium on, pages 582–

597. IEEE, 2016. 3

[28] E. Quiring, D. Arp, and K. Rieck. Fraternal twins: Unifying at-

tacks on machine learning and digital watermarking. arXiv preprint

arXiv:1703.05561, 2017. 1

[29] A. Rozsa, E. M. Rudd, and T. E. Boult. Adversarial diversity and

hard positive generation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages 25–32,

2016. 3

[30] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-GAN: Pro-

tecting classifiers against adversarial attacks using generative models.

In International Conference on Learning Representations, 2018. 3

[31] U. Shaham, Y. Yamada, and S. Negahban. Understanding adversar-

ial training: Increasing local stability of neural nets through robust

optimization. arXiv preprint arXiv:1511.05432, 2015. 3

[32] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolu-

tional networks: Visualising image classification models and saliency

maps. arXiv preprint arXiv:1312.6034, 2013. 4

[33] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman. Pixelde-

fend: Leveraging generative models to understand and defend against

adversarial examples. In International Conference on Learning Rep-

resentations, 2018. 3

[34] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller.

Striving for simplicity: The all convolutional net. arXiv preprint

arXiv:1412.6806, 2014. 4

[35] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low, and R. Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013. 1

[36] A. Telea. An image inpainting technique based on the fast marching

method. Journal of graphics tools, 9(1):23–34, 2004. 3

[37] J. Uesato, B. O’Donoghue, A. v. d. Oord, and P. Kohli. Adversarial

risk and the dangers of evaluating against weak attacks. arXiv preprint

arXiv:1802.05666, 2018. 3, 6

[38] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille. Mitigating adver-

sarial effects through randomization. In International Conference on

Learning Representations, 2018. 3

[39] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-

tional networks. In European conference on computer vision, pages

818–833. Springer, 2014. 4

[40] S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving the ro-

bustness of deep neural networks via stability training. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 4480–4488, 2016. 3

1717


