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Abstract

Iris recognition systems are vulnerable to presentation

attacks where an adversary employs artifacts such as 2D

prints of the eye, plastic eyes, and cosmetic contact lenses

to obfuscate their own identity or to spoof the identity of

another subject. In this work, we design a Convolutional

Neural Network (CNN) architecture for presentation attack

detection, that is observed to have good cross-dataset gen-

eralization capability. The salient features of the proposed

approach include: (a) the use of the pre-normalized iris

rather than the normalized iris, thereby avoiding spatial in-

formation loss; (b) the tessellation of the iris region into

overlapping patches to enable data augmentation as well

as to learn features that are location agnostic; (c) fusion

of information across patches to enhance detection accu-

racy; (d) incorporating a “segmentation mask” in order

to automatically learn the relative importance of the pupil

and iris regions; (e) generation of a “heat map” that dis-

plays patch-wise presentation attack information, thereby

accounting for artifacts that may impact only a small por-

tion of the iris region. Experiments confirm the efficacy of

the proposed approach.

1. Introduction

Iris biometric systems exploit the textural nuances of the

iris in order to recognize individuals in an automated man-

ner [26]. Despite their increasing popularity, iris recog-

nition systems are vulnerable to presentation attacks [17,

3, 25]. A presentation attack (PA)1 occurs when an ad-

versarial user presents a fake or altered biometric sam-

ple to the sensor in order to spoof another user’s iden-

tity, obfuscate their own identity, or create a virtual iden-

tity. Developing a robust and accurate presentation attack

∗Corresponding Author
1Note that early literature on this topic often used the phrase spoof at-

tack in lieu of presentation attack.

detection (PAD) module is, therefore, essential to main-

tain system integrity. Many possible attacks have been

noted in the literature (Figure 1) based on printed iris im-

ages [15, 9], plastic, glass, or doll eyes [15, 28], cosmetic

contact lenses [15, 9, 23], replaying a video of an individ-

ual’s eye [3, 22], cadaver eyes [3, 19], robotic eyes [14],

holographic eye images [3, 19], or coercing an individual

to present their iris against their will [3, 19]. An ideal PAD

technique should be able to detect all of these PAs along

with any new or unknown PAs that may be developed in the

future. Although a number of iris PAs have been described,

current literature and publicly available datasets focus pri-

marily on three main PAs — printed images, plastic eyes,

and cosmetic contacts [28, 8, 16, 32, 33, 4, 6] — possibly

due to their ease of construction and affordability.

PAD methods can be divided into two overarching cat-

egories: hardware-based and software-based. Hardware

methods employ additional sensors or equipment, besides

the iris device itself, in order to detect a PA. Software meth-

ods, on the other hand, use the image and other related in-

formation acquired by the iris device in order to detect a

PA. Several hardware solutions have been proposed in the

literature. Pacut and Czajka [3, 19] used the pupil’s natu-

ral reaction to light stimulus to detect printed images, while

Connell et al. [2] used structured light to distinguish be-

tween the 3D shape of live irides and cosmetic contacts.

Both Lee et al. [15, 16] and Park and Kang [20] examined

the differences between the reflected light of live and PA

samples under multiple bands of near-infrared (NIR) light.

Komogortsev et al. [14, 25] used eye tracking hardware to

distinguish between the movements of a live eye and that of

a printed image.

A number of software-based methods have also been

proposed in the literature. Many researchers have investi-

gated the use of local texture descriptors — such as LBP,

LPQ, and BSIF — in conjunction with a Support Vector

Machine or other classifiers [9, 31, 22, 11, 6, 5, 13]. Image

quality features [8] and image frequency analysis [19] have

also been used to develop iris PAD schemes. Menotti et
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(a) Print (b) Plastic (c) Cosmetic Contacts

Figure 1: Examples of artifacts used to launch iris presentation attacks (PAs). We show here (a) printed images, (b) plastic

eyes, and (c) cosmetic contacts [12].

al. [18], He et al. [10], and Raghavendra et al. [23] trained

convolutional neural networks (CNNs) on iris images and

on patches from normalized iris images in order to develop

iris PAD solutions. While most of these methods resulted in

very high PA detection rates, they were primarily evaluated

in intra-dataset scenarios where training and testing were

based on the same types of PAs. Evaluation on sensors and

PAs that were not used in the training set showed a dramatic

decrease in detection accuracy [6, 31, 5, 23].

In this paper, we develop an iris PAD method that per-

forms well in both intra-dataset and cross-dataset scenarios.

It advances the state-of-the-art by considering the cross-

dataset evaluation scenario that has received very little at-

tention in the iris biometrics literature.

2. Proposed Method

In recent years, CNNs have achieved state-of-the-art per-

formance on many computer vision tasks, including biomet-

rics [29, 21]. Nonetheless, the literature on using CNNs for

iris PAD is relatively sparse [18, 10, 23]. Further, no anal-

ysis has been conducted to determine the generalizability

of these CNNs across different types of PAs and sensors.

Here, we discuss the design of our iris PAD CNN in order

to improve upon the existing work while also showing the

cross-dataset capabilities of CNNs.

2.1. Data Preprocessing

Iris datasets used in biometrics research typically con-

tain images that exhibit additional ocular details besides the

iris, as seen on the left of Figure 2. However, in some PAs,

such as cosmetic contacts, only the iris region will contain

the PA information; the rest of the ocular region is unlikely

to manifest any trace of the artifact. Therefore, we segment

and localize the iris region to reduce confounding ocular in-

formation. The USIT segmentation tool [24] was used to fa-

cilitate segmentation whenever needed in this work. Since

the iris size in an ocular image varies significantly within

and across datasets, we resize all cropped iris images to

Figure 2: An overview of the data preprocessing used in this

work. An ocular image (left) is cropped to the iris region

and resized to 300×300 pixels (middle) before 25 overlap-

ping patches of size 96×96 are extracted. This image con-

taining a cosmetic contact lens is taken from the NDCC13

dataset [4].

300×300 pixels, thereby offering a consistently sized in-

put to the learning algorithm. A size of 300×300 was cho-

sen so that the vast majority of images considered in this

work would be upsampled during resizing, as downsam-

pling causes potentially important information to be lost.

Finally, we tessellate the segmented and resized iris image

into 25 overlapping patches of size 96×96. The primary

reason for this tessellation is for data augmentation; many

of the iris PAD datasets do not contain sufficient number

of data samples to effectively train a deep network. Square

patches are used to capture local texture information with-

out having to make assumptions on the type of PA being

presented. We tested three different patch sizes — 48×48,

96×96, and 128×128 — and found that 96×96 patches

perform the best; see Section 4.3 for more details. The

patches overlap and, therefore, if important textural infor-

mation were to lie along the edge of one patch, they will

be fully contained in the adjacent patch. The whole pre-

processing pipeline is displayed in Figure 2. Finally, after

obtaining a PA score for each of the 25 patches, we employ

various fusion techniques, detailed in Section 2.3, to obtain

a single PA score for the iris.

Novelty with respect to other CNN-based schemes:
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Our preprocessing differs from that used for CNNs else-

where [18, 10, 23]. Menotti et al. input the full ocular im-

age into their CNN as they were only trying to identify pa-

per prints [18]. This, however, would not be appropriate for

identifying certain PAs, such as cosmetic contacts, which

only affect the iris region. He et al. [10] and Raghavendra et

al. [23] input patches of the normalized2 iris image to their

CNNs. In order to retain as much information in the data as

possible, we choose to input patches of the unnormalized

iris.

2.2. CNN Design Rationale

Our CNN design utilizes a set of eight convolutional lay-

ers, four max pooling layers, and a fully connected layer

with a ReLU non-linearity function following each convo-

lutional layer. The CNN takes as input a single iris patch,

as detailed in Section 2.1, and outputs a PA score. A PA

score is a number in the range [0, 1] with 1 indicating a high

confidence that the input contains a PA. A Euclidean loss

function was chosen to train this network instead of the tra-

ditional softmax loss since the former allows for the direct

calculation of confidence scores, rather than just generating

class labels. Furthermore, our preliminary tests indicated

that the Euclidean layer performed better than the softmax

layer. The CNN architecture can be seen in Figure 3. The

design of our CNN is inspired by the state-of-the-art VGG

net [27]. However, to account for the small size of the input

iris patch and the availability of limited training data, we

used a shallow version of the VGG net.

Our CNN model also judiciously accounts for the num-

ber of iris and pupil pixels present in the input patch. When

detecting iris presentation attacks, it is important to account

for this since we focus primarily on attacks that can spoof or

obfuscate the iris region. For instance, an adversary launch-

ing a printed iris attack may cut out the pupil region from the

printed iris and place the print in front of their eyes in order

to confound sensors that look for specular reflection in the

pupil region [25]. Similarly, attacks based on cosmetic con-

tacts may not obscure the pupil. Thus, pupil pixels seem

less likely to supply useful information for discriminating

PAs from live samples3. To accommodate this observation,

we added a second channel to our CNN’s input which we

refer to as a segmentation mask (segmask). We define a

segmask as a 2-dimensional matrix that is of the same size

as the input iris patch. For every pixel location that corre-

sponds to the iris region in the patch, the segmask contains

a value of +1, and for every pixel corresponding to a the

pupil region, the segmask contains a value of −1. For all

2Here, normalization refers to the unwrapping of the iris wherein it is

mapped from Cartesian coordinates to Pseudo-polar coordinates resulting

in a fixed-size rectangular entity.
3The term “live” is used to indicate that the iris being presented is real

and unmodified. In some literature, this is referred to as “bonafide”.

other pixels in the patch (e.g. sclera, eyelids, etc.) the seg-

mask contains a value of 0. By adding this segmask as a

second input channel, the CNN can learn the importance of

each region of the iris image automatically without intro-

ducing any additional human bias. An example segmask is

shown in Figure 3.

The key aspects of our CNN model are summarized

here: (1) The CNN takes iris patches as input rather than

the full iris or ocular image thereby facilitating data aug-

mentation during the training phase. (2) The input iris

patches are taken from the unnormalized iris image rather

than the normalized iris to avoid the downsampling that oc-

curs during iris normalization. (3) A single CNN is trained

on patches originating from all parts of the cropped iris im-

age, and, as such, the CNN does not attempt to learn lo-

cation artifacts but focuses on PA artifacts. (4) Domain-

specific knowledge is incorporated by accounting for the

number of iris and pupil pixels in an input patch through the

inclusion of segmentation masks in the input and through

defining patch-level fusion functions, as will be seen in Sec-

tion 2.3.

2.3. Fusion Techniques

As described in Section 2.1, each ocular image is tessel-

lated into 25 patches, and each one of these 25 patches pro-

duces its own score after passing through the CNN. How-

ever, a fusion method is needed in order to consolidate

the 25 scores and render a decision. One possible fusion

method is to take the average score, sav = 1
K

∑K

i=1 si,

where sav is the average score, si is the score of the ith

iris patch, and K is the total number of patches per image

(K = 25 in this case). Note that sav ∈ [0, 1], where 0
indicates a live sample and 1 indicates a PA.

As mentioned in Section 2.2, it is likely that the percent-

age of iris and pupil pixels in a patch will affect the PA

score. We designed two score fusion techniques based on

this intuition, the iris-only ratio (io) score and the iris-pupil

ratio (ip) score:

sio =

[(

1
∑K

i=1 ai

)

K
∑

i=1

[si][−1,+1] ∗ ai

]

[0,1]

, (1)

sip =

[(

1
∑K

i=1
ai

1+bi

)

K
∑

i=1

[si][−1,+1] ∗

(

ai

1 + bi

)

]

[0,1]

,

(2)

where, sio and sip are the iris-only ratio and iris-pupil ra-

tio scores, respectively, si is the score of the ith iris patch,

ai and bi are the proportion of iris pixels and the ratio of

pupil pixels in the ith patch, respectively, K is the total

number of patches per image, [·][−1,+1] is a function that

converts scores to a [−1,+1] range, and [·][0,1] is a function
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Figure 3: The CNN architecture used in this paper. Note that a ReLU layer follows each convolutional layer in this dia-

gram. The first input channel represents a patch of the iris image while the second input channel contains the associated

segmentation mask, as described in Section 2.2.

that converts scores to a [0, 1] range. During this computa-

tion, we first convert the scores to a [−1,+1] range so that

patches normally having a score of 0 will now have a score

of −1 and will be affected by the ratio of iris and pupil pix-

els. We divide by 1 + bi rather than bi itself to account for

those cases where bi = 0. This produces the iris-only (io)

score, which is a weighted average giving higher priority

to a patch’s score if it contains a larger proportion of iris

pixels, and the iris-pupil (ip) score, which is a weighted av-

erage giving higher priority to a patch’s score if it contains

more iris pixels and less priority if it contains more pupil

pixels. These fusion techniques do not directly take into

account the spatial location of the patch; rather they only

consider the proportion of iris or pupil contained in a patch.

2.4. Evaluation Metrics

We report the True Detection Rate (TDR) and False De-

tection Rate (FDR), as defined below:

TDR =
# Correctly classified PA images

Total # PA images
, (3)

FDR =
# Live images misclassified as PAs

Total # Live images
. (4)

3. Datasets

The proposed method was evaluated on three publicly

available datasets: the LivDet-Iris 2015 Warsaw dataset, the

CASIA-Iris-Fake dataset, and the BERC-Iris-Fake dataset.

Since segmentation information was not provided with all

these datasets, we used automatic segmentation software to

locate the irides and pupils in the images. Whenever the

software failed to locate the iris and pupil within an image,

it was removed from the dataset.4 Table 1 summarizes the

4We chose to discard these images, rather than manually segment them,

in order to have a fully automated PAD system. Future work will handle

number of images that were originally available in each of

these datasets and the number that remained after excluding

those images which were not segmented. When training the

CNNs, the training partition of each dataset was first bal-

anced to ensure an equal number of live and PA samples;

this was accomplished by randomly removing an appropri-

ate number of training samples from the larger class. The

rest of this section gives further details on each dataset.

3.1. LivDetIris 2015 Warsaw Dataset

(a) Live (b) Print

Figure 4: Example images from the LivDet-Iris 2015 War-

saw dataset.

The LivDet-Iris 2015 dataset was developed for the 2015

Iris Liveness Detection Competition [33]. The Warsaw sub-

set used in this work contains images of both live irides and

printed PAs. Note that the authors of this dataset claim that

it should contain 852 live images and 815 printed images

for training [33]; however, due to an error during data ac-

quisition, we only gained access to 603 live and 582 printed

images from this set. Since the missing images were not ac-

quired at the time of writing this paper, we trained only on

a subset of the LivDet-Iris Warsaw 2015 dataset. Example

images from this dataset can be seen in Figure 4.
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Table 1: Summary of the datasets used in the paper along with the number of images in each dataset, the number of images

on which automatic segmentation failed and the number of images remaining after those with failures were removed. Images

are divided into live samples and the three addressed PAs: printed images, plastic eyeballs, and cosmetic contacts (CC).

Training Testing

Live Print Plastic CC Live Print Plastic CC

LivDetW15

Original 603 582 - - 2002 3890 - -

Seg Fails 0 0 - - 30 2 - -

Remaining 603 582 - - 1972 3888 - -

CASIA-IF

Original 4800 512 320 592 1200 128 80 148

Seg Fails 153 3 0 163 39 0 0 19

Remaining 4647 509 320 429 1161 128 80 129

BERC-IF

Original 2258 1280 40 100 520 320 40 40

Seg Fails 609 683 9 53 194 209 20 29

Remaining 1649 597 31 47 326 111 20 11

(a) Live (b) Print (c) Plastic (d) Contact

Figure 5: Example images from the CASIA-Iris-Fake

dataset.

3.2. CASIAIrisFake Dataset

The CASIA-Iris-Fake dataset [28] is another dataset that

has been used for iris PAD evaluation. In contrast to the

LivDet Warsaw set, which only contains the printed iris PA,

the CASIA-Iris-Fake contains three of the most commonly

discussed PAs in the literature: printed, plastic, and cos-

metic contacts. Note that CASIA does not provide separate

train and test partitions; rather, all the images are grouped

together in a single partition. Therefore, we partitioned the

dataset ourselves into training and testing subsets. Since

subject information was not provided, we used visual in-

spection of images and corresponding file names to do our

best in ensuring that subjects in the training and test sets

were mutually exclusive. Also, the images in this dataset

were already pre-cropped to the iris region. Example im-

ages from this dataset can be seen in Figure 5.

3.3. BERCIrisFake Dataset

The BERC-Iris-Fake dataset [15, 16] also contains three

of the most commonly used PAs in the literature — printed,

plastic, and cosmetic contacts — making it useful for iris

PAD evaluation. This dataset is unique for two reasons.

First, rather than providing images captured at only a sin-

gle NIR wavelength, the BERC dataset provides images at

these discarded images in an automated fashion.

(a) Live (b) Print (c) Plastic (d) Contact

Figure 6: Example images from the BERC-Iris-Fake

dataset.

two separate wavelengths: 750nm and 850nm; we pool the

images from these two spectral bands into a single set. Sec-

ond, this dataset it has two separate types of print attacks:

those created using an inkjet printer and those created using

a laserjet printer; we pool these two sets of images into one

set as well. This dataset also provides an additional chal-

lenge in that its images appear to be preprocessed. Visual

inspection shows that all the printed and contact PAs have a

black circle placed over the pupil to mask both the pupil and

any specular reflections that may have otherwise been seen

in the pupil region. Furthermore, a transparent black circle

with a synthesized specular reflection has been placed over

the pupil of about half of the plastic PA images. Finally, this

dataset does not have separate training and testing subsets,

so we partitioned the data ourselves using the same proce-

dure as for the CASIA-Iris-Fake dataset. Example images

from this dataset can be seen in Figure 6.

4. Results

We trained a CNN on each dataset separately5 using

the MatConvNet toolkit [30], experimenting with differ-

ent batch sizes and learning rates to optimize performance.

When a dataset contained multiple PAs (i.e., CASIA and

5This resulted in three CNNs, which we refer to as LivDet-CNN,

CASIA-CNN and BERC-CNN in this paper. Note that each CNN was

trained using only the training partition of the corresponding dataset.
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BERC), we trained a single CNN on all PA types to increase

the model’s generalizability across PA types. We also bal-

anced the number of live and PA samples during training.

During testing, however, we evaluated the performance of

each PA type separately to obtain more insight into the per-

formance of our CNN on each type of PA.6

We report TDR values at a stringent FDR value of 0.2%,

using the iris-pupil ratio fusion technique as described in

Section 2.3. We chose this fusion technique as it pro-

duced better results than both the average score and the iris-

only ratio score on the LivDet and BERC datasets. On the

CASIA dataset, the average score performed the best and,

therefore, this score is reported on intra-dataset tests involv-

ing CASIA.

In the case of the BERC-CNN, we found that the au-

tomatic segmentation results on the training set were poor,

not being able to localize the iris and pupil as proficiently

compared to the other two datasets. This caused the CNN

trained with segmentation masks to perform worse than the

same CNN trained without segmentation masks. The re-

sults on BERC are, therefore, from the CNN without using

the segmask.

When a CNN is tested on the same dataset that it was

trained on, we call this an intra-dataset evaluation; when

the same CNN is evaluated on a dataset that is different from

what it was trained on, we call this a cross-dataset evalua-

tion. In all cases, subjects in the training and test sets are

mutually exclusive.

4.1. IntraDataset Results

Our intra-dataset results7 are shown in Table 2. The au-

thors of the Federico model [33] had access to the com-

plete LivDet-Iris 2015 training set, meaning they were able

to train on a larger dataset than we could. Nonetheless,

our model is able to achieve comparable results with the

current state-of-the-art, showing the efficacy of our model.

Furthermore, the authors of the BERC-H model [16] used

a hardware-based method to perfectly classify the BERC-

Iris-Fake dataset, relying on a sensor to capture images at

both 750nm and 850nm in order for their system to classify

it as live or spoof. We were able to replicate their accu-

racy without taking into account the multiple spectra, us-

ing a software-based solution. Our model, however, was

unable to reproduce the state-of-the-art for the CASIA-Iris-

Fake dataset at the stringent FDR of 0.2%, particularly fail-

ing at identifying cosmetic contacts. Upon analyzing the

CASIA dataset, we found that it exhibits a higher degree

of variability in the PA samples than the LivDet and BERC

6Testing was conducted only on the test partition of the corresponding

dataset.
7Note that we report results from training and testing only on those

images for which automatic segmentation was successful. We include an

asterisk next to the dataset name to indicate this.

datasets. In particular, it consisted of a large number of dif-

ferent cosmetic contact styles. We speculate that our CNN

model may have been too shallow to efficiently capture this

variability, causing the decreased performance on CASIA.

Table 2: The results of the proposed approach on each

dataset under intra-dataset conditions. We evaluated against

each PA type separately to get a better understanding of how

our CNNs work on each PA. The TDR@FDR= 0.2% is re-

ported for print, plastic, and cosmetic contact (CC) PAs.

Print Plastic CC

LivDetW15* 99.87% - -

CASIA-IF* 89.84% 95.00% 24.81%

BERC-IF* 100% 100% 100%

4.2. CrossDataset Results

In the literature, very little has been reported on the gen-

eralizability of iris PAD algorithms across PAs, sensors, or

datasets. A few authors have attempted cross-sensor testing

of their PAD algorithms [5, 23, 31]. These authors eval-

uated their models on datasets that used multiple sensor

brands. They trained their model on data from one sensor

and evaluated on data from the other sensors. Under these

scenarios, the TDR was often much lower than those seen

in intra-dataset conditions, and the FDR was much higher.

This highlights the difficulties in cross-sensor testing sce-

narios.

However, an even more difficult testing condition than

this is to perform cross-dataset testing. During cross-sensor

testing, one must primarily account for variations in cam-

eras, but during cross-dataset testing, one must account for

variations in the sensors, data acquisition environment, sub-

ject population, and PA generation procedures. This is re-

ferred to as dataset biases [7, 1]. This makes cross-dataset

testing a very difficult problem, and to the best of our

knowledge, cross-dataset evaluation has not been conducted

so far for iris PAD methods. Nonetheless, a real-world sce-

nario demands that iris PAD algorithms be able to operate

under the kind of variations seen in cross-dataset testing. To

perform cross-dataset evaluation, we took our best perform-

ing CNN from the intra-dataset testing scenario, viz., the

BERC-CNN, and tested it against the other two datasets.

The results can be seen in Table 3. This CNN achieved

high TDRs on both the LivDet-Iris Warsaw 2015 dataset

and the printed PAs of the CASIA-Iris-Fake dataset, return-

ing TDRs of 95.11% and 100%, respectively, at an FDR

of 0.2%. The model did not perform as well on the plastic

or contact PAs of the CASIA dataset, achieving TDRs of

43.75% and 9.30% respectively. This suggests that cross-

PA testing represents a very challenging scenario.
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4.3. Patch Size Analysis

In order to study the impact of patch size, we repeated

the above experiments, which use a patch size of 96×96,

with patch sizes of 48×48 and 128×128. We trained these

CNNs with batch normalization to improve convergence.

The results of the tests on the different patch sizes are

shown in Table 4. From this table, we can see that the

patch size of 96×96 provides the best results. The per-

formance increases when expanding the patch size from

48×48 to 96×96, possibly because the CNN has more in-

formation in a patch to generate a PA score. However,

when increasing the patch size from 96×96 to 128×128,

the number of weights needed to train the CNN increases

and the amount of data we have available to train the net-

work is likely too small, thereby decreasing the accuracy on

128×128 patches.

4.4. Feature Map Analysis

Table 3: The results of the proposed approach under

cross-dataset conditions when having trained on BERC-

Iris-Fake* and tested on the remaining two datasets. The

TDR@FDR= 0.2% is reported for print, plastic and cos-

metic contact (CC) PAs.

Test Set Print Plastic CC

LivDetW15* 95.11% - -

CASIA-IF* 100% 43.75% 9.30%

Table 4: Impact of varying patch sizes on iris PAD. The

TDR@FDR=0.2% is reported for CNNs trained on the

BERC-Iris-Fake* dataset.

Test Set PA Type 48x48 96x96 128x128

BERC-IF* Print 100% 100% 100%

BERC-IF* Plastic 100% 100% 50.00%

BERC-IF* CC 100% 100% 90.91%

LivDetW15* Print 68.03% 95.11% 75.03%

CASIA-IF* Print 49.22% 100% 0.00%

To gain a better understanding of what our CNN mod-

els learned, we analyzed the intermediate representations

of image patches as they passed through the CNN. We

looked at our best performing model, the CNN trained on

the BERC dataset, and viewed the outputs (feature maps)

of the 1st, 3rd, 5th, and 7th convolutional layers. Exem-

plar feature maps for a PA sample can be found in Figure 7,

while those for a live sample can be seen in Figure 8. An

analysis of these images reveals that the first few layers of

the CNN work as edge detectors, emphasizing edges formed

by both the iris texture and by the low resolution of the PA.

Input

Conv 1 Conv 3 Conv 5 Conv 7

Figure 7: An image patch from a BERC cosmetic contact

PA sample, and the feature maps that are generated as it

passes through the 1st, 3rd, 5th and 7th convolutional layers

of the CNN trained on the BERC dataset.

Input

Conv 1 Conv 3 Conv 5 Conv 7

Figure 8: An image patch of a live iris image from the

BERC dataset, and the feature maps that are generated as

it passes through the 1st, 3rd, 5th and 7th convolutional lay-

ers of the CNN trained on the BERC dataset.

In particular, the outputs of the 1st and 3rd convolutional

layers for the PA sample reveal a fine-grained grid pattern

due to the pixelation in the cosmetic contact lens. These

pixelations get smoothened out later in the CNN such that

by the 7th convolutional layer, the output feature maps ex-

hibit only small variations in intensity. For the live samples,

however, a strong grid pattern is not seen in the first few fea-

ture maps. This leads the CNN to exhibit large variations in

image intensity in the feature maps corresponding to the 7th

layer, allowing the live samples to be discriminated from

PAs. This analysis suggests that our model should do well

at identifying PAs whose iris details are of lower resolution.

Conversely, when a PA sample has a higher resolution and

the inherent pixelation is not evident in the resulting image,

our model is not as likely to do well in PA detection.

4.5. Failure Case Analysis

To better understand our CNN trained models, we visu-

ally analyzed the misclassified images by the BERC CNN

on the cross-dataset experiments. We generated heatmaps

for each image, where the intensity of a pixel in this

heatmap corresponded to the average PA score of all patches

embodying that pixel. These heatmaps allowed us to better
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(a) LivDetW15 Live: 0.65 (b) CASIA Live: 0.57

(c) LivDetW15 Print: 0.56 (d) CASIA Plastic: 0.40

Figure 9: Images misclassified by the CNN trained on

BERC. The corresponding heatmaps, ground truth classifi-

cation labels, and PA scores are also shown. Thresholds of

0.64 for testing on LivDet and 0.57 for testing on CASIA

were used to obtain the desired FDR of 0.2%.

visualize the differences in PA detection accuracy across an

image. Example heatmaps can be seen in Figure 9. A few

observations can be made. First, we noticed that a large

number of errors in both live and PA images occurred when

there was a significant amount of glare. Since glare ob-

scures the underlying object’s texture, this artifact makes

PA classification much more difficult. We also noticed that

in some of the misclassified live images, such as the one

in Figure 9a, the texture of the iris was rather smooth, not

containing a lot of discriminative texture. The same can be

seen in some misclassified spoof images, like in Figure 9c,

where the PA sample has high contrast, making it difficult to

discern any texture. This is consistent with our feature map

analysis, suggesting that when neither the irregular texture

of a live iris nor the fine-grained grid pattern of PAs can be

identified by the CNN’s edge-detecting filters, the CNN is

unable to reliably classify the image.

5. Discussion

Upon analyzing the cross-dataset results, we see that the

proposed CNN was able to perform exceptionally well on

the LivDet-Iris Warsaw 2015 dataset and the printed PA

subset of the CASIA-Iris-Fake dataset. The CNN was able

to harness the power of deep learning to generate feature

extractors that generalize well across datasets. In addition,

because the BERC-Iris-Fake dataset contains images at two

different light spectra, we believe that the CNN was able

to extract more variations than that which naturally occurs
when training on only a single light spectrum. However,

the CNN did not perform well on plastic or contact PAs

from the CASIA dataset at an FDR of 0.2%. For plastic

PAs, this is likely because the BERC dataset only contains

31 plastic images for training, so it was unable to learn a

model strong enough to identify this PA in another dataset,

especially since the plastic eye images in the CASIA dataset

look much different than those used in BERC (compare Fig-

ure 5 and Figure 6). For the cosmetic contact PA [5], we

have already noted that the variations in the contacts in the

CASIA dataset are much higher than those in the BERC

dataset, accounting for a much lower TDR in both intra-

dataset and cross-dataset testing. Nonetheless, our proposed

model was able to establish state-of-the-art results in the do-

main of cross-dataset iris PAD testing.
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