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Abstract

Deep neural networks perform better than traditional
machine learning methods on various classification
problems by producing good quality feature maps through
successive convolution operation(s). However, when
implementing a deep neural network in an embedded
system or SoC for mobile devices, its large parameter size
can be a significant burden on the internal memory design.
In this paper, we propose a new deep neural network that
reduces computation and the number of model parameters
but maintains reasonable performance. The configuration
of the proposed network is as follows: First, we propose a
macro unit (MU) to reduce heavy computations and to
learn various feature maps. Second, we employ asymmetric
convolution of the well-known Inception network to further
efficiently manipulate feature maps within the MU. Third,
all the feature maps produced from MU(s) of each layer are
concatenated and then the grouped feature map is
distributed to all the MUs of the next layer for transferring
richer information. Experimental results show that the
proposed network achieves about 10% higher performance
than DenseNet-BC in case of extremely small parameter
size for CIFAR-100. The proposed network also has very
few learning parameters and smaller floating point
operations per second (FLOPS) than the other networks
optimized for mobile devices such as MobileNet.

1. Introduction

Prior to the deep learning era, a lot of traditional machine
learning approaches have been developed for solving
various classification problems, and neural networks (NN)
were one of them. Recently, deep NN techniques [1-3] that
can be considered as a catalyst for this deep learning era
have been devised. The end-to-end learning optimizes all
processing steps simultaneously, and it leads to better
performance and smaller systems. Because of outstanding
performance beyond traditional machine learning
techniques, deep learning is expanding its scope to a variety
of applications, including computer vision, medical, and
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Figure 1: The main concept of the proposed method. Up:
Learning scheme of group convolution block. Down: Learning
scheme of proposed convolution block. Here H,W represent
the horizontal and vertical sizes of the feature map, respectively
and C, represents the number of channels.

architectural applications. AlexNet [4] is known as the most
famous convolutional NN (CNN) among early deep
learning methods. Next, competition to develop deeper and
better CNNs than AlexNet has become fierce, and so the
well-known visual geometry group (VGG) network was
born out of such competition [5]. However, since VGG,
many researchers have encountered limitations in
increasing network depth. He et al. caused sensation by
presenting ResNet [7], which enables a deeper structure of
the network using residual connections.

ResNeXt [8] and Xception [9] have also been proposed,
which effectively learns the feature map by focusing on the
convolution filter configuration rather than the feature map
connection. Recently DenseNet [10], which is a network
with differentiating connection methods between feature
maps, based on the existing ResNet became famous.

On the other hand, extensive size of learning parameters
and huge computational complexity make it difficult to
implement existing CNNs with embedded software or SoC
for mobile devices, drones, and social robots. To solve this
problem, CNNs focusing on sparcity connection aimed at
hardware-friendly structure have been developed [13, 14].

However, conventional CNNs, including [13] and [14],
still have significant computational complexity and
parameter size, making them cumbersome to implement.
The fundamental problem of CNNs in terms of
computational complexity and memory size is the use of
so-called group convolution (GConv) [4], which requires a



large number of convolution filters. When constructing
CNN with such group convolutions, it is advantageous to
obtain various feature maps in spite of simple convolution
structure. On the other hand, in the optimization process on
the high dimension space, GConv may have some degree of
redundancy. This causes unnecessary increase of parameter
size and computational complexity [26, 35].

To solve the above-mentioned problem, MobileNet [16]
and ShuffleNet [17] have adopted factorized convolution
such as depth-wise separable convolution [6]. Nonetheless,
the tradeoff between performance and parameter
size/computation is still an unresolved issue in the research
on CNN. The reason is that even if you use factorized
convolution, many filters per convolution operation are still
required. This can eventually lead to a redundancy in
learning high dimension feature map [31].

This paper proposes an efficient CNN structure that
shows satisfactory performance even with only a small
number of convolution filters. As shown in Fig. 1, learning a
feature map by dividing a single GConv block into multiple
macro units (MUs) is a key concept of the proposed network.
Each MU consists of much smaller number of convolution
filters than GConv block, and furthermore it adopts
separable convolution of Inception-V4 [15], which has
considerable advantages in terms of parameter size and
computation amount. Meanwhile, we propose a method to
simultaneously concatenate feature maps generated from
multiple MUs of each layer and distribute them to the next
layer, as shown in Fig. 2, so that a rich feature map can be
generated even with MUs composed of a small number of
convolution filters. Therefore, the proposed network can
learn sufficiently rich feature maps with relatively a small
number of convolution filters.

We verified the classification performance of the
proposed MU-based network (MUNet) on highly
competitive benchmarking datasets, i.e., CIFAR, SVHN,
and Tiny-ImageNet. For example, for CIFAR-100 dataset,
MUNet shows a performance improvement of up to 10% in
a small parameter region compared to the DenseNet-BC.
Also, in the reasonably similar error rate range, MUNet
exhibits more than 15 times less parameter size and fewer
FLOPS than MobileNet.

2. Related Works

Novel convolution filter. Inception-V4 is an inception
module that combines the results from multiple filters of
different sizes. To reduce the computational complexity, the
inception module adopts the asymmetric convolution
instead of the two-dimensional (2D) convolution. Also,
ResNeXt and Xception networks have shown that feature
maps can be efficiently learned by implementing point-wise
convolution and depth-wise convolution based on (1,1)
convolution filter and (3,3) convolution filter.
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Connection between feature maps. As mentioned
earlier, ResNet is a way to increase the number of
parameters and pursue a deeper network than AlexNet and
VGG. Adding the by-pass connection to the existing VGG
network is the key idea, which solved the gradient vanishing
problem and helped the smooth transmission of feature map
information. Thereafter, modified versions of ResNet
appeared in which various methods were applied to ResNet
[18, 19].

Beyond the ResNet family of algorithms, DenseNet has
introduced two new concepts. First, DenseNet utilized
residual connections of concatenate style rather than those
of summation style, thus enabling rich learning of feature
maps. Second, DenseNet has made connections between all
the layers of the block module so that feature map and
gradient information can be seamlessly conveyed across the
entire network. In addition, FractalNet [11] is remarkable in
that it builds up a deep network without residual
connections and boosts overall performance.

Efficient Model Designs. MobileNet is based on
depth-wise separable convolution which factorize a
standard convolution into a depth-wise convolution and a
1x1 convolution called a point-wise convolution. Note that
conventional convolution performs filtering and combining
simultaneously. The depth-wise separable convolution of
MobileNet splits this into two layers, i.e., one layer for
filtering and the other layer for combining. So such a
factorization has the effect of drastically reducing
computation and model size. Therefore, MobileNet enables
very fast inference time while showing reasonable
performance.

ShuffleNet has a more advanced convolution structure
than MobileNet. ShuffleNet is also based on a depth-wise
separable convolution, but realizes a small network with
few channels through the channel shuffle technique. So
ShuffleNet has similar performance to MobileNet, but its
parameter size and computation becomes smaller than that
of MobileNet.

On the other hand, NASNet model [20], which has been
attracting attention recently, is not a network designed to
have a fundamentally small parameter size, so we do not use
NASNet as a benchmarking network of MUNet in this

paper.

3. Approach

As shown in Fig. 2, MU is a crucial component of the
proposed network. Feature maps learned in independent
MUs of each layer are concatenated and distributed to MUs
of the next layer. After repeating the above steps in several
layers as shown in the figure, the final feature map is
produced and then global pooling is applied. Finally, the
vector information is obtained through the fully connected
(FC) layer of the same level as the class of the
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Figure 2: Overall framework of the proposed network.

corresponding data set, and the softmax function is taken
and the final prediction is performed.

3.1. Macro unit

This section describes the structure of the MU, i.e., a key
element of the proposed network. The overall MU
configuration is shown in Fig. 3(a). After the network
regularization process such as dropout [12], feature map
learning is performed through multiple 1-path small units.
The primary function of the 1-path small unit(s) is to
increase the number of internal layers in the MU to prevent
performance degradation. We then reduce the size of the
feature map through the pooling process. Finally, the 2-path
small unit is applied. Since the 2-path small unit is
constructed based on the dynamic connections of 1D
convolutions in different directions, which were also
proposed in the inception module of [15], and symmetric
convolution, it outputs feature maps with more abundant
characteristics than 1-path small unit do. As a result, the
MUNet having a small number of convolution filters can
significantly reduce the computational complexity and the
parameter size compared to the conventional GConv-based
networks.

3.2. Small units

As in Fig. 3(a), the MU uses two kinds of small units.
First, the 1-path small unit is used for learning a richer
feature map by increasing the number of layers in the MU,
and has the detailed structure of Fig. 3(b). The number of
1-path small units in the MU is considered a hyper
parameter of the network, such as dropout, which is covered
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in Section 4.6. 1D convolutions of (1, N) and (¥, 1) are
performed after the 2D convolution of (¥, N), and then the
results are summed as shown in the figure. As mentioned
above, the reason for using asymmetric convolution filters
such as (1, N) and (I, 1) is to reduce the computational cost
of the convolution operation. The computational cost of the
standard 2D convolution is as follows.

CiXCy X NXNXD;xD, 1

where C)and C, represent the number of input channels

and the number of output channels, respectively, and
N X N represents the convolution kernel size, and D, X D,
indicates the feature map size. The ratio of the
computational complexity of the asymmetric 1D
convolutions to the 2D convolution computation of Eq. (1)
is calculated as follows.

CXCyX(N+N)XD xD, 2N
CyXCyXx NXNXDy XD, N?

2

. . . 2 .
That is, the parameter reduction effect is about N times.

The structure of the 2-path small unit is shown in Fig. 3(c).
The different thing from 1-path small unit is the number of
output paths. The 2-path small unit has two output paths.
Each output is to plus the asymmetric 1D convolution result
and the standard 2D convolution result. Feature maps
learned by 1D convolutions with different directions, i.c.,
asymmetric convolutions, are transferred to the MUs of the
next layer, so that it is possible to generate feature maps
with more abundant characteristics.

3.3. Comparison of GConv Block and MU Block

In this section, we compare the computational
complexities of the GConv block and the corresponding
MU-based block in Fig. 1. The specifications of the two
network architectures are shown in Table 1. The
computation cost of the GConv block is obtained from
Table 1 and Eq. (1), which is as follows.

Convl  : C;xCyx3*xDyxD, +

Conv2,3,4 : (C,xCyx3*x Dy x D;)x3 A3)

Conv5,6  : (CyxCyx3*x D, /2% D, [2)x2
C,xCyx32xDyxD, =« 4)

If the common term a of Eq. (4) is substituted, the total
computational complexity of the GConv block is expressed

by Eq. (5).
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The computational complexity of the MU-based block
corresponding to the GConv block is shown in Eq. (6).

(ﬂ +ijax4 (6)

Based on Egs. (5) and (6), we can find that the MU-based
block has about 70% reduction in computation cost over the
GConv block, assuming that the number of convolution
filters doubles in the general CNN layer hierarchy.

3.4. Interface of concatenation and distribution

Feature maps generated from several MUs of each layer
are concatenated and uniformly distributed to the MUs of
the next layer, as shown in Fig. 2, so that MUs with a small
number of convolution filters can learn rich feature maps
sufficiently. For example, at the bottom of Fig. 1, we can
observe that the four MU outputs are concatenated and then
delivered to the next layer.

Therefore, MUNet has an advantage that it has very small
parameter size and computation amount with comparable to
GConv-based networks.

3.5. Implementation details

As shown in Fig. 2, the proposed network consists of four
MU-layers. The number of MUs from the top MU-layer is
set to 1, 4, 8, and 16, respectively. The first MU-layer has
only one MU, which is composed of only 2-path small unit,
not dropout and pooling layer considering the input
characteristics of the network. The second and third
MU-layers have the structure shown in Fig, 3(a). Since the
last fourth MU-layer no longer needs to increase the depth
of the network, we only use the 1-path small unit once after
the dropout.
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Layer GConv block MU block

Input HXWxC HXWxC
Convl (3, 3) conv. (3, 3) conv.
Conv2 (3, 3) conv. (1,3) & (3, 1) conv.
Conv3 (3, 3) conv. (3, 3) conv.
Conv4 (3, 3) conv. (1,3) & (3, 1) conv.
Pooling (2, 2) max pool (2, 2) max pool
Conv5 (3, 3) conv. (3, 3) conv.
Conv6 (3, 3) conv. (1,3) & (3, 1) conv.
Concat - Filters of 4 MUs
Output ﬁ><K><C2 ﬁ><K><C2

2 2 2 2

Table 1: Network architecture between GConv block and MU.
Here (3,1) & (3,1) conv. indicates asymmetric convolutions. Both

GConv block and MU assume

convolution filters are used for GConv block and C,/4

C, input feature maps. C,

convolution filters are used for each MU. After pooling, the
feature map size is halved.

Meanwhile, max pooling is used in the pooling step, and
the dropout rates of the remaining MU-layers except for the
first MU-layer are 0.2, 0.5, and 0.5, respectively.

4. Experimental Results

We experimentally demonstrated the classification
performance of MUNet for CIFAR, SVHN, and
Tiny-ImageNet datasets, which are widely used as
benchmarks for classification problems. We also verified
the model adaptability beyond classification task.

Section 4.1 discusses the datasets used in the experiments
and details of the learning method. Section 4.2 compares the
performance of the proposed MUNet against the latest
techniques via classification problem. Section 4.3 compares
the computational complexity as well as the memory cost.
Section 4.4 verified the adaptability of the proposed
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Figure 4: Comparison in terms of the parameter efficiency for CIFAR datasets. Left: C10+. Right: C100+.

network to the surrounding environment. Section 4.5
experimentally justified the structural characteristics of the
MUNet. Finally, Section 4.6 shows how to choose the
optimal hyper-parameters of MUNet.

4.1. Datasets and training details

For fair evaluation of the proposed scheme, we used four
popular datasets: CIFAR [23], SVHN [24], Tiny ImageNet
[25], and down-sampled ImageNet [33]. The latter two
datasets are from ILSVRC-2012 [34]. In order to evaluate
the classification performance, CIFAR, SVHN, and Tiny
ImageNet are used. The reason for including Tiny ImageNet
here is to prove that MUNet is a network that is sufficiently
applicable to the actual environment. Down-sampled
ImageNet was adopted to verify fine tuning performance of
the MUNet in Section 4.4.

As the augmentation technique of the datasets, the only
horizontal mirroring and translation (uniform offsets in
from -4 to 4) used in [7, 10, 11] was applied.

To optimize the proposed network model, the stochastic
gradient descent (SGD) [27] method was used. Also, the

weight decay of 10™* and Nesterov momentum [28] of 0.9
without dampening were employed. For weight
initialization, we adopted the distribution used in [29].
When learning with CIFAR and SVHN datasets, the total
number of epochs was set to 300 and the batch size was set
to 128. When learning with the Tiny ImageNet dataset, the
total number of epochs was set to 300, and the batch size
was set to 256, and the dropout was excluded here. Finally,
we achieved the normalization effect of the feature map
during learning process by using batch normalization [30]
after the activation function.

The performance of a network was evaluated by the
average of the results of three times experiments using the
weights of the network after the final learning. We also
employed the Tensorflow [21] based deep learning library,
and used GPU named NVIDIA GeForce GTX 1080 Ti to
finish the training process.
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Model Dataset Params rate (%)
ResNet [7] 0.8M 6.97
DenseNet [10] 1.0M 5.24
DenseNet (ours) 1.0M 5.12

CIFAR-10
DenseNet-BC [10] 0.8M 4.51
DenseNet-BC (ours) 0.8M 4.41
MUNet 1.0M 5.35
FractalNet [11] 0.8M 30.71
DenseNet [10] 1.0M 24.42
DenseNet (ours) 1.0M 24.04

CIFAR-100
DenseNet-BC [10] 0.8M 22.27
DenseNet-BC (ours) 0.8M 22.01
MUNet 1.0M 25.85

Table 2: Performance comparison of various CNN methods for
the parameter size of about 1M in terms of error rates.

4.2. Classification performance evaluation

This section compared MUNet with state-of-the-art CNN
techniques such as DenseNet, DenseNet-BC, ResNet,
FractalNet, MobileNet, and ShuffleNet in terms of
classification accuracy. The experimental results of
MobileNet and ShuffleNet were from our own
implementations, and those of the other networks were
directly extracted from the corresponding papers. In case of
DenseNet, because no numerical results for parameter sizes
of about 500,000 or less are no available in [10], we
implemented the DenseNet and plotted the results in the
right of Fig. 4. In order to ensure the reliability of our
implementation(s), Table 2 compared it with the results
from [10] for the parameter sizes of about 1M. The results
from [7] and [11] were also compared together in the table.
Note that according to [7, 10, 11], 1 M is almost the lower
bound of the parameter size where the state-of-the-art



Model Dataset Params Error rate (%) Inference time (Std) FLOPS
1.0 MobileNet 1.88M 10.03 37.42 (0.36) 51.44M
ShuffleNet x 1 (g=1) CIFAR-10 0.42M 9.93 39.17 (0.45) 43.39M
MUNet 0.10M 9.80 41.85(0.35) 40.30M
1.0 MobileNet 1.97TM 36.05 37.76 (0.19) 51.62M
ShuffleNet x 1 (g=1) CIFAR-100 0.47M 34.76 39.64 (0.18) 44.49M
MUNet 0.11M 34.72 41.39 (1.38) 40.32M
1.0 MobileNet 1.88M 4.98 96.53 (0.26) 51.44M
ShuffleNet x 1 (g=1) SVHN 0.42M 4.68 102.81 (0.24) 43.39M
MUNet 0.10M 4.41 104.72 (0.30) 40.30M
1.0 MobileNet 3.17M 56.48 45.40 (0.13) 79.33M
ShuffleNet x 1 (g=1) lmZ;I;}I,\Iet 0.70M 56.18 59.49 (0.84) 59.49M
MUNet 0.13M 56.13 59.93 (0.49) 50.83M

Table 3: Comparison in terms of parameter size, inference time, and FLOPS assuming the same error rates. Std in the fifth column

represents the standard deviation.

methods provide effective performance. We can say that our
implementation is reliable. In addition, we can find that
MUNet shows comparable results to the cutting-edge CNNs
for CIFAR datasets.

Next, since MUNet pursues a network with a small
parameter size, we evaluated its performance, focusing on a
region where the learning parameter size is small to some
extent. Because we can say that the parameter size range
below 1M is a reasonable range based on the datasets we
adopted (see Fig. 4), we concentrate on the comparison for
the parameter size range of less than 100,000, i.e., an
intermediate point that we pay attention to. As shown in Fig.
4, MUNet shows consistently superior performance to
ResNet, FractalNet, and DenseNet. The performance of
MUNet is somewhat lower than that of DenseNet-BC, but
the smaller the parameter size, the more comparable the
performance.

On the other hand, one of the points we should pay
attention to is the pattern of performance change according
to the parameter size. MUNet shows a much lower
performance degradation rate than the other networks in the
parameter size area below 1.0M. Especially, in case of very
small parameter size area of less than 0.1M, the proposed
network shows rather superior performance than
DenseNet-BC. That is, when comparing MUNet and
DenseNet-BC in a very small parameter size area, MUNet
has a performance advantage of up to 1.5% based on
CIFAR-10 and up to 10% based on CIFAR-100. For
CIFAR-100, FractalNet showed an error rate of about 37%
at parameter size of 0.3M, while MUNet showed about 37%
error rate at parameter size of 0.059M. In other words,
assuming the same classification accuracy, it is sufficient
that MUNet is as small as 1/5 of the parameter size than
FractalNet.

In addition, we can observe from Fig. 4 that MobileNet
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and ShuffleNet perform significantly poorer than the other
networks in terms of performance vs. parameter size. This is
because MobileNet and ShuffleNet are the networks that are
developed to reduce the amount of computation rather than
to improve performance. In this aspect, the proposed
MUNet should be noted that even if the parameter size
decreases, the performance degradation rate is very slow.

4.3. Complexity analysis

The main purpose of MUNet is to derive a good tradeoff
of performance and computation cost/parameter size to the
extent that it can be implemented with embedded software
or SoC for applications such as mobile devices. In this
section, we analyze the computational cost and complexity
of the proposed MUNet. In this experiment, the number of
convolution filters in the first MU-layer of MUNet was set
to 6 and the number of convolution filters of the remaining
MU-layers was set to 4 for fair comparison. On the other
hand, the benchmarking networks of MUNet were limited to
MobileNet and ShuffleNet for convenience.

Table 3 shows the comparison of MUNet with three
networks. We compared the parameter size (3™ column),
inference time (5 column), and FLOPS (6 column) when
they show experimentally similar classification accuracy,
i.e., error rate (4" column). Inference times were measured
in units of seconds on the desktop environment embedded
with the Intel® 17-7700 CPU@3.6 GHz w/ 8 processors.
FLOPS indicates the amount of computation, and it includes
all operations such as convolution, pooling, and even
multiplication, addition, and conditional statement for
activation function. The inference time is measured as the
sum of all test images in the dataset.

From Table 3, we can find that MUNet has a smaller
parameter size than the other networks. For example, on a



Model Dataset Params Error rate (fine tuned / original) (%) FLOPS
1.0 MobileNet 1.88M 9.70/10.03 51.44M
CIFAR-10 0.11M 9.03/9.54 49.58M
MUNet
0.10M 9.15/9.80 40.30M
1.0 MobileNet 1.98M 31.58 /36.05 51.62M
CIFAR-100 0.12M 32.10/34.58 49.59M
MUNet
0.11M 33.54/34.72 40.32M
Table 4: Fine tuning performance comparison between MobileNet and MUNet.
Error FLOPS The number of o FLOPS
Method rate (%) | P27 | [Mult. Add If] 1-path small units | FTOr rate (%) [Mult. Add If]
Single MU per 203.72M 1 36.82 27.00M
layer 9.01 0-49M [101.75 101.16 0.81] ' [13.48 13.33 0.19]
Multiple MUs per 40.30M 2 3472 40.32M
layer (MUNet) 9-80 0.10M [20.11 19.88 0.31] ' [20.12 19.89 0.31]
Table 5: Performance comparison according to MU-layer 3 34.40 53.6OM
structure for CIFAR-10. [26.79 26.48 0.42]

CIFAR dataset, MUNet achieves about four times the
parameter reduction in comparison to ShuffleNet.

On the other hand, while MUNet has always smaller
FLOPS than ShuffleNet and MobileNet for all datasets, its
inference time is slightly larger than the other networks.
This is because MUNet has a small number of filters used
per convolution, but it performs many convolution
operations due to the nature of the network. This issue will
be touched again in Section 5.

4.4. Adaptability to the surrounding environment

MUNet is a CNN model designed for mobile device
purpose. It is important that the CNN model fitted to a
specific environment should maintain its performance even
if the surrounding environment changes. Therefore, this
section verifies whether MUNet conforms to the
characteristics of the mobile device through the fine tuning
experiment of MUNet with very small parameters. Unlike
the experiment in the previous section, the reason for
excluding ShuffleNet from the benchmarking group is that
the fine tuning experiment was not performed in ShuffleNet.

First, we trained the MUNet by using a down-sampled
ImageNet dataset, and performed a fine tuning process with
the CIFAR dataset. Here, the reason for pre-training using
down-sampled ImageNet is that as shown in [33],
down-sampled ImageNet produces similar optimal
hyper-parameters while exhibiting faster learning
convergence speed than original ImageNet. In addition,
since the image size of down-sampled ImageNet is the same
as the image size to be fine-tuned, more accurate
verification of fine tuning performance is possible. In both
networks, the specification of Table 3 was used as is. In the
case of MUNet, the number of convolution filters of small
units was changed. As shown in Table 4, when fine tuning is
performed, MUNet shows an additional performance
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Table 6: Performance comparison according to the number of
1-path small units for CIFAR-100.

improvement of about 2.4% based on CIFAR-100. On the
other hand, MobileNet has a performance improvement of
about 4.5%. It can be said that MobileNet, which has a
larger number of parameters, could learn richer feature
information than MUNet when pre-trained with a huge
amount of datasets. Note that despite much smaller
parameter size, MUNet shows successful fine tuning results.
This means that even though the model size of the MUNet is
very small, it can learn meaningful feature information
when pre-trained with a large amount of datasets.

4.5. Performance evaluation according to
MU-layer structure

The core concept of MUNet is to use multiple MUs with
a small number of convolution filters at each MU-layer. In
this experiment, the structural characteristics of such a
MUNet are verified (see Table 5).

The first row of Table 5 shows the case where the
MuU-layer is designed with a single MU per layer structure.
In this case, the number of convolution filters is increased
enough to compensate for the reduced number of MUs per
MU-layer for fair comparison. The result was compared
with authentic MUNet (see the 2" row in Table 5).

As can be seen from the experimental results in Table 5,
the single MU per layer structure shows a minor accuracy
improvement of 0.8% in comparison with the original
MUNet, but it increases about 5 times both the parameter
size and FLOPS. As a result, we can find that the
architecture of MUNet is superior in performance.

4.6. Selection of the appropriate hyper-parameter

The core units of the MU architecture are 1-path small



unit and 2-path small unit. In Section 3.3, we emphasized
that the 2-path small unit plays an essential role in MUNet
performance, and also the reason for the existence of 1-path
small unit is to increase the number of internal layers of MU
model. So the number of 1-path small units can be regarded
as a hyper-parameter.

In this section, we performed an experiment to find an
optimal hyper-parameter for MUNet, i.e., the best number
of 1-path small units. The result is shown in Table 6. As the
number of 1l-path small units increases, the FLOPS
increases linearly, but the error rate decreases sharply and
saturates. Therefore, this paper adopted two 1-path small
units per MU, pursuing optimal trade-off performance. The
number of MUs per MU-layer can also be regarded as a
hyper parameter, although it has not been tested in this

paper.

5. Discussion

As can be seen in Table 3, MUNet has significantly
smaller parameter sizes and smaller FLOPS than the other
networks. However, in terms of inference time, MUNet is
somewhat inferior to the other networks unlike in terms of
FLOPS. The reason is that MUNet has a small number of
filters per convolution, but it must perform many
convolution operations inherently. MUNet has a more
complex structure than a simple group convolution-based
network when forming the whole network structure under
the same conditions as [21]. The more complicated the
structure, the more burden can be placed on the inference
time. Therefore, we can analyze that MUNet has less
FLOPS but provides somewhat longer inference time than
the other networks. In order to overcome this problem,
shortening the computation time of the convolution as in [22,
32] can reduce the inference time of MUNet.

6. Conclusion

In this paper, we propose a new CNN architecture that
escapes from the existing group convolution structure in
order to design a deep neural network suitable for mobile
devices. Since the conventional group convolution-based
network uses a large number of convolution filters, the
amount of computation is large and there may be a
considerable redundant computation. In order to solve this
computational cost problem fundamentally, this paper
presented a MU-based CNN using only a small number of
convolution filters where richer feature maps can be learned
by using multiple MUs instead of a single GConv block.
Experimental results show that the proposed MUNet
consumes significantly less computation cost while
maintaining comparable performance with existing
networks including state-of-the-art CNNs.
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