
 

 

 

Abstract 

 

Deep neural networks perform better than traditional 

machine learning methods on various classification 

problems by producing good quality feature maps through 

successive convolution operation(s). However, when 

implementing a deep neural network in an embedded 

system or SoC for mobile devices, its large parameter size 

can be a significant burden on the internal memory design. 

In this paper, we propose a new deep neural network that 

reduces computation and the number of model parameters 

but maintains reasonable performance. The configuration 

of the proposed network is as follows: First, we propose a 

macro unit (MU) to reduce heavy computations and to 

learn various feature maps. Second, we employ asymmetric 

convolution of the well-known Inception network to further 

efficiently manipulate feature maps within the MU. Third, 

all the feature maps produced from MU(s) of each layer are 

concatenated and then the grouped feature map is 

distributed to all the MUs of the next layer for transferring 

richer information. Experimental results show that the 

proposed network achieves about 10% higher performance 

than DenseNet-BC in case of extremely small parameter 

size for CIFAR-100. The proposed network also has very 

few learning parameters and smaller floating point 

operations per second (FLOPS) than the other networks 

optimized for mobile devices such as MobileNet. 

 

1. Introduction 

Prior to the deep learning era, a lot of traditional machine 

learning approaches have been developed for solving 

various classification problems, and neural networks (NN) 

were one of them. Recently, deep NN techniques [1-3] that 

can be considered as a catalyst for this deep learning era 

have been devised. The end-to-end learning optimizes all 

processing steps simultaneously, and it leads to better 

performance and smaller systems. Because of outstanding 

performance beyond traditional machine learning 

techniques, deep learning is expanding its scope to a variety 

of applications, including computer vision, medical, and 

architectural applications. AlexNet [4] is known as the most 

famous convolutional NN (CNN) among early deep 

learning methods. Next, competition to develop deeper and 

better CNNs than AlexNet has become fierce, and so the 

well-known visual geometry group (VGG) network was 

born out of such competition [5]. However, since VGG, 

many researchers have encountered limitations in 

increasing network depth. He et al. caused sensation by 

presenting ResNet [7], which enables a deeper structure of 

the network using residual connections.  

ResNeXt [8] and Xception [9] have also been proposed, 

which effectively learns the feature map by focusing on the 

convolution filter configuration rather than the feature map 

connection. Recently DenseNet [10], which is a network 

with differentiating connection methods between feature 

maps, based on the existing ResNet became famous.  

On the other hand, extensive size of learning parameters 

and huge computational complexity make it difficult to 

implement existing CNNs with embedded software or SoC 

for mobile devices, drones, and social robots. To solve this 

problem, CNNs focusing on sparcity connection aimed at 

hardware-friendly structure have been developed [13, 14]. 

However, conventional CNNs, including [13] and [14], 

still have significant computational complexity and 

parameter size, making them cumbersome to implement. 

The fundamental problem of CNNs in terms of 

computational complexity and memory size is the use of 

so-called group convolution (GConv) [4], which requires a 
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Figure 1: The main concept of the proposed method. Up:

Learning scheme of group convolution block. Down: Learning 

scheme of proposed convolution block. Here WH ,  represent 

the horizontal and vertical sizes of the feature map, respectively 

and nC represents the number of channels.   
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large number of convolution filters. When constructing 

CNN with such group convolutions, it is advantageous to 

obtain various feature maps in spite of simple convolution 

structure. On the other hand, in the optimization process on 

the high dimension space, GConv may have some degree of 

redundancy. This causes unnecessary increase of parameter 

size and computational complexity [26, 35]. 

To solve the above-mentioned problem, MobileNet [16] 

and ShuffleNet [17] have adopted factorized convolution 

such as depth-wise separable convolution [6]. Nonetheless, 

the tradeoff between performance and parameter 

size/computation is still an unresolved issue in the research 

on CNN. The reason is that even if you use factorized 

convolution, many filters per convolution operation are still 

required. This can eventually lead to a redundancy in 

learning high dimension feature map [31]. 

This paper proposes an efficient CNN structure that 

shows satisfactory performance even with only a small 

number of convolution filters. As shown in Fig. 1, learning a 

feature map by dividing a single GConv block into multiple 

macro units (MUs) is a key concept of the proposed network. 

Each MU consists of much smaller number of convolution 

filters than GConv block, and furthermore it adopts 

separable convolution of Inception-V4 [15], which has 

considerable advantages in terms of parameter size and 

computation amount. Meanwhile, we propose a method to 

simultaneously concatenate feature maps generated from 

multiple MUs of each layer and distribute them to the next 

layer, as shown in Fig. 2, so that a rich feature map can be 

generated even with MUs composed of a small number of 

convolution filters. Therefore, the proposed network can 

learn sufficiently rich feature maps with relatively a small 

number of convolution filters. 

We verified the classification performance of the 

proposed MU-based network (MUNet) on highly 

competitive benchmarking datasets, i.e., CIFAR, SVHN, 

and Tiny-ImageNet. For example, for CIFAR-100 dataset, 

MUNet shows a performance improvement of up to 10% in 

a small parameter region compared to the DenseNet-BC. 

Also, in the reasonably similar error rate range, MUNet 

exhibits more than 15 times less parameter size and fewer 

FLOPS than MobileNet. 

2. Related Works 

Novel convolution filter. Inception-V4 is an inception 

module that combines the results from multiple filters of 

different sizes. To reduce the computational complexity, the 

inception module adopts the asymmetric convolution 

instead of the two-dimensional (2D) convolution. Also, 

ResNeXt and Xception networks have shown that feature 

maps can be efficiently learned by implementing point-wise 

convolution and depth-wise convolution based on (1,1) 

convolution filter and (3,3) convolution filter. 

Connection between feature maps. As mentioned 

earlier, ResNet is a way to increase the number of 

parameters and pursue a deeper network than AlexNet and 

VGG. Adding the by-pass connection to the existing VGG 

network is the key idea, which solved the gradient vanishing 

problem and helped the smooth transmission of feature map 

information. Thereafter, modified versions of ResNet 

appeared in which various methods were applied to ResNet 

[18, 19]. 

Beyond the ResNet family of algorithms, DenseNet has 

introduced two new concepts. First, DenseNet utilized 

residual connections of concatenate style rather than those 

of summation style, thus enabling rich learning of feature 

maps. Second, DenseNet has made connections between all 

the layers of the block module so that feature map and 

gradient information can be seamlessly conveyed across the 

entire network. In addition, FractalNet [11] is remarkable in 

that it builds up a deep network without residual 

connections and boosts overall performance. 

Efficient Model Designs. MobileNet is based on 

depth-wise separable convolution which factorize a 

standard convolution into a depth-wise convolution and a 

1x1 convolution called a point-wise convolution. Note that 

conventional convolution performs filtering and combining 

simultaneously. The depth-wise separable convolution of 

MobileNet splits this into two layers, i.e., one layer for 

filtering and the other layer for combining. So such a 

factorization has the effect of drastically reducing 

computation and model size. Therefore, MobileNet enables 

very fast inference time while showing reasonable 

performance. 

ShuffleNet has a more advanced convolution structure 

than MobileNet. ShuffleNet is also based on a depth-wise 

separable convolution, but realizes a small network with 

few channels through the channel shuffle technique. So 

ShuffleNet has similar performance to MobileNet, but its 

parameter size and computation becomes smaller than that 

of MobileNet. 

On the other hand, NASNet model [20], which has been 

attracting attention recently, is not a network designed to 

have a fundamentally small parameter size, so we do not use 

NASNet as a benchmarking network of MUNet in this 

paper. 

3. Approach 

As shown in Fig. 2, MU is a crucial component of the 

proposed network. Feature maps learned in independent 

MUs of each layer are concatenated and distributed to MUs 

of the next layer. After repeating the above steps in several 

layers as shown in the figure, the final feature map is 

produced and then global pooling is applied. Finally, the 

vector information is obtained through the fully connected 

(FC) layer of the same level as the class of the 
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corresponding data set, and the softmax function is taken 

and the final prediction is performed. 

3.1. Macro unit 

This section describes the structure of the MU, i.e., a key 

element of the proposed network. The overall MU 

configuration is shown in Fig. 3(a). After the network 

regularization process such as dropout [12], feature map 

learning is performed through multiple 1-path small units. 

The primary function of the 1-path small unit(s) is to 

increase the number of internal layers in the MU to prevent 

performance degradation. We then reduce the size of the 

feature map through the pooling process. Finally, the 2-path 

small unit is applied. Since the 2-path small unit is 

constructed based on the dynamic connections of 1D 

convolutions in different directions, which were also 

proposed in the inception module of [15], and symmetric 

convolution, it outputs feature maps with more abundant 

characteristics than 1-path small unit do. As a result, the 

MUNet having a small number of convolution filters can 

significantly reduce the computational complexity and the 

parameter size compared to the conventional GConv-based 

networks. 

3.2. Small units 

As in Fig. 3(a), the MU uses two kinds of small units. 

First, the 1-path small unit is used for learning a richer 

feature map by increasing the number of layers in the MU, 

and has the detailed structure of Fig. 3(b). The number of 

1-path small units in the MU is considered a hyper 

parameter of the network, such as dropout, which is covered 

in Section 4.6. 1D convolutions of (1, N) and (N, 1) are 

performed after the 2D convolution of (N, N), and then the 

results are summed as shown in the figure. As mentioned 

above, the reason for using asymmetric convolution filters 

such as (1, N) and (N, 1) is to reduce the computational cost 

of the convolution operation. The computational cost of the 

standard 2D convolution is as follows. 

 

2121 DDNNCC ×××××                      (1) 

 

where 1C and 2C  represent the number of input channels 

and the number of output channels, respectively, and  

NN ×  represents the convolution kernel size, and 21 DD ×  

indicates the feature map size. The ratio of the 

computational complexity of the asymmetric 1D 

convolutions to the 2D convolution computation of Eq. (1) 

is calculated as follows. 

 

2
2121

2121 2)(

N

N

DDNNCC

DDNNCC
=

×××××

××+××
               (2) 

 

That is, the parameter reduction effect is about 
N

2
 times. 

The structure of the 2-path small unit is shown in Fig. 3(c). 

The different thing from 1-path small unit is the number of 

output paths. The 2-path small unit has two output paths. 

Each output is to plus the asymmetric 1D convolution result 

and the standard 2D convolution result. Feature maps 

learned by 1D convolutions with different directions, i.e., 

asymmetric convolutions, are transferred to the MUs of the 

next layer, so that it is possible to generate feature maps 

with more abundant characteristics. 

3.3. Comparison of GConv Block and MU Block 

In this section, we compare the computational 

complexities of the GConv block and the corresponding 

MU-based block in Fig. 1. The specifications of the two 

network architectures are shown in Table 1. The 

computation cost of the GConv block is obtained from 

Table 1 and Eq. (1), which is as follows. 

 

1Conv        :  +×××× 21
2

21 3 DDCC  

4,3,2Conv  : 3)3( 21
2

22 ××××× DDCC                 (3) 

6,5Conv     : 2)223( 21
2

22 ××××× DDCC  

α=×××× 21
2

22 3 DDCC                      (4) 

 

If the common term α of Eq. (4) is substituted, the total 

computational complexity of the GConv block is expressed 

by Eq. (5). 

 

Figure 2: Overall framework of the proposed network. 
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The computational complexity of the MU-based block 

corresponding to the GConv block is shown in Eq. (6). 
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Based on Eqs. (5) and (6), we can find that the MU-based 

block has about 70% reduction in computation cost over the 

GConv block, assuming that the number of convolution 

filters doubles in the general CNN layer hierarchy. 

3.4. Interface of concatenation and distribution 

Feature maps generated from several MUs of each layer 

are concatenated and uniformly distributed to the MUs of 

the next layer, as shown in Fig. 2, so that MUs with a small 

number of convolution filters can learn rich feature maps 

sufficiently. For example, at the bottom of Fig. 1, we can 

observe that the four MU outputs are concatenated and then 

delivered to the next layer. 

Therefore, MUNet has an advantage that it has very small 

parameter size and computation amount with comparable to 

GConv-based networks. 

3.5. Implementation details 

As shown in Fig. 2, the proposed network consists of four 

MU-layers. The number of MUs from the top MU-layer is 

set to 1, 4, 8, and 16, respectively. The first MU-layer has 

only one MU, which is composed of only 2-path small unit, 

not dropout and pooling layer considering the input 

characteristics of the network. The second and third 

MU-layers have the structure shown in Fig, 3(a). Since the 

last fourth MU-layer no longer needs to increase the depth 

of the network, we only use the 1-path small unit once after 

the dropout. 

Meanwhile, max pooling is used in the pooling step, and 

the dropout rates of the remaining MU-layers except for the 

first MU-layer are 0.2, 0.5, and 0.5, respectively. 

4. Experimental Results 

We experimentally demonstrated the classification 

performance of MUNet for CIFAR, SVHN, and 

Tiny-ImageNet datasets, which are widely used as 

benchmarks for classification problems. We also verified 

the model adaptability beyond classification task. 

Section 4.1 discusses the datasets used in the experiments 

and details of the learning method. Section 4.2 compares the 

performance of the proposed MUNet against the latest 

techniques via classification problem. Section 4.3 compares 

the computational complexity as well as the memory cost. 

Section 4.4 verified the adaptability of the proposed 

Layer GConv block MU block 

Input 1CWH ××  1CWH ××  

Conv1 (3, 3) conv. (3, 3) conv. 

Conv2 (3, 3) conv. (1, 3) & (3, 1) conv. 

Conv3 (3, 3) conv. (3, 3) conv. 

Conv4 (3, 3) conv. (1, 3) & (3, 1) conv. 

Pooling (2, 2) max pool (2, 2) max pool 

Conv5 (3, 3) conv. (3, 3) conv. 

Conv6 (3, 3) conv. (1, 3) & (3, 1) conv. 

Concat - Filters of 4 MUs 

Output 2
22

C
WH

××  2
22

C
WH

××  

Table 1: Network architecture between GConv block and MU.

Here (3,1) & (3,1) conv. indicates asymmetric convolutions. Both 

GConv block and MU assume  1C  input feature maps. 2C

convolution filters are used for GConv block and 42C

convolution filters are used for each MU. After pooling, the 

feature map size is halved. 

Figure 3: Architecture of macro unit (MU). (a) Overall architecture. (b) 1-path small unit. (c) 2-path small unit. 
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network to the surrounding environment. Section 4.5 

experimentally justified the structural characteristics of the 

MUNet. Finally, Section 4.6 shows how to choose the 

optimal hyper-parameters of MUNet. 

4.1. Datasets and training details 

For fair evaluation of the proposed scheme, we used four 

popular datasets: CIFAR [23], SVHN [24], Tiny ImageNet 

[25], and down-sampled ImageNet [33]. The latter two 

datasets are from ILSVRC-2012 [34]. In order to evaluate 

the classification performance, CIFAR, SVHN, and Tiny 

ImageNet are used. The reason for including Tiny ImageNet 

here is to prove that MUNet is a network that is sufficiently 

applicable to the actual environment. Down-sampled 

ImageNet was adopted to verify fine tuning performance of 

the MUNet in Section 4.4. 

As the augmentation technique of the datasets, the only 

horizontal mirroring and translation (uniform offsets in 

from -4 to 4) used in [7, 10, 11] was applied. 

To optimize the proposed network model, the stochastic 

gradient descent (SGD) [27] method was used. Also, the 

weight decay of 410−  and Nesterov momentum [28] of 0.9 

without dampening were employed. For weight 

initialization, we adopted the distribution used in [29]. 

When learning with CIFAR and SVHN datasets, the total 

number of epochs was set to 300 and the batch size was set 

to 128. When learning with the Tiny ImageNet dataset, the 

total number of epochs was set to 300, and the batch size 

was set to 256, and the dropout was excluded here. Finally, 

we achieved the normalization effect of the feature map 

during learning process by using batch normalization [30] 

after the activation function. 

The performance of a network was evaluated by the 

average of the results of three times experiments using the 

weights of the network after the final learning. We also 

employed the Tensorflow [21] based deep learning library, 

and used GPU named NVIDIA GeForce GTX 1080 Ti to 

finish the training process. 

4.2. Classification performance evaluation 

This section compared MUNet with state-of-the-art CNN 

techniques such as DenseNet, DenseNet-BC, ResNet, 

FractalNet, MobileNet, and ShuffleNet in terms of 

classification accuracy. The experimental results of 

MobileNet and ShuffleNet were from our own 

implementations, and those of the other networks were 

directly extracted from the corresponding papers. In case of 

DenseNet, because no numerical results for parameter sizes 

of about 500,000 or less are no available in [10], we 

implemented the DenseNet and plotted the results in the 

right of Fig. 4. In order to ensure the reliability of our 

implementation(s), Table 2 compared it with the results 

from [10] for the parameter sizes of about 1M. The results 

from [7] and [11] were also compared together in the table.  

Note that according to [7, 10, 11], 1 M is almost the lower 

bound of the parameter size where the state-of-the-art 

Model Dataset Params 
Error  

rate (%) 

 ResNet [7] 

CIFAR-10 

0.8M 6.97 

 DenseNet [10] 1.0M 5.24 

 DenseNet (ours) 1.0M 5.12 

 DenseNet-BC [10] 0.8M 4.51 

 DenseNet-BC (ours) 0.8M 4.41 

 MUNet 1.0M 5.35 

 FractalNet [11] 

CIFAR-100 

0.8M 30.71 

 DenseNet [10] 1.0M 24.42 

 DenseNet (ours) 1.0M 24.04 

 DenseNet-BC [10] 0.8M 22.27 

 DenseNet-BC (ours) 0.8M 22.01 

 MUNet 1.0M 25.85 

Table 2: Performance comparison of various CNN methods for 

the parameter size of about 1M in terms of error rates. 

Figure 4: Comparison in terms of the parameter efficiency for CIFAR datasets. Left: C10+. Right: C100+.  
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methods provide effective performance. We can say that our 

implementation is reliable. In addition, we can find that 

MUNet shows comparable results to the cutting-edge CNNs 

for CIFAR datasets. 

Next, since MUNet pursues a network with a small 

parameter size, we evaluated its performance, focusing on a 

region where the learning parameter size is small to some 

extent. Because we can say that the parameter size range 

below 1M is a reasonable range based on the datasets we 

adopted (see Fig. 4), we concentrate on the comparison for 

the parameter size range of less than 100,000, i.e., an 

intermediate point that we pay attention to. As shown in Fig. 

4, MUNet shows consistently superior performance to 

ResNet, FractalNet, and DenseNet. The performance of 

MUNet is somewhat lower than that of DenseNet-BC, but 

the smaller the parameter size, the more comparable the 

performance. 

On the other hand, one of the points we should pay 

attention to is the pattern of performance change according 

to the parameter size. MUNet shows a much lower 

performance degradation rate than the other networks in the 

parameter size area below 1.0M. Especially, in case of very 

small parameter size area of less than 0.1M, the proposed 

network shows rather superior performance than 

DenseNet-BC. That is, when comparing MUNet and 

DenseNet-BC in a very small parameter size area, MUNet 

has a performance advantage of up to 1.5% based on 

CIFAR-10 and up to 10% based on CIFAR-100. For 

CIFAR-100, FractalNet showed an error rate of about 37% 

at parameter size of 0.3M, while MUNet showed about 37% 

error rate at parameter size of 0.059M. In other words, 

assuming the same classification accuracy, it is sufficient 

that MUNet is as small as 1/5 of the parameter size than 

FractalNet. 

In addition, we can observe from Fig. 4 that MobileNet 

and ShuffleNet perform significantly poorer than the other 

networks in terms of performance vs. parameter size. This is 

because MobileNet and ShuffleNet are the networks that are 

developed to reduce the amount of computation rather than 

to improve performance. In this aspect, the proposed 

MUNet should be noted that even if the parameter size 

decreases, the performance degradation rate is very slow. 

4.3. Complexity analysis 

The main purpose of MUNet is to derive a good tradeoff 

of performance and computation cost/parameter size to the 

extent that it can be implemented with embedded software 

or SoC for applications such as mobile devices. In this 

section, we analyze the computational cost and complexity 

of the proposed MUNet. In this experiment, the number of 

convolution filters in the first MU-layer of MUNet was set 

to 6 and the number of convolution filters of the remaining 

MU-layers was set to 4 for fair comparison. On the other 

hand, the benchmarking networks of MUNet were limited to 

MobileNet and ShuffleNet for convenience. 

Table 3 shows the comparison of MUNet with three 

networks. We compared the parameter size (3rd column), 

inference time (5th column), and FLOPS (6th column) when 

they show experimentally similar classification accuracy, 

i.e., error rate (4th column). Inference times were measured 

in units of seconds on the desktop environment embedded 

with the Intel® i7-7700 CPU@3.6 GHz w/ 8 processors. 

FLOPS indicates the amount of computation, and it includes 

all operations such as convolution, pooling, and even 

multiplication, addition, and conditional statement for 

activation function. The inference time is measured as the 

sum of all test images in the dataset. 

From Table 3, we can find that MUNet has a smaller 

parameter size than the other networks. For example, on a 

Model Dataset Params Error rate (%) Inference time (Std) FLOPS 

1.0 MobileNet 

CIFAR-10 

1.88M 10.03 37.42 (0.36) 51.44M 

ShuffleNet × 1 (g = 1) 0.42M 9.93 39.17 (0.45) 43.39M 

MUNet 0.10M 9.80 41.85 (0.35) 40.30M 

1.0 MobileNet 

CIFAR-100 

1.97M 36.05 37.76 (0.19) 51.62M 

ShuffleNet × 1 (g = 1) 0.47M 34.76 39.64 (0.18) 44.49M 

MUNet 0.11M 34.72 41.39 (1.38) 40.32M 

1.0 MobileNet 

SVHN 

1.88M 4.98 96.53 (0.26) 51.44M 

ShuffleNet × 1 (g = 1) 0.42M 4.68 102.81 (0.24) 43.39M 

MUNet 0.10M 4.41 104.72 (0.30) 40.30M 

1.0 MobileNet 
Tiny 

ImageNet 

3.17M 56.48 45.40 (0.13) 79.33M 

ShuffleNet × 1 (g = 1) 0.70M 56.18 59.49 (0.84) 59.49M 

MUNet 0.13M 56.13 59.93 (0.49) 50.83M 
     

Table 3: Comparison in terms of parameter size, inference time, and FLOPS assuming the same error rates. Std in the fifth column 

represents the standard deviation. 
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CIFAR dataset, MUNet achieves about four times the 

parameter reduction in comparison to ShuffleNet. 

On the other hand, while MUNet has always smaller 

FLOPS than ShuffleNet and MobileNet for all datasets, its 

inference time is slightly larger than the other networks. 

This is because MUNet has a small number of filters used 

per convolution, but it performs many convolution 

operations due to the nature of the network. This issue will 

be touched again in Section 5. 

4.4. Adaptability to the surrounding environment 

MUNet is a CNN model designed for mobile device 

purpose. It is important that the CNN model fitted to a 

specific environment should maintain its performance even 

if the surrounding environment changes. Therefore, this 

section verifies whether MUNet conforms to the 

characteristics of the mobile device through the fine tuning 

experiment of MUNet with very small parameters. Unlike 

the experiment in the previous section, the reason for 

excluding ShuffleNet from the benchmarking group is that 

the fine tuning experiment was not performed in ShuffleNet. 

First, we trained the MUNet by using a down-sampled 

ImageNet dataset, and performed a fine tuning process with 

the CIFAR dataset. Here, the reason for pre-training using 

down-sampled ImageNet is that as shown in [33], 

down-sampled ImageNet produces similar optimal 

hyper-parameters while exhibiting faster learning 

convergence speed than original ImageNet. In addition, 

since the image size of down-sampled ImageNet is the same 

as the image size to be fine-tuned, more accurate 

verification of fine tuning performance is possible. In both 

networks, the specification of Table 3 was used as is. In the 

case of MUNet, the number of convolution filters of small 

units was changed. As shown in Table 4, when fine tuning is 

performed, MUNet shows an additional performance 

improvement of about 2.4% based on CIFAR-100. On the 

other hand, MobileNet has a performance improvement of 

about 4.5%. It can be said that MobileNet, which has a 

larger number of parameters, could learn richer feature 

information than MUNet when pre-trained with a huge 

amount of datasets. Note that despite much smaller 

parameter size, MUNet shows successful fine tuning results. 

This means that even though the model size of the MUNet is 

very small, it can learn meaningful feature information 

when pre-trained with a large amount of datasets. 

4.5. Performance evaluation according to 

MU-layer structure 

The core concept of MUNet is to use multiple MUs with 

a small number of convolution filters at each MU-layer. In 

this experiment, the structural characteristics of such a 

MUNet are verified (see Table 5). 

The first row of Table 5 shows the case where the 

MU-layer is designed with a single MU per layer structure. 

In this case, the number of convolution filters is increased 

enough to compensate for the reduced number of MUs per 

MU-layer for fair comparison. The result was compared 

with authentic MUNet (see the 2nd row in Table 5). 

As can be seen from the experimental results in Table 5, 

the single MU per layer structure shows a minor accuracy 

improvement of 0.8% in comparison with the original 

MUNet, but it increases about 5 times both the parameter 

size and FLOPS. As a result, we can find that the 

architecture of MUNet is superior in performance. 

4.6. Selection of the appropriate hyper-parameter 

The core units of the MU architecture are 1-path small 

Model Dataset Params Error rate (fine tuned / original) (%) FLOPS 

1.0 MobileNet 

CIFAR-10 

1.88M 9.70 / 10.03 51.44M 

MUNet 
0.11M 9.03 / 9.54 49.58M 

0.10M 9.15 / 9.80 40.30M 

1.0 MobileNet 

CIFAR-100 

1.98M 31.58 / 36.05 51.62M 

MUNet 
0.12M 32.10 / 34.58 49.59M 

0.11M 33.54 / 34.72 40.32M 
 

Table 4: Fine tuning performance comparison between MobileNet and MUNet. 

Method 
Error 

rate (%) 
Params 

FLOPS 

[Mult. Add If] 

Single MU per 

layer 
9.01 0.49M 

203.72M 

[101.75 101.16 0.81]

Multiple MUs per 

layer (MUNet) 
9.80 0.10M 

40.30M 

[20.11 19.88 0.31] 

Table 5: Performance comparison according to MU-layer 

structure for CIFAR-10.  

The number of 

1-path small units
Error rate (%) 

FLOPS 

[Mult. Add If] 

1 36.82 
27.00M 

[13.48 13.33 0.19] 

2 34.72 
40.32M 

[20.12 19.89 0.31] 

3 34.40 
53.69M 

[26.79 26.48 0.42] 

Table 6: Performance comparison according to the number of 

1-path small units for CIFAR-100.  
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unit and 2-path small unit. In Section 3.3, we emphasized 

that the 2-path small unit plays an essential role in MUNet 

performance, and also the reason for the existence of 1-path 

small unit is to increase the number of internal layers of MU 

model. So the number of 1-path small units can be regarded 

as a hyper-parameter. 

In this section, we performed an experiment to find an 

optimal hyper-parameter for MUNet, i.e., the best number 

of 1-path small units. The result is shown in Table 6. As the 

number of 1-path small units increases, the FLOPS 

increases linearly, but the error rate decreases sharply and 

saturates. Therefore, this paper adopted two 1-path small 

units per MU, pursuing optimal trade-off performance. The 

number of MUs per MU-layer can also be regarded as a 

hyper parameter, although it has not been tested in this 

paper. 

5. Discussion 

As can be seen in Table 3, MUNet has significantly 

smaller parameter sizes and smaller FLOPS than the other 

networks. However, in terms of inference time, MUNet is 

somewhat inferior to the other networks unlike in terms of 

FLOPS. The reason is that MUNet has a small number of 

filters per convolution, but it must perform many 

convolution operations inherently. MUNet has a more 

complex structure than a simple group convolution-based 

network when forming the whole network structure under 

the same conditions as [21]. The more complicated the 

structure, the more burden can be placed on the inference 

time. Therefore, we can analyze that MUNet has less 

FLOPS but provides somewhat longer inference time than 

the other networks. In order to overcome this problem, 

shortening the computation time of the convolution as in [22, 

32] can reduce the inference time of MUNet. 

6. Conclusion 

In this paper, we propose a new CNN architecture that 

escapes from the existing group convolution structure in 

order to design a deep neural network suitable for mobile 

devices. Since the conventional group convolution-based 

network uses a large number of convolution filters, the 

amount of computation is large and there may be a 

considerable redundant computation. In order to solve this 

computational cost problem fundamentally, this paper 

presented a MU-based CNN using only a small number of 

convolution filters where richer feature maps can be learned 

by using multiple MUs instead of a single GConv block. 

Experimental results show that the proposed MUNet 

consumes significantly less computation cost while 

maintaining comparable performance with existing 

networks including state-of-the-art CNNs. 

Acknowledgements 

This work was supported by the industrial Technology 

Innovation Program funded by the ministry of Trade, 

industry & Energy (MI, Korea) [10073154, Development of 

human-friendly human-robot interaction technologies using 

human internal emotional states]. 

References 

[1] R. Salakhutdinov, G. Hinton. Deep boltzmann machines. 

In Artificial Intelligence and Statistics, pages 448-455, 

2009.  

[2] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. 

Convolutional deep belief networks for scalable 

unsupervised learning of hierarchical representations. 

In Proceedings of the 26th annual international conference 

on machine learning, pages 609-616, 2009. 

[3] Y. L. Boureau, Y. L. Cun. Sparse feature learning for deep 

belief networks. In Advances in neural information 

processing systems, pages 1185-1192, 2008. 

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet 

classification with deep convolutional neural networks. 

In Advances in neural information processing systems, pages 

1097-1105, 2012. 

[5] K. Simonyan, A. Zisserman. Very deep convolutional 

networks for large-scale image recognition. arXiv preprint 

arXiv:1409.1556, 2014. 

[6] L. Sifre. Rigid-motion scattering for image classification. 

PhD thesis, Ph. D. thesis, 2014. 

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning 

for image recognition. In Proceedings of the IEEE 

conference on computer vision and pattern recognition, 

pages 770-778, 2016. 

[8] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated 

residual transformations for deep neural networks. arXiv 

preprint arXiv:1611.05431, 2016. 

[9] F. Chollet. Xception: Deep Learning with Depthwise 

Separable Convolutions. arXiv preprint arXiv:1610.02357, 

2016. 

[10] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. 

Densely connected convolutional networks. arXiv preprint 

arXiv:1608.06993, 2016. 

[11] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet: 

Ultra-deep neural networks without residuals. arXiv preprint 

arXiv:1605.07648, 2016. 

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. 

Salakhutdinov. Dropout: A simple way to prevent neural 

networks from overfitting. The Journal of Machine Learning 

Research, pages 1929-1958, 2014. 

[13] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient and 

accurate approximations of nonlinear convolutional 

networks. In Proceedings of the IEEE Conference on 

Computer Vision and pattern Recognition, pages 1984-1992, 

2015. 

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning 

structured sparsity in deep neural networks. In Advances in 

Neural Information Processing Systems, pages 2074-2082, 

2016. 

1788



 

 

[15] C. Szegedy, S. loffe, V. Vanhoucke, and A. Alemi. 

Inception-v4, inception-resnet and the impact of residual 

connections on learning. AAAI. Vol. 4, 2017. 

[16] A. G. Howard, et al. Mobilenets: Efficient convolutional 

neural networks for mobile vision applications. arXiv 

preprint arXiv:1704.04861, 2017. 

[17] X. Zhang, et al., ShuffleNet: An extremely efficient 

convolutional neural networks for mobile devices. arXiv 

preprint arXiv:1707.01083, 2017. 

[18] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. 

Deep networks with stochastic depth. In European 

Conference on Computer Vision, pages 646-661, 2016. 

[19] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in 

deep residual networks. In European Conference on 

Computer Vision, pages 630-645, 2016. 

[20] B. Zoph, and Q. V. Le. Neural Architecture Search with 

Reinforcement Learning. arXiv preprint arXiv:1611.01578, 

2016. 

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. 

Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. 

Tensorflow: Large-scale machine learning on heterogeneous 

systems, 2015. Software available from tensorflow. org, 1, 

2015. 

[22] W. Xu, Z. Wang, X. You and C. Zhang. Efficient fast 

convolution architectures for convolutional neural network. 

In ASIC (ASICON). IEEE 12th International Conference on, 

pages 904-907, 2017. 

[23] A. Krizhevsky, G. Hinton. Learning multiple layers of 

features from tiny images. Tech Report, 2009. 

[24] I. J. Goodfellow, et al. "Multi-digit number recognition from 

street view imagery using deep convolutional neural 

networks." arXiv preprint arXiv:1312.6082, 2013. 

[25] A. Bastidas. Tiny ImageNet Image Classification. url: 

https://tiny-imagenet.herokuapp.com/. 

[26] S. Han, H. Mao, and W. J. Dally. Deep compression: 

Compressing deep neural networks with pruning, trained 

quantization and Huffman coding. arXiv preprint arXiv: 

1510.00149, 2015. 

[27] L. Bottou. Large-scale machine learning with stochastic 

gradient descent. In Proceedings of COMPSTAT'2010. pp. 

177-186, 2010. 

[28] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the 

importance of initialization and momentum in deep learning. 

In International conference on machine learning, pages 

1139-1147, 2013. 

[29] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into 

rectifiers: Surpassing human-level performance on imagenet 

classification. In Proceedings of the IEEE international 

conference on computer vision, pages 1026-1034, 2015. 

[30] S. Ioffe, C. Szegedy. Batch normalization: Accelerating deep 

network training by reducing internal covariate shift. 

In International Conference on Machine Learning, pages 

448-456, 2015. 

[31] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. 

Xnor-net: Imagenet classification using binary convolutional 

neural networks. In European Conference on Computer 

Vision. pages 525-542, 2016. 

[32] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up 

convolutional neural networks with low rank expansions. 

arXiv preprint arXiv:1405.3866, 2014. 

[33] P. Chrabaszcz, I. Loshchilov, and F. Hutter. A Downsampled 

Variant of ImageNet as an Alternative to the CIFAR 

datasets. arXiv preprint arXiv:1707.08819, 2017. 

[34] O. Russakovsky, J. Deng, H. Su, H. Krause, S. Satheesh, S. 

Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. 

Imagenet large scale visual recognition challenge. 

International Journal of Computer Vision, 115(3):211-252, 

2015. 

[35] S. J. Hanson, and L. Y. Pratt. Comparing biases for minimal 

network construction with back-propagation. In Advances in 

neural information processing systems. Pages 177-185, 

1989. 

 

1789


