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Abstract

The field of Image Forensic, and with it the notion of

image forgery and its detection, is widely studied in 2D im-

ages and videos. Since 3D cameras (cameras with depth

sensors) are becoming increasingly commonplace, it is of

importance to introduce the notion of forgery detection in

depth-images. In this paper, we present an introductory

study of forgery detection in depth-images. Specifically, we

show that noise statistics in depth-images can be exploited

for camera source identification, image forgery detection

and even depth reconstruction from noise.

1. Introduction

With the wide availability of image processing and ma-

nipulation software, tampering and abuse of images have

become abundant. Unfortunately, this gives rise to serious

consequences as images are often used as legal evidence, in

forensics investigations, in medical records, as news items

that reach millions of people, and on social media where

their influence is at times alarming. It is thus unsurprising

that the field of Image Forensic, and with it the notion of

image forgery and its detection, has become of significant

importance.

In recent years the use of low cost 3D cameras (cam-

eras with depth sensors) has increased tremendously. They

are already in use in medical applications, cinematography,

art production and most importantly security systems and

biometric based recognition systems. The output of these

cameras, which we term depth-images1 have become com-

monplace and are expected to be even more so now that 3D

cameras are integrated into cellular phones. The increased
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1We distinguish between depth-images, often referred to as 2.5D im-

ages, and 3D data often referred to as 3D cloud of points or 3D model of a

scene. We do not deal with the latter in this paper.

Figure 1. Forgery detection in depth-images - Which one is fake?

usage of depth images, raises serious concerns of authen-

ticity, and reliability of the data, especially in the context

of biometric screening and identification and reliability of

medical data and diagnosis. The notion of forgery detec-

tion in depth-images is novel and has yet to be seriously re-

searched and developed, however, its necessity in the near

future for security as well as for judicial issues, is clear.

The main goal of the paper is to introduce the idea of

forgery detection in 3D sensors (Figure 1) and present an

initial set of results and insights in this area. To the best of

our knowledge this is the first paper to deal with this issue.

2. Background

2.1. 2D image forgery and its detection

Image forgery detection and image authentication typi-

cally aim to find irregular characteristics of an image or an

unexpected footprint of the camera or acquisition device in

order to provide a reliable measure of suspected forgery. In

many cases the forgery detection algorithms are even able

to point out the suspected forged region within the image

and the forgery type. Image forgery in 2D images has been

widely studied. The various methods of 2D image forgery

detection, are often aimed at one of the following:

• Image authentication - in which evaluation is per-

formed to verify that no modification has been intro-

duced in the image. Output is a measure of authentic-

ity, often a binary output - authentic or not.
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• Image forgery detection - in which the goal is to de-

termine whether the original image has been manip-

ulated (copy-paste, cropping, tone manipulation and

more). Outcome typically includes the type of forgery

detected as well as the suspected image regions.

• Image signature and camera source identification -

in which the source of the image, namely, the specific

camera used to acquire the image is determined, or dis-

tinguished from other cameras.

A distinction is made between passive forgery detection

and detection based on actively embedding digital signa-

tures in the image in the form of Digital Watermarks [6].

In this study we focus on passive forgery detection that rely

only on the depth-image content iteself.

The passive approaches to image forgery detection fall

into 3 categories based on the assumptions they rely on:

1. Physical rules and models of the scene - Examples

include inconsistencies of object size, lighting direc-

tions, shadow inconsistencies, and reflection inconsis-

tencies.

2. Statistics of the source images - Either from raw pixel

data, DCT and Wavelet transform coefficients, mo-

ments, or local features such as SIFT and SURF.

3. Inherent characteristics of the camera - Such as lens

based detections, detection based on image sensors and

sensor noise and detection based on the camera’s im-

age processing pipeline.

For a general review of 2D image forgery detection tech-

niques see [16, 26, 9].

2.2. Depth imaging

In this research we discuss image forgery detection

methods that are specifically targeted towards depth-

images. This is a novel field of research and will most likely

become an important field as 3D consumer cameras become

popular and depth-images become ubiquitous.

2.3. Depth sensing by 3D cameras

The outputs of 3D cameras are typically videos or im-

age sequences where each frame is represented as a depth

image (often referred to as 2.5D images) with pixel values

indicating distance from the camera (see Figure 1). Simi-

lar to 2D cameras, 3D camera components include optics,

sensors and an imaging pipeline, however, these are tuned

to obtain depth data. Also included are additional compo-

nents, unique to depth sensing (such as IR projectors and

phase detectors). 3D cameras differ in the technology used

to acquire the depth-images (Figure 2):

a. b. . c.
Figure 2. Depth Sensing by 3D cameras. a) Passive stereo b) Struc-

tured light c) Time of Flight.

• Stereo imaging [29, 13] - a passive imaging system

comprised of two or more 2D cameras positioned

along a common baseline that simultaneously capture

two views of the scene. Following correspondence of

points between the two views, depth (distance from

camera baseline) can be computed.

• Structured light (Projected-light sensors) [11, 28] - an

IR pattern is projected onto the scene forming a unique

visual code for each surface point. The observed pat-

tern points are captured by a calibrated IR imaging sen-

sor. Correspondence between IR projector and IR sen-

sor is computed using stereo matching methods and tri-

angulation is used to compute the 3D position of each

surface point.

• Time of flight (ToF) [10, 15] - an IR wave is projected

onto the scene and an IR sensor captures the reflected

light wave. By measuring the difference between the

projected and reflected IR waves, the distance to points

in the scene can be computed.

2.4. Noise in depth-images

A central aspect of our study of depth-image forgery de-

tection relies on the noise inherent in the 3D camera out-

put. Noise and errors in depth-images are dependent on nu-

merous parameters including the acquisition method used

by the camera, the physical parameters of the camera (e.g.

baseline for stereo and structured imaging, the space and

time resolution of the phase modulating ray in the ToF cam-

eras and more), the analysis algorithms used in the pipeline

(correspondence methods, error correction, phase analysis

and more), as well as scene characteristics such as position

and depth of objects in the scene and scene lighting. We

a. b. c.
Figure 3. Illumination strength increases noise. a) Low illumina-

tion b) Medium illumination c) High illumination. (From [14]).
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a. b.
Figure 4. a) Axial noise shows radial pattern across flat surface, in-

creases quadratically with depth. b) Temporal noise in flat surface,

noise increases laterally and forms stripes. (From [24])

consider noise as arising from 4 sources:

Noise Inherent to the camera parameters -

Accuracy of the 3D data is dependent on physical parame-

ters of the cameras and thus affect the signal to noise of the

system’s output [11, 27]. Focal length, field of view, quality

of lenses, all contribute to these affects. Active depth mea-

surements are dependent on the quality of the IRED and its

projected IR light, including its intensity and collimation.

Camera specific parameters include baseline between cam-

eras for stereo based systems and camera to projector dis-

tance in structured light based systems. ToF based systems

are dependent on the modulation quality of the IR signal.

Noise Inherent to depth measuring methods -

Stereo and structured light rely on correspondences at

which points relatively accurate depth measurement is ob-

tained. Between these points, interpolation is used which

inherently introduces depth errors [11, 28]. Tof approaches

obtain depth measurements at every pixel location thus

avoiding interpolation errors, however they are inherently

prone to phase ambiguity and demodulation errors [15]

which result in erroneous depth estimates.

Noise due to scene characteristics -

Both scene illumination and object positioning within the

scene affect accuracy of depth estimation. 3D cameras do

not perform well under strong ambient illumination (Fig-

ure 3), specifically outdoor lighting. This is mainly due to

the fact that natural light contains IR components that in-

terfere with the camera’s IR source. Furthermore the cam-

era’s IR is typically of very low intensity and is overpow-

ered by the high intensity outdoor lighting [14, 18]. Inac-

curacy of estimated depth, often termed Axial Noise, has

been shown to increase quadratically with distance of ob-

jects in the scene from the camera [24, 8, 19, 25, 5]. It has

been suggested that this is due to the relation between dis-

a. b.

Figure 5. Shadow Noise. a) RGB image b) depth-image, shadow

can be seen on the top. (From [24])

a. b.
Figure 6. Noise is dependent on object color. a) RGB image b)

depth-image. (From [15]).

parity and depth in the stereo and structured light cameras

and to IR amplitude attenuation with distance in the ToF

based methods. Lateral Temporal Noise increases linearly

(in the x and y directions) and is very extreme at the edge

of the camera’s field of view possibly due to lens distor-

tion [24, 25, 5]. Furthermore several studies have shown

a radial ripple like noise that extends laterally (Figure 4a)

[24, 5]. Shadow and lateral noise increase at strong depth

edges (Figure 5) [20, 24, 30] possibly due to difficulty in

triangulation at these locations or due to erroneous reflected

light. Lateral noise appears in vertical stripe patterns (Fig-

ure 4b) [24, 5]. When object (or camera) motion is involved,

motion blur in 3D cameras results in depth over or underes-

timation near depth edges [23, 22].

Noise due to object characteristics - Studies show that

color and brightness of objects affect depth estimation (Fig-

ure 6) [8, 15] however others maintain that it does not [24].

Since materials differ in their IR absorption and thus affect

depth estimation [24], it is possible that the color of objects

is confounded with its material giving rise to the confusion.

3. Image forgery detection in depth-images

In this paper we aim to show that detection of forgery is

possible and viable in depth-images.

We consider the 3 classes of forgery detection: image

authentication, image forgery detection and source camera

identification (as described in Section 2.1) in the context

of depth-images. There are various approaches that can be

used for 3D forgery detection and of course one may fall

back to forgery detection in the 2D camera typically incor-

porated in the 3D camera system. In this study we chose

to focus on the statistics of depth-images as acquired by 3D

cameras. We restrict our analysis to consumer, low-cost and

readily available cameras, as these are more susceptible to

forgery attacks.

3.1. Noise based forgery detection

As mentioned above, noise patterns in 2D images, can be

considered a camera signature and is exploited to determine

source camera as well as to detect forgeries such as copy-

move. In this study, we too consider image noise, albeit in

depth-images. In contrast with 2D image forgery detection,

where spatial noise is exploited, we use temporal noise and
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a. b.
Figure 7. a) Depth response at a pixel acquired by KinectV2. b)

Histogram of noise at the pixel.

consider both lateral and axial noise (Section 2.4) in our

noise modeling.

Figure 7a shows the depth response at a target pixel ac-

quired by a KinectV2 [1] camera over 50 frames. We define

noise as the deviation from the mean depth response within

a period of time. Figure 7b shows the histogram of devi-

ations from the mean depth of the pixel for the given time

period. Noise magnitude is taken as the variance of the raw

depth values and noise variance is taken as the variance of

the absolute of deviation values. For the example in Fig-

ure 7, noise magnitude is µ = 0.15, and noise variance is

σ2 = 0.035.

3.1.1 Data Collection

For our forgery detection analysis, we collected a set of

noise measurements by placing a target board at a lattice

of positions varying in depth (z-value) between 120cm and

400cm at 40cm intervals and in horizontal positioning (x-

positions) at intervals of 40cm extending horizontally from

the center of the camera view field up to 280cm on either

side (at this stage we disregard vertical positioning). The

number of target locations was dependent on the field of

view of each camera. A schematic diagram of target po-

sitions is shown in Figure 8. At each target position, a 300

frame recording of the cardboard target was performed. The

target formed a region of at least 20x20 pixels in each of the

acquired images at a constant vertical position in all images.

Acquisition was performed under this setup using cameras

of 3 types: KinectV1 [2] (structured light), KinectV2 [1]

Figure 8. Map of target positions for data collection by KinectV2

(52 target positions).

a.

b.
Figure 9. a) Noise magnitude as a function of x position and depth

(z-pos). Noise increases with depth and with horizontal deviation

from center. b) Mean Noise as a function of x position (left) and

of depth (z-pos)(right).

(time of flight), ZED [3] (stereo). To exploit noise for

forgery detection, we collected noise statistics at each target

position, including: noise distribution (histogram), noise

mean and variance and higher order statistics of skew, and

kurtosis. These measures were normalized and concate-

nated to form the sample’s feature vector.

Similar to [24, 5], we found that noise magnitude in-

creased with depth and with increasing deviation from the

center along the horizontal position. Figure 9 shows the

noise magnitude as a function of depth (z pos) and as a

function of horizontal position (x-pos) relative to center. We

exploit these characteristics for forgery detection.

3.1.2 Source Camera Identification

We show that source camera identification can be performed

reasonably well from noise statistics. Noise measurement

data was collected, as described above, for three different

types of cameras: KinectV1 (structured light), KinectV2

(time of flight) and ZED (stereo). Per each type of camera,

several units were used to collect the data.

To exploit noise for source camera type detection, three

data clusters were defined, one for each camera type

(KinectV1,KinectV2, ZED) based on data collected from

one camera unit of each type. Testing was performed on

new inputs not used in the training data (new patches from

the same cameras and data from different cameras). Nearest

Neighbor was used to determine the source camera. Success

rates are shown in Table 1. It can be seen that Kinect-V2 are
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Camera Unit % Correct Camera

Type Identification

KinectV1 (unit #1) (Training) 90

KinectV2 (unit #1) (Training) 98

ZED (training) 96

KinectV1 (unit #2) 74

KinectV1 (unit #3) 75

KinectV2 (unit #2) 92

KinectV2 (unit #3) 95

Table 1. Camera Source Identification Results

very reliable in identifying source camera whereas it was

found that KinectV1 data is often confused as arising from

the ZED camera.

The high success rate is not surprising, given that the 3

types of cameras use different technologies each producing

unique noise signatures.

We also tested for source camera identification in the

wild. A collection of 6 depth-image sequences were col-

lected; 3 from home units and 3 randomly selected from

a public database [21]. Sequences were cropped to 300

frames. The sequences were analysed by randomly select-

ing 300 flat patches of size 20x20 and testing each for cam-

era source. The resulting camera source was determined as

the majority voting of the image patches. Table 2 shows the

results. All examples showed over 50% of the patches cor-

rectly identified the camera, implying correct camera source

identification for all sequences.

In the next test, we created 300 forged image sequences

by copying random patches of size 20x20x300 from a

source image sequence to a random position in the target

image of a different camera, within the target region (see ex-

ample in Figure 10). The target was then tested by scanning

over all overlapping image patches and determining source

camera. If the source was found to differ from the target

camera it was marked as forged, and an attempt was made

to detect the correct camera source. Results showed that for

all forged images, all patches that overlapped some portion

of the forged region were detected. However, in only 60%

of these cases, the correct source camera of the forged patch

Camera Source Correctly

Classified

KinectV1 [21] 92%

KinectV1 [21] 65 %

KinectV1 [21] 68 %

KinectV2 Apt - private Cam13 95 %

KinectV2 Studio - Private Cam2 87%

KinectV2 Studio - Private Cam11 86 %

KinectV2 Office - Private Cam15 97 %

Table 2. Camera Source Identification results in the wild

Figure 10. Forged image used for source target detection. A patch

was copied from a KinectV1 sequence into a KinnectV2 sequence,

(marked as square). Based on noise statistics, the forged area was

detected and correct source (KinectV1) was successfully deduced.

was determined. Most misses occurred when the overlap of

the patch with the forged region was less than 50%.

In order to test for detection of the specific source camera

unit, we tested the ability of distinguishing between specific

camera units in a set of 3 KinectV2 cameras. Noise data

was collected from 3 different KinectV2 cameras and unit

specific data clusters were learned. A collection of 30 ad-

ditional patches were collected using these 3 cameras and

their noise statistics were extracted and used to classify to

one of the camera units. Classification results were com-

pared with the true source camera. We find that only 40%

of the patches were able to correctly detect the specific cam-

era unit. This poor result is not surprising as the above re-

sults (Table 1) show that the noise statistics of a single cam-

era well defines the noise distribution of other cameras of

the same type. Thus, to be able to detect specific cameras,

we consider pixel points having ”extreme statistics” namely,

defective pixels, as described in the following section.

3.1.3 Defective Pixels

The sensor manufacturing process is such that pixels of a

CCD or CMOS sensor may be defected (termed hot pixels,

dead pixels or burnt pixels). In an early study [12], defects

of CCD pixels in 2D cameras were examined and used for

source camera identification. Similarly in [7], pixel defects

due to dust were exploited for camera source identification.

3D cameras show similar pixel defects which, here too

can be used to determine source camera identification as

well as copy-paste forgery. We considered 6 KinectV2 cam-

eras and tested for their defective pixels which were ex-

pressed as undefined valued pixels. Each camera showed

a unique and distinct pattern (Figure 11). To validate, a

collection of 1000 frames of depth-images were randomly

chosen from sequences acquired by the 6 cameras. Source

camera was correctly detected in 100% of the trials. How-

ever, since correcting for these defective pixels is easily per-

formed, this does not form a very reliable forgery detection

method.
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Figure 11. Every Kinect cameras unit shows a unique pattern of

defective pixels that produce constant zero-valued pixels.

3.1.4 Forgery detection

Copy-Paste forgery involves pasting an image region from a

source image into a given image. In depth-images this type

of forgery inherently copies the noise content of the region

as well. When forging a depth-image sequence, both spa-

tial and axial noise are copied. Another type of forgery is

the depth-change forgery where the depth map is altered to

create a forged image with the object or region at correct

xy position but at an altered depth (e.g. by constant shift

of z-values). In both types of forgeries we advocate that

forgery can be detected by determining that the noise asso-

ciated with the given depth is incorrect. To show this, we

take the test to extreme in the sense that we completely dis-

regard the given depth values and consider only the noise.

We show that depth and x-position can be estimated from

the noise alone up to a certain success rate.

A multi-class SVM classifier [17] was built based on

the noise data (feature vector per sample) collected from

a KinectV2 camera (as described in Section 3.1.1) with

depth (z-values) sampled at 30cm intervals between 140cm

and 350cm distance from camera and x-positions sampled

at 30cm intervals symmetrically about the the scene cen-

ter position. The classes represented all the sampled xz-

positions (81 classes). Forgery testing was performed on

2025 new test patches at all z-positions and all x-positions.

Per test patch, classification to the closest xz-value position

was calculated based on the patch noise statistics alone. Ta-

ble 3 shows the resulting success rate of detecting the cor-

rect xz-position. The average distance error (in cm) be-

tween the classified and correct xz-position are given as

well. Rows 2 and beyond reflect success rates when the

N-closest matches are considered and the closest of the set

is taken as the resulting x-z positions.

Correct x-z Avg z-value Avg x-pos

prediction error error

Closest match 73% 9.6cm 38.5cm

2-closest 92% 1.54cm 6.6cm

3-closest 97% 0.31cm 1.84cm

4-closest 99% 0.09cm 0.95cm

Table 3. Depth (z-value) and X-position prediction from noise.

Figure 12. A cascade of clusters used for camera source identifi-

cation, depth value prediction and x-position prediction.

Results show that when considering the 2 closest

matches, the correct x-z of a patch is detected at over 92%

success rate and a low average error of 1.5cm and 6.6 cm

for x and z distances respectively. The lower success rate of

73% for the closest match indicates that there is some con-

fusion between neighboring x-z positions (for the sampling

positions used in our experiment).

We further tested for combined camera source identi-

fication (Section 3.1.2) and xz-position detection. As in

Section 3.1.2, noise measurement data was collected in our

lab, from 3 camera types (KinectV1,KinectV2, ZED). Data

from a single camera unit of each type was used to learn

a cluster hierarchy as shown in Figure 12, containing three

data clusters, one for each camera type, subdivided into 6

subclusters associated with the possible z-values and fur-

ther subdivided into 9 clusters associated with x-positions.

Testing was performed on inputs collected from cameras

not used in the training data. Testing was performed in a

cascade: first, source camera was identified, then for the

successful detections, z-position was determined and for the

successful cases x-position was determined. Table 4 shows

the results.

KinectV2 KinectV1 ZED

Source Camera

Identification 98% 100% 90%

Depth Prediction

(z-value) 91% 90% 99%

X-position

Prediction 82% 99% 98%

Table 4. Camera Source Identification and x-z value prediction.

Classification is performed in a cascading manner.
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Figure 13. Frames from depth-image sequences of human motion

along a path.

3.1.5 Movement Path from Noise

As a further demonstration of the strength of noise analysis

for image authentication, we show that within the above ca-

pabilities of detection of x-z position from noise we are able

to reconstruct the motion path of a moving object (human)

using only the noise of the sequence.

Let Pi = [xi, zi], i = 1 . . . k denote the sequence of

positions along the path P . For each position i, we can de-

termine P̂i = (x̂i, ẑi), the most likely x,z position, from

its noise statistics by classification to one of the trained xz

clusters. However, classification is error prone (see Section

3.1.4). Thus to determine the path we incorporate the reli-

ability of the classification given as the negative loss func-

tion [4] as well as a smoothness of path term. The data term

is defined as:

D =

k∑

i

dist(Pi, P̂i) ∗ NegLossi

Where dist calculates the distance between 2 positions xz

(correcting for difference in units) and Neglossi is the neg-

ative loss in classifying Pi to P̂i. The smoothness term is

given by:

S =
k∑

i

[dist(Pi, Pi+1) − dist(Pi, Pi−1)]
2

The reconstructed path is then given by:

Pfinal = argminP {D + λ ∗ S}

where λ is a weighting scalar (good results were achieved

with λ = 103) .

We collected several sequences of a human moving in

the xz space as captured by a KinectV2 camera (Figure 13).

Figure 14. Reconstruction of human motion path from noise statis-

tics. The original path is in solid blue, the reconstructed path

dashed in red.

For several key positions along the path, 25-50 frames

were extracted and patches within the figure were manu-

ally cropped from which the noise statistics was collected.

The ground truth was determined as the average depth of

the collected data. The above procedure was then applied

to reconstruct the path. Although the subject was in mo-

tion, the small number of frames reduced motion blur ef-

fects enough so that together with the smoothness constraint

allowed the use of the original noise model collected in the

lab to be used with good path reconstruction results. Fig-

ure 14 shows an example of a motion path (solid blue) and

the reconstructed path (dashed red). The reconstruction er-

ror, measured as the average distance between positions of

the path P and positions of the reconstructed path Pfinal:

k∑

i

dist(Pfinal, P )

was found to be 10.66 cm. Original path length is 497.66

cm and reconstructed path length 484.62 cm. Figure 15

shows results for a collection of shorter paths performed by

Figure 15. Reconstruction of a collection of human motion paths

from noise statistics. The original path is in solid blue, the recon-

structed path dashed in red.
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the moving human. The average reconstruction error in this

case was found to be 14 cm.

4. Discussion

In this paper, we presented an introductory study of

forgery detection in depth-images acquired by 3D cameras.

In this study we focused on noise statistics in these im-

ages and exploited their characteristics for forgery detec-

tion. Specifically, we showed that noise statistics in depth-

images can be exploited for camera source identification.

Both in the lab and from data collected ”in the wild” we

showed that it is possible to determine the source camera

very reliably. When an image was forged by copy-pasting

patches from different image sources, we were able to re-

fute image authenticity and determine that the image con-

tained an invalid patch. However determining the correct

camera source of the forged region was successful only in

part. We further showed that beyond authenticity and cam-

era source identification, noise statistics allowed us to de-

termine whether the patch is forged and originated from a

different location. Specifically, we were able to determine

the correct 3D positioning (depth and x-position) of a patch

from its noise statistics alone. Success rates were high when

considering the second best position estimation. For single

best position success rate was lower implying some confu-

sion between neighboring x-z positions (for the sampling

positions of 30 cm used in our experiment). However, this

still enables the reconstruction of the motion path of a sub-

ject in the x-z space from the noise statistics alone. This im-

plies that copy-paste forgery of people in motion can be de-

tected in depth-images. We note that as in many 2D forgery

detection cases, here too, copy-pasting a patch to an x-z lo-

cation equivalent to the patch source location, will not be

detected using the approaches suggested here.2

Although, introductory, this paper aims to show that de-

tecting forgery in depth-images is indeed feasible. Further

studies will use learning tools to analyze noise statistics,

while taking into account additional factors such as scene

illumination, object color and material. In addition, we plan

to expand the number and types of cameras we are testing

as well considering additional bases for forgery detection.

Further studies of image forensic in this media is quickly

becoming a necessity, considering 3D sensors are becom-

ing increasingly commonplace, and issues of authenticity,

copyright, and forgery prevention will become inevitable.

2Referring back to Figure 1: the fake image is on the right - the depth

values for the human figure were manually decreased.
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