

Abstract

Deep neural networks perform better than traditional

machine learning methods on various classification

problems by producing good quality feature maps through

successive convolution operation(s). However, when

implementing a deep neural network in an embedded

system or SoC for mobile devices, its large parameter size

can be a significant burden on the internal memory design.

In this paper, we propose a new deep neural network that

reduces computation and the number of model parameters

but maintains reasonable performance. The configuration

of the proposed network is as follows: First, we propose a

macro unit (MU) to reduce heavy computations and to

learn various feature maps. Second, we employ asymmetric

convolution of the well-known Inception network to further

efficiently manipulate feature maps within the MU. Third,

all the feature maps produced from MU(s) of each layer are

concatenated and then the grouped feature map is

distributed to all the MUs of the next layer for transferring

richer information. Experimental results show that the

proposed network achieves about 10% higher performance

than DenseNet-BC in case of extremely small parameter

size for CIFAR-100. The proposed network also has very

few learning parameters and smaller floating point

operations per second (FLOPS) than the other networks

optimized for mobile devices such as MobileNet.

1. Introduction

Prior to the deep learning era, a lot of traditional machine

learning approaches have been developed for solving

various classification problems, and neural networks (NN)

were one of them. Recently, deep NN techniques [1-3] that

can be considered as a catalyst for this deep learning era

have been devised. The end-to-end learning optimizes all

processing steps simultaneously, and it leads to better

performance and smaller systems. Because of outstanding

performance beyond traditional machine learning

techniques, deep learning is expanding its scope to a variety

of applications, including computer vision, medical, and

architectural applications. AlexNet [4] is known as the most

famous convolutional NN (CNN) among early deep

learning methods. Next, competition to develop deeper and

better CNNs than AlexNet has become fierce, and so the

well-known visual geometry group (VGG) network was

born out of such competition [5]. However, since VGG,

many researchers have encountered limitations in

increasing network depth. He et al. caused sensation by

presenting ResNet [7], which enables a deeper structure of

the network using residual connections.

ResNeXt [8] and Xception [9] have also been proposed,

which effectively learns the feature map by focusing on the

convolution filter configuration rather than the feature map

connection. Recently DenseNet [10], which is a network

with differentiating connection methods between feature

maps, based on the existing ResNet became famous.

On the other hand, extensive size of learning parameters

and huge computational complexity make it difficult to

implement existing CNNs with embedded software or SoC

for mobile devices, drones, and social robots. To solve this

problem, CNNs focusing on sparcity connection aimed at

hardware-friendly structure have been developed [13, 14].

However, conventional CNNs, including [13] and [14],

still have significant computational complexity and

parameter size, making them cumbersome to implement.

The fundamental problem of CNNs in terms of

computational complexity and memory size is the use of

so-called group convolution (GConv) [4], which requires a

MUNet: Macro Unit-based Convolutional Neural network for Mobile Devices

Dae Ha Kim, Seung Hyun Lee and Byung Cheol Song

Inha University

Incheon, South Korea
kdhht5022@gmail.com, lsh910703@gmail.com, bcsong@inha.ac.kr

Figure 1: The main concept of the proposed method. Up:

Learning scheme of group convolution block. Down: Learning

scheme of proposed convolution block. Here WH , represent

the horizontal and vertical sizes of the feature map, respectively

and nC represents the number of channels.

1781

large number of convolution filters. When constructing

CNN with such group convolutions, it is advantageous to

obtain various feature maps in spite of simple convolution

structure. On the other hand, in the optimization process on

the high dimension space, GConv may have some degree of

redundancy. This causes unnecessary increase of parameter

size and computational complexity [26, 35].

To solve the above-mentioned problem, MobileNet [16]

and ShuffleNet [17] have adopted factorized convolution

such as depth-wise separable convolution [6]. Nonetheless,

the tradeoff between performance and parameter

size/computation is still an unresolved issue in the research

on CNN. The reason is that even if you use factorized

convolution, many filters per convolution operation are still

required. This can eventually lead to a redundancy in

learning high dimension feature map [31].

This paper proposes an efficient CNN structure that

shows satisfactory performance even with only a small

number of convolution filters. As shown in Fig. 1, learning a

feature map by dividing a single GConv block into multiple

macro units (MUs) is a key concept of the proposed network.

Each MU consists of much smaller number of convolution

filters than GConv block, and furthermore it adopts

separable convolution of Inception-V4 [15], which has

considerable advantages in terms of parameter size and

computation amount. Meanwhile, we propose a method to

simultaneously concatenate feature maps generated from

multiple MUs of each layer and distribute them to the next

layer, as shown in Fig. 2, so that a rich feature map can be

generated even with MUs composed of a small number of

convolution filters. Therefore, the proposed network can

learn sufficiently rich feature maps with relatively a small

number of convolution filters.

We verified the classification performance of the

proposed MU-based network (MUNet) on highly

competitive benchmarking datasets, i.e., CIFAR, SVHN,

and Tiny-ImageNet. For example, for CIFAR-100 dataset,

MUNet shows a performance improvement of up to 10% in

a small parameter region compared to the DenseNet-BC.

Also, in the reasonably similar error rate range, MUNet

exhibits more than 15 times less parameter size and fewer

FLOPS than MobileNet.

2. Related Works

Novel convolution filter. Inception-V4 is an inception

module that combines the results from multiple filters of

different sizes. To reduce the computational complexity, the

inception module adopts the asymmetric convolution

instead of the two-dimensional (2D) convolution. Also,

ResNeXt and Xception networks have shown that feature

maps can be efficiently learned by implementing point-wise

convolution and depth-wise convolution based on (1,1)

convolution filter and (3,3) convolution filter.

Connection between feature maps. As mentioned

earlier, ResNet is a way to increase the number of

parameters and pursue a deeper network than AlexNet and

VGG. Adding the by-pass connection to the existing VGG

network is the key idea, which solved the gradient vanishing

problem and helped the smooth transmission of feature map

information. Thereafter, modified versions of ResNet

appeared in which various methods were applied to ResNet

[18, 19].

Beyond the ResNet family of algorithms, DenseNet has

introduced two new concepts. First, DenseNet utilized

residual connections of concatenate style rather than those

of summation style, thus enabling rich learning of feature

maps. Second, DenseNet has made connections between all

the layers of the block module so that feature map and

gradient information can be seamlessly conveyed across the

entire network. In addition, FractalNet [11] is remarkable in

that it builds up a deep network without residual

connections and boosts overall performance.

Efficient Model Designs. MobileNet is based on

depth-wise separable convolution which factorize a

standard convolution into a depth-wise convolution and a

1x1 convolution called a point-wise convolution. Note that

conventional convolution performs filtering and combining

simultaneously. The depth-wise separable convolution of

MobileNet splits this into two layers, i.e., one layer for

filtering and the other layer for combining. So such a

factorization has the effect of drastically reducing

computation and model size. Therefore, MobileNet enables

very fast inference time while showing reasonable

performance.

ShuffleNet has a more advanced convolution structure

than MobileNet. ShuffleNet is also based on a depth-wise

separable convolution, but realizes a small network with

few channels through the channel shuffle technique. So

ShuffleNet has similar performance to MobileNet, but its

parameter size and computation becomes smaller than that

of MobileNet.

On the other hand, NASNet model [20], which has been

attracting attention recently, is not a network designed to

have a fundamentally small parameter size, so we do not use

NASNet as a benchmarking network of MUNet in this

paper.

3. Approach

As shown in Fig. 2, MU is a crucial component of the

proposed network. Feature maps learned in independent

MUs of each layer are concatenated and distributed to MUs

of the next layer. After repeating the above steps in several

layers as shown in the figure, the final feature map is

produced and then global pooling is applied. Finally, the

vector information is obtained through the fully connected

(FC) layer of the same level as the class of the

1782

corresponding data set, and the softmax function is taken

and the final prediction is performed.

3.1. Macro unit

This section describes the structure of the MU, i.e., a key

element of the proposed network. The overall MU

configuration is shown in Fig. 3(a). After the network

regularization process such as dropout [12], feature map

learning is performed through multiple 1-path small units.

The primary function of the 1-path small unit(s) is to

increase the number of internal layers in the MU to prevent

performance degradation. We then reduce the size of the

feature map through the pooling process. Finally, the 2-path

small unit is applied. Since the 2-path small unit is

constructed based on the dynamic connections of 1D

convolutions in different directions, which were also

proposed in the inception module of [15], and symmetric

convolution, it outputs feature maps with more abundant

characteristics than 1-path small unit do. As a result, the

MUNet having a small number of convolution filters can

significantly reduce the computational complexity and the

parameter size compared to the conventional GConv-based

networks.

3.2. Small units

As in Fig. 3(a), the MU uses two kinds of small units.

First, the 1-path small unit is used for learning a richer

feature map by increasing the number of layers in the MU,

and has the detailed structure of Fig. 3(b). The number of

1-path small units in the MU is considered a hyper

parameter of the network, such as dropout, which is covered

in Section 4.6. 1D convolutions of (1, N) and (N, 1) are

performed after the 2D convolution of (N, N), and then the

results are summed as shown in the figure. As mentioned

above, the reason for using asymmetric convolution filters

such as (1, N) and (N, 1) is to reduce the computational cost

of the convolution operation. The computational cost of the

standard 2D convolution is as follows.

2121 DDNNCC ××××× (1)

where 1C and 2C represent the number of input channels

and the number of output channels, respectively, and

NN × represents the convolution kernel size, and 21 DD ×

indicates the feature map size. The ratio of the

computational complexity of the asymmetric 1D

convolutions to the 2D convolution computation of Eq. (1)

is calculated as follows.

2
2121

2121 2)(

N

N

DDNNCC

DDNNCC
=

×××××

××+××
 (2)

That is, the parameter reduction effect is about
N

2
 times.

The structure of the 2-path small unit is shown in Fig. 3(c).

The different thing from 1-path small unit is the number of

output paths. The 2-path small unit has two output paths.

Each output is to plus the asymmetric 1D convolution result

and the standard 2D convolution result. Feature maps

learned by 1D convolutions with different directions, i.e.,

asymmetric convolutions, are transferred to the MUs of the

next layer, so that it is possible to generate feature maps

with more abundant characteristics.

3.3. Comparison of GConv Block and MU Block

In this section, we compare the computational

complexities of the GConv block and the corresponding

MU-based block in Fig. 1. The specifications of the two

network architectures are shown in Table 1. The

computation cost of the GConv block is obtained from

Table 1 and Eq. (1), which is as follows.

1Conv : +×××× 21
2

21 3 DDCC

4,3,2Conv : 3)3(21
2

22 ××××× DDCC (3)

6,5Conv : 2)223(21
2

22 ××××× DDCC

α=×××× 21
2

22 3 DDCC (4)

If the common term α of Eq. (4) is substituted, the total

computational complexity of the GConv block is expressed

by Eq. (5).

Figure 2: Overall framework of the proposed network.

1783

α







+

2

1

2

7

C

C
 (5)

The computational complexity of the MU-based block

corresponding to the GConv block is shown in Eq. (6).

4
464

11

2

1
×








+ α

C

C
 (6)

Based on Eqs. (5) and (6), we can find that the MU-based

block has about 70% reduction in computation cost over the

GConv block, assuming that the number of convolution

filters doubles in the general CNN layer hierarchy.

3.4. Interface of concatenation and distribution

Feature maps generated from several MUs of each layer

are concatenated and uniformly distributed to the MUs of

the next layer, as shown in Fig. 2, so that MUs with a small

number of convolution filters can learn rich feature maps

sufficiently. For example, at the bottom of Fig. 1, we can

observe that the four MU outputs are concatenated and then

delivered to the next layer.

Therefore, MUNet has an advantage that it has very small

parameter size and computation amount with comparable to

GConv-based networks.

3.5. Implementation details

As shown in Fig. 2, the proposed network consists of four

MU-layers. The number of MUs from the top MU-layer is

set to 1, 4, 8, and 16, respectively. The first MU-layer has

only one MU, which is composed of only 2-path small unit,

not dropout and pooling layer considering the input

characteristics of the network. The second and third

MU-layers have the structure shown in Fig, 3(a). Since the

last fourth MU-layer no longer needs to increase the depth

of the network, we only use the 1-path small unit once after

the dropout.

Meanwhile, max pooling is used in the pooling step, and

the dropout rates of the remaining MU-layers except for the

first MU-layer are 0.2, 0.5, and 0.5, respectively.

4. Experimental Results

We experimentally demonstrated the classification

performance of MUNet for CIFAR, SVHN, and

Tiny-ImageNet datasets, which are widely used as

benchmarks for classification problems. We also verified

the model adaptability beyond classification task.

Section 4.1 discusses the datasets used in the experiments

and details of the learning method. Section 4.2 compares the

performance of the proposed MUNet against the latest

techniques via classification problem. Section 4.3 compares

the computational complexity as well as the memory cost.

Section 4.4 verified the adaptability of the proposed

Layer GConv block MU block

Input 1CWH ×× 1CWH ××

Conv1 (3, 3) conv. (3, 3) conv.

Conv2 (3, 3) conv. (1, 3) & (3, 1) conv.

Conv3 (3, 3) conv. (3, 3) conv.

Conv4 (3, 3) conv. (1, 3) & (3, 1) conv.

Pooling (2, 2) max pool (2, 2) max pool

Conv5 (3, 3) conv. (3, 3) conv.

Conv6 (3, 3) conv. (1, 3) & (3, 1) conv.

Concat - Filters of 4 MUs

Output 2
22

C
WH

×× 2
22

C
WH

××

Table 1: Network architecture between GConv block and MU.

Here (3,1) & (3,1) conv. indicates asymmetric convolutions. Both

GConv block and MU assume 1C input feature maps. 2C

convolution filters are used for GConv block and 42C

convolution filters are used for each MU. After pooling, the

feature map size is halved.

Figure 3: Architecture of macro unit (MU). (a) Overall architecture. (b) 1-path small unit. (c) 2-path small unit.

1784

network to the surrounding environment. Section 4.5

experimentally justified the structural characteristics of the

MUNet. Finally, Section 4.6 shows how to choose the

optimal hyper-parameters of MUNet.

4.1. Datasets and training details

For fair evaluation of the proposed scheme, we used four

popular datasets: CIFAR [23], SVHN [24], Tiny ImageNet

[25], and down-sampled ImageNet [33]. The latter two

datasets are from ILSVRC-2012 [34]. In order to evaluate

the classification performance, CIFAR, SVHN, and Tiny

ImageNet are used. The reason for including Tiny ImageNet

here is to prove that MUNet is a network that is sufficiently

applicable to the actual environment. Down-sampled

ImageNet was adopted to verify fine tuning performance of

the MUNet in Section 4.4.

As the augmentation technique of the datasets, the only

horizontal mirroring and translation (uniform offsets in

from -4 to 4) used in [7, 10, 11] was applied.

To optimize the proposed network model, the stochastic

gradient descent (SGD) [27] method was used. Also, the

weight decay of 410− and Nesterov momentum [28] of 0.9

without dampening were employed. For weight

initialization, we adopted the distribution used in [29].

When learning with CIFAR and SVHN datasets, the total

number of epochs was set to 300 and the batch size was set

to 128. When learning with the Tiny ImageNet dataset, the

total number of epochs was set to 300, and the batch size

was set to 256, and the dropout was excluded here. Finally,

we achieved the normalization effect of the feature map

during learning process by using batch normalization [30]

after the activation function.

The performance of a network was evaluated by the

average of the results of three times experiments using the

weights of the network after the final learning. We also

employed the Tensorflow [21] based deep learning library,

and used GPU named NVIDIA GeForce GTX 1080 Ti to

finish the training process.

4.2. Classification performance evaluation

This section compared MUNet with state-of-the-art CNN

techniques such as DenseNet, DenseNet-BC, ResNet,

FractalNet, MobileNet, and ShuffleNet in terms of

classification accuracy. The experimental results of

MobileNet and ShuffleNet were from our own

implementations, and those of the other networks were

directly extracted from the corresponding papers. In case of

DenseNet, because no numerical results for parameter sizes

of about 500,000 or less are no available in [10], we

implemented the DenseNet and plotted the results in the

right of Fig. 4. In order to ensure the reliability of our

implementation(s), Table 2 compared it with the results

from [10] for the parameter sizes of about 1M. The results

from [7] and [11] were also compared together in the table.

Note that according to [7, 10, 11], 1 M is almost the lower

bound of the parameter size where the state-of-the-art

Model Dataset Params
Error

rate (%)

 ResNet [7]

CIFAR-10

0.8M 6.97

 DenseNet [10] 1.0M 5.24

 DenseNet (ours) 1.0M 5.12

 DenseNet-BC [10] 0.8M 4.51

 DenseNet-BC (ours) 0.8M 4.41

 MUNet 1.0M 5.35

 FractalNet [11]

CIFAR-100

0.8M 30.71

 DenseNet [10] 1.0M 24.42

 DenseNet (ours) 1.0M 24.04

 DenseNet-BC [10] 0.8M 22.27

 DenseNet-BC (ours) 0.8M 22.01

 MUNet 1.0M 25.85

Table 2: Performance comparison of various CNN methods for

the parameter size of about 1M in terms of error rates.

Figure 4: Comparison in terms of the parameter efficiency for CIFAR datasets. Left: C10+. Right: C100+.

1785

methods provide effective performance. We can say that our

implementation is reliable. In addition, we can find that

MUNet shows comparable results to the cutting-edge CNNs

for CIFAR datasets.

Next, since MUNet pursues a network with a small

parameter size, we evaluated its performance, focusing on a

region where the learning parameter size is small to some

extent. Because we can say that the parameter size range

below 1M is a reasonable range based on the datasets we

adopted (see Fig. 4), we concentrate on the comparison for

the parameter size range of less than 100,000, i.e., an

intermediate point that we pay attention to. As shown in Fig.

4, MUNet shows consistently superior performance to

ResNet, FractalNet, and DenseNet. The performance of

MUNet is somewhat lower than that of DenseNet-BC, but

the smaller the parameter size, the more comparable the

performance.

On the other hand, one of the points we should pay

attention to is the pattern of performance change according

to the parameter size. MUNet shows a much lower

performance degradation rate than the other networks in the

parameter size area below 1.0M. Especially, in case of very

small parameter size area of less than 0.1M, the proposed

network shows rather superior performance than

DenseNet-BC. That is, when comparing MUNet and

DenseNet-BC in a very small parameter size area, MUNet

has a performance advantage of up to 1.5% based on

CIFAR-10 and up to 10% based on CIFAR-100. For

CIFAR-100, FractalNet showed an error rate of about 37%

at parameter size of 0.3M, while MUNet showed about 37%

error rate at parameter size of 0.059M. In other words,

assuming the same classification accuracy, it is sufficient

that MUNet is as small as 1/5 of the parameter size than

FractalNet.

In addition, we can observe from Fig. 4 that MobileNet

and ShuffleNet perform significantly poorer than the other

networks in terms of performance vs. parameter size. This is

because MobileNet and ShuffleNet are the networks that are

developed to reduce the amount of computation rather than

to improve performance. In this aspect, the proposed

MUNet should be noted that even if the parameter size

decreases, the performance degradation rate is very slow.

4.3. Complexity analysis

The main purpose of MUNet is to derive a good tradeoff

of performance and computation cost/parameter size to the

extent that it can be implemented with embedded software

or SoC for applications such as mobile devices. In this

section, we analyze the computational cost and complexity

of the proposed MUNet. In this experiment, the number of

convolution filters in the first MU-layer of MUNet was set

to 6 and the number of convolution filters of the remaining

MU-layers was set to 4 for fair comparison. On the other

hand, the benchmarking networks of MUNet were limited to

MobileNet and ShuffleNet for convenience.

Table 3 shows the comparison of MUNet with three

networks. We compared the parameter size (3rd column),

inference time (5th column), and FLOPS (6th column) when

they show experimentally similar classification accuracy,

i.e., error rate (4th column). Inference times were measured

in units of seconds on the desktop environment embedded

with the Intel® i7-7700 CPU@3.6 GHz w/ 8 processors.

FLOPS indicates the amount of computation, and it includes

all operations such as convolution, pooling, and even

multiplication, addition, and conditional statement for

activation function. The inference time is measured as the

sum of all test images in the dataset.

From Table 3, we can find that MUNet has a smaller

parameter size than the other networks. For example, on a

Model Dataset Params Error rate (%) Inference time (Std) FLOPS

1.0 MobileNet

CIFAR-10

1.88M 10.03 37.42 (0.36) 51.44M

ShuffleNet × 1 (g = 1) 0.42M 9.93 39.17 (0.45) 43.39M

MUNet 0.10M 9.80 41.85 (0.35) 40.30M

1.0 MobileNet

CIFAR-100

1.97M 36.05 37.76 (0.19) 51.62M

ShuffleNet × 1 (g = 1) 0.47M 34.76 39.64 (0.18) 44.49M

MUNet 0.11M 34.72 41.39 (1.38) 40.32M

1.0 MobileNet

SVHN

1.88M 4.98 96.53 (0.26) 51.44M

ShuffleNet × 1 (g = 1) 0.42M 4.68 102.81 (0.24) 43.39M

MUNet 0.10M 4.41 104.72 (0.30) 40.30M

1.0 MobileNet
Tiny

ImageNet

3.17M 56.48 45.40 (0.13) 79.33M

ShuffleNet × 1 (g = 1) 0.70M 56.18 59.49 (0.84) 59.49M

MUNet 0.13M 56.13 59.93 (0.49) 50.83M

Table 3: Comparison in terms of parameter size, inference time, and FLOPS assuming the same error rates. Std in the fifth column

represents the standard deviation.

1786

CIFAR dataset, MUNet achieves about four times the

parameter reduction in comparison to ShuffleNet.

On the other hand, while MUNet has always smaller

FLOPS than ShuffleNet and MobileNet for all datasets, its

inference time is slightly larger than the other networks.

This is because MUNet has a small number of filters used

per convolution, but it performs many convolution

operations due to the nature of the network. This issue will

be touched again in Section 5.

4.4. Adaptability to the surrounding environment

MUNet is a CNN model designed for mobile device

purpose. It is important that the CNN model fitted to a

specific environment should maintain its performance even

if the surrounding environment changes. Therefore, this

section verifies whether MUNet conforms to the

characteristics of the mobile device through the fine tuning

experiment of MUNet with very small parameters. Unlike

the experiment in the previous section, the reason for

excluding ShuffleNet from the benchmarking group is that

the fine tuning experiment was not performed in ShuffleNet.

First, we trained the MUNet by using a down-sampled

ImageNet dataset, and performed a fine tuning process with

the CIFAR dataset. Here, the reason for pre-training using

down-sampled ImageNet is that as shown in [33],

down-sampled ImageNet produces similar optimal

hyper-parameters while exhibiting faster learning

convergence speed than original ImageNet. In addition,

since the image size of down-sampled ImageNet is the same

as the image size to be fine-tuned, more accurate

verification of fine tuning performance is possible. In both

networks, the specification of Table 3 was used as is. In the

case of MUNet, the number of convolution filters of small

units was changed. As shown in Table 4, when fine tuning is

performed, MUNet shows an additional performance

improvement of about 2.4% based on CIFAR-100. On the

other hand, MobileNet has a performance improvement of

about 4.5%. It can be said that MobileNet, which has a

larger number of parameters, could learn richer feature

information than MUNet when pre-trained with a huge

amount of datasets. Note that despite much smaller

parameter size, MUNet shows successful fine tuning results.

This means that even though the model size of the MUNet is

very small, it can learn meaningful feature information

when pre-trained with a large amount of datasets.

4.5. Performance evaluation according to

MU-layer structure

The core concept of MUNet is to use multiple MUs with

a small number of convolution filters at each MU-layer. In

this experiment, the structural characteristics of such a

MUNet are verified (see Table 5).

The first row of Table 5 shows the case where the

MU-layer is designed with a single MU per layer structure.

In this case, the number of convolution filters is increased

enough to compensate for the reduced number of MUs per

MU-layer for fair comparison. The result was compared

with authentic MUNet (see the 2nd row in Table 5).

As can be seen from the experimental results in Table 5,

the single MU per layer structure shows a minor accuracy

improvement of 0.8% in comparison with the original

MUNet, but it increases about 5 times both the parameter

size and FLOPS. As a result, we can find that the

architecture of MUNet is superior in performance.

4.6. Selection of the appropriate hyper-parameter

The core units of the MU architecture are 1-path small

Model Dataset Params Error rate (fine tuned / original) (%) FLOPS

1.0 MobileNet

CIFAR-10

1.88M 9.70 / 10.03 51.44M

MUNet
0.11M 9.03 / 9.54 49.58M

0.10M 9.15 / 9.80 40.30M

1.0 MobileNet

CIFAR-100

1.98M 31.58 / 36.05 51.62M

MUNet
0.12M 32.10 / 34.58 49.59M

0.11M 33.54 / 34.72 40.32M

Table 4: Fine tuning performance comparison between MobileNet and MUNet.

Method
Error

rate (%)
Params

FLOPS

[Mult. Add If]

Single MU per

layer
9.01 0.49M

203.72M

[101.75 101.16 0.81]

Multiple MUs per

layer (MUNet)
9.80 0.10M

40.30M

[20.11 19.88 0.31]

Table 5: Performance comparison according to MU-layer

structure for CIFAR-10.

The number of

1-path small units
Error rate (%)

FLOPS

[Mult. Add If]

1 36.82
27.00M

[13.48 13.33 0.19]

2 34.72
40.32M

[20.12 19.89 0.31]

3 34.40
53.69M

[26.79 26.48 0.42]

Table 6: Performance comparison according to the number of

1-path small units for CIFAR-100.

1787

unit and 2-path small unit. In Section 3.3, we emphasized

that the 2-path small unit plays an essential role in MUNet

performance, and also the reason for the existence of 1-path

small unit is to increase the number of internal layers of MU

model. So the number of 1-path small units can be regarded

as a hyper-parameter.

In this section, we performed an experiment to find an

optimal hyper-parameter for MUNet, i.e., the best number

of 1-path small units. The result is shown in Table 6. As the

number of 1-path small units increases, the FLOPS

increases linearly, but the error rate decreases sharply and

saturates. Therefore, this paper adopted two 1-path small

units per MU, pursuing optimal trade-off performance. The

number of MUs per MU-layer can also be regarded as a

hyper parameter, although it has not been tested in this

paper.

5. Discussion

As can be seen in Table 3, MUNet has significantly

smaller parameter sizes and smaller FLOPS than the other

networks. However, in terms of inference time, MUNet is

somewhat inferior to the other networks unlike in terms of

FLOPS. The reason is that MUNet has a small number of

filters per convolution, but it must perform many

convolution operations inherently. MUNet has a more

complex structure than a simple group convolution-based

network when forming the whole network structure under

the same conditions as [21]. The more complicated the

structure, the more burden can be placed on the inference

time. Therefore, we can analyze that MUNet has less

FLOPS but provides somewhat longer inference time than

the other networks. In order to overcome this problem,

shortening the computation time of the convolution as in [22,

32] can reduce the inference time of MUNet.

6. Conclusion

In this paper, we propose a new CNN architecture that

escapes from the existing group convolution structure in

order to design a deep neural network suitable for mobile

devices. Since the conventional group convolution-based

network uses a large number of convolution filters, the

amount of computation is large and there may be a

considerable redundant computation. In order to solve this

computational cost problem fundamentally, this paper

presented a MU-based CNN using only a small number of

convolution filters where richer feature maps can be learned

by using multiple MUs instead of a single GConv block.

Experimental results show that the proposed MUNet

consumes significantly less computation cost while

maintaining comparable performance with existing

networks including state-of-the-art CNNs.

Acknowledgements

This work was supported by the industrial Technology

Innovation Program funded by the ministry of Trade,

industry & Energy (MI, Korea) [10073154, Development of

human-friendly human-robot interaction technologies using

human internal emotional states].

References

[1] R. Salakhutdinov, G. Hinton. Deep boltzmann machines.

In Artificial Intelligence and Statistics, pages 448-455,

2009.

[2] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng.

Convolutional deep belief networks for scalable

unsupervised learning of hierarchical representations.

In Proceedings of the 26th annual international conference

on machine learning, pages 609-616, 2009.

[3] Y. L. Boureau, Y. L. Cun. Sparse feature learning for deep

belief networks. In Advances in neural information

processing systems, pages 1185-1192, 2008.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks.

In Advances in neural information processing systems, pages

1097-1105, 2012.

[5] K. Simonyan, A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[6] L. Sifre. Rigid-motion scattering for image classification.

PhD thesis, Ph. D. thesis, 2014.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 770-778, 2016.

[8] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. arXiv

preprint arXiv:1611.05431, 2016.

[9] F. Chollet. Xception: Deep Learning with Depthwise

Separable Convolutions. arXiv preprint arXiv:1610.02357,

2016.

[10] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. arXiv preprint

arXiv:1608.06993, 2016.

[11] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:

Ultra-deep neural networks without residuals. arXiv preprint

arXiv:1605.07648, 2016.

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. The Journal of Machine Learning

Research, pages 1929-1958, 2014.

[13] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient and

accurate approximations of nonlinear convolutional

networks. In Proceedings of the IEEE Conference on

Computer Vision and pattern Recognition, pages 1984-1992,

2015.

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems, pages 2074-2082,

2016.

1788

[15] C. Szegedy, S. loffe, V. Vanhoucke, and A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. AAAI. Vol. 4, 2017.

[16] A. G. Howard, et al. Mobilenets: Efficient convolutional

neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[17] X. Zhang, et al., ShuffleNet: An extremely efficient

convolutional neural networks for mobile devices. arXiv

preprint arXiv:1707.01083, 2017.

[18] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.

Deep networks with stochastic depth. In European

Conference on Computer Vision, pages 646-661, 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European Conference on

Computer Vision, pages 630-645, 2016.

[20] B. Zoph, and Q. V. Le. Neural Architecture Search with

Reinforcement Learning. arXiv preprint arXiv:1611.01578,

2016.

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.

Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow. org, 1,

2015.

[22] W. Xu, Z. Wang, X. You and C. Zhang. Efficient fast

convolution architectures for convolutional neural network.

In ASIC (ASICON). IEEE 12th International Conference on,

pages 904-907, 2017.

[23] A. Krizhevsky, G. Hinton. Learning multiple layers of

features from tiny images. Tech Report, 2009.

[24] I. J. Goodfellow, et al. "Multi-digit number recognition from

street view imagery using deep convolutional neural

networks." arXiv preprint arXiv:1312.6082, 2013.

[25] A. Bastidas. Tiny ImageNet Image Classification. url:

https://tiny-imagenet.herokuapp.com/.

[26] S. Han, H. Mao, and W. J. Dally. Deep compression:

Compressing deep neural networks with pruning, trained

quantization and Huffman coding. arXiv preprint arXiv:

1510.00149, 2015.

[27] L. Bottou. Large-scale machine learning with stochastic

gradient descent. In Proceedings of COMPSTAT'2010. pp.

177-186, 2010.

[28] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the

importance of initialization and momentum in deep learning.

In International conference on machine learning, pages

1139-1147, 2013.

[29] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international

conference on computer vision, pages 1026-1034, 2015.

[30] S. Ioffe, C. Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift.

In International Conference on Machine Learning, pages

448-456, 2015.

[31] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.

Xnor-net: Imagenet classification using binary convolutional

neural networks. In European Conference on Computer

Vision. pages 525-542, 2016.

[32] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions.

arXiv preprint arXiv:1405.3866, 2014.

[33] P. Chrabaszcz, I. Loshchilov, and F. Hutter. A Downsampled

Variant of ImageNet as an Alternative to the CIFAR

datasets. arXiv preprint arXiv:1707.08819, 2017.

[34] O. Russakovsky, J. Deng, H. Su, H. Krause, S. Satheesh, S.

Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al.

Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211-252,

2015.

[35] S. J. Hanson, and L. Y. Pratt. Comparing biases for minimal

network construction with back-propagation. In Advances in

neural information processing systems. Pages 177-185,

1989.

1789

