
Efficient Deep Learning Inference based on Model Compression

Qing Zhang, Mengru Zhang, Mengdi Wang, Wanchen Sui, Chen Meng, Jun Yang

Alibaba Group

{sensi.zq, mengru.zmr, didou.wmd, wanchen.swc, mc119496, muzhuo.yj}@alibaba-inc.com

Weidan Kong, Xiaoyuan Cui, Wei Lin

Alibaba Group

{weidan.kong, xiaoyuan.cui, weilin.lw}@alibaba-inc.com

Abstract

Deep neural networks (DNNs) have evolved remark-

ably over the last decade and achieved great success in

many machine learning tasks. Along the evolution of deep

learning (DL) methods, computational complexity and re-

source consumption of DL models continue to increase, this

makes efficient deployment challenging, especially in de-

vices with low memory resources or in applications with

strict latency requirements. In this paper, we will intro-

duce a DL inference optimization pipeline, which consists

of a series of model compression methods, including Tensor

Decomposition (TD), Graph Adaptive Pruning (GAP), In-

trinsic Sparse Structures (ISS) in Long Short-Term Memory

(LSTM), Knowledge Distillation (KD) and low-bit model

quantization. We use different modeling scenarios to test

our inference optimization pipeline with above mentioned

methods, and it shows promising results to make inference

more efficient with marginal loss of model accuracy.

1. Introduction

DNN has become the main framework in various ap-

plications, such as computer vision [27, 16, 13], natural

language processing [29, 19], speech recognition [1], etc.

DNN can outperform many conventional machine learning

methods, due to the increased amount of training data, more

powerful computing resources as well as dramatically in-

creased model parameters. However when we deploy DNN

model in resource limited platforms, e.g. mobile systems, or

latency-sensitive applications, e.g. online services, the main

blocking issues are high computation complexity and huge

model storage size. For example, ResNet [5] needs 25.5

MB for model weight storage and 4.1 billion float point op-

erations (FLOPs) to classify a single image, when the image

spatial size is 224×224. As a result, reduction of the model

size and acceleration of the inference time gain more and

more attention in recent years. Newly proposed network

structures, including DenseNet [10] and ResNeXt [32], al-

ready take the resource issue into consideration, however

the gain is not enough. More inference optimization pro-

cedures over existing networks are proposed based on dif-

ferent frameworks. From perspective of algorithm, the in-

ference optimization methods can be categorized into two

classes: 1) reducing the number of model parameters and

2) reducing the model representation precision.

The methods of reducing the number of model parame-

ters aim to get a more compact network, they can be cate-

gorized into low rank factorization, weight pruning, KD and

new network architecture designs.

TD belongs to low-rank factorization based techniques,

which use tensor decomposition to estimate the informative

parameters of the deep models. Convolutional kernels can

be viewed as a 4D tensor, which is of significant amount

of redundancy. Regarding to the fully-connected layer, it

can be viewed as a 2D matrix and the low-rankness can also

help. TD aims to reduce the network FLOPs by decom-

posing a large filter into several small tensors by Canoni-

cal Polyadic (CP) decomposition [17] or Tucker decompo-

sition [14].

Weight pruning can reduce the model size by removing

some redundant parameters. It is firstly proposed by the

work optimal brain damage [18], which uses Taylor expan-

sion to estimate the influence of each weight on the total

loss, referred as weight saliency. The low-saliency weights

are pruned and the remained weights are finetuned to main-

tain the original accuracy. For static neural networks such as

Convolutional Neural Network (CNN), the work in [3] em-

ploys the magnitude of the weights to evaluate the weight

importance and determine which parameters should be re-

moved. This kind of pruning (fine-grained pruning) needs

dedicated compute libraries or/and hardware design, such

as EIE [3] and SCNN [24]. It will be difficult to be applied

11808

by users who do not have such accelerator support. More

works explore to find structural pruning, which can get

practical speed-up over existing compute libraries, such as

Compute Unified Device Architecture (CUDA) and CUDA

Deep Neural Network library (cuDNN). Works in [21, 6]

prune the weights offline at filter-level using LASSO re-

gression, a finetuning procedure is conducted to compen-

sate the performance loss. Other methods like [31, 20] con-

duct sparsity guidance while training. [31] uses group spar-

sity regularization filter-wise or channel-wise, and Network

Slimming (NS) [20] conducts ℓ1-norm on the scaling fac-

tors of Batch Normalization (BN) layers. However, such

sparsity-induced weight pruning methods usually ignore the

network topology, so that additional post-processing layer

may be needed to deal with complex network structure, e.g.

cross-connections. In order to address this issue, we pro-

pose GAP, which is capable of adapting to different network

structures, especially the widely used cross connections and

multi-path data flow in recent novel convolutional models.

The GAP can adaptively prune the models at vertex-level as

well as edge-level without any post-processing and it does

not need any customized computation library or hardware

support. In terms of dynamic neural networks like LSTM,

Narang et al. [23] use RNN connection pruning techniques

to compress model size of Deep Speech 2 [1]. However, lit-

tle work has been carried out to reduce coarse-grain struc-

tures rather than fine-grain connections in RNNs. ISS for

LSTM can learn to reduce the number of basic structures

within LSTM units. After learning those structures, final

LSTMs are still regular LSTMs with the same connectivity,

but have the reduced sizes [30].

Knowledge Distillation is proposed by Hinton et al. to

guide the student network training by a pretrained teacher

model using soft target [7]. The method aims to transfer

the knowledge from a complex teacher model to the student

network. FitNet [25] extends the method by distilling the

knowledge not only in the output but also the intermediate

representations. [33] proposed to transfer not the features in

each layer but the flow between layers. In such a way, the

teacher explains the solution process of a problem and the

student learns the flow of solution procedure.

Some researches explore new network architecture to get

the inference-efficiency at the beginning of network design,

such as SqueezeNet [12] and MobileNet [9] etc. The main

technique is to replace the large convolution filters by a

stack of small filters and train the network end-to-end. Since

the goal of our inference optimization pipeline is to com-

press the pretrained models and accelerate inference proce-

dure, the new network architecture will not be considered in

this work.

Reducing the model representation precision is equiv-

alent to the network quantization, which compresses the

bitwidth of the weights, activations or both. [2] quantizes

the weights value through k-means clustering and prod-

uct quantization, which achieves significant model size and

FLOPs reduction with less than 1% accuracy loss. Han et

al. further proposed to use Huffman coding to represent

the quantized weights as well as the codebook to improve

the compression rate [4]. [28] shows that it is possible to

achieve great speed-up with no-loss in accuracy using 8-bit

quantization. Extreme quantization is to binarize the net-

work [11], using 1-bit to represent a value. Such kind of

works using fixed-point or binary representation need spe-

cially designed compute acceleration library or hardware.

In this paper, we propose a pipeline that optimizes DL

inference. Given a pre-trained model , we can use TD/GAP

to optimize CNN parameters, followed by a self-taught KD

procedure to maintain the accuracy during finetuning. ISS

can be used to prune the parameters in LSTM cells. Since

some NVIDIA GPU devices have been capable of executing

8-bit integer 4-element vector dot product instructions to

accelerate DNN inference, we implement 8-bit quantization

to reduce the model representation precision and optimize

DL inference.

2. Methods

2.1. TD method

The motivation behind low-rank decomposition is to find

an approximate tensor that is close to convolutional kernel

but facilitates more efficient computation. Among many

low-rank based methods, two key differences are in how to

rearrange the four dimensions, and on which dimension the

low-rank constraint is imposed. Convolutional kernel can

be viewed as a 4D tensor, its shape is Dk ×Dk ×M ×N ,

where Dk is the filter size, M is the number of input

channel and N is the number of output channel. We re-

arrange the 4D convolution kernel and obtain M 3D ker-

nels, each of which is size of Dk × Dk × N . And then

we adopt CP factorization, decomposing each 3D tensor

into a summation of R rank-1 tensors as in Figure 1, that

is Xijk =
∑R

r=1 airbjrckr + eijk, where eijk represents

reconstruction error.

Figure 1. The CP tensor decomposition.

Based on this, we can conduct TD for convolutional

kernels and replace a standard convolution operation with

depthwise and pointwise convolutions as Figure 2.

When we choose to keep only one channel in the depth-

1809

Figure 2. From standard convolution to depthwise convolution and

pointwise convolution.

wise convolution, we can compute the ratio of computa-

tional cost before and after TD as (1):

Dk ·Dk ·M ·Df ·Df +M ·N ·Df ·Df

Dk ·Dk ·M ·N ·Df ·Df

=
1

N
+

1

Dk ·Dk

,

(1)

where Df is the size of input feature map.

2.2. GAP for CNN

For convolution, we use X , W , Z to denote the input

feature maps, convolution kernels and output feature maps,

respectively. Each channel Zi in the output feature maps

corresponds to a filter Wi, and the batch normalized result

is represented by Ẑi,

Zi = X ∗Wi, Ẑi =
Zi − µi
√

σ2
i + ǫ

· γi + βi, (2)

where µi and σ2
i are mean and variance of the channel, γi

and βi are the scaling factor and bias factor, respectively.

We use a symbol W to represent all the parameters in

CNN, including {W}, {γ}, {β} and also the other parame-

ters, such as those in the FC layer. W can be learned by the

following optimization,

min
W

f (I,W) +R(W), (3)

where, I denotes the input pairs including data and labels,

f (·) is the loss function, R (·) is the regularization used in

the training process.

We use a graph G = {V,E} to represent a network,

where vertices {V } denote the computation operations and

edges {E} show the data flow. In CNN, the computation

operations include convolution, BN, activation, concat, add

and FC, etc. Since convolution accounts for the majority of

computational load, we focus on the pruning of convolution

vertices in our method. Given a pretrained model, GAP can

be conducted using the following steps:

1) Re-train with sparsity regularization. The sparsity is con-

ducted on some parameters with certain structural pattern to

make some vertices or edges removable;

2) Sort all the weights and determine the pruning threshold;

3) Remove the correpsonding vertices or edges according to

the threshold;

4) Finetune the pruned graph with or without self-taught

KD.

2.2.1 Vertex-level pruning

For CNN with BN layers, the scaling factors in BN layers

can play a role of measuring the importance of each chan-

nel, and thus can be directly used for channel selection with

sparsity regularization. The channel-level pruning can be

obtained as (3):

min
W

f (I,W) +R(W) + λsRs ({γ}) , (4)

where Rs (·) is the sparsity regularization, which is typical

realized using ℓ1-norm, λs is the balance parameter which

can trade-off between the sparsity loss and the original loss.

In such way, insignificant BN vertices can be removed.

However, in modern network like DenseNet and ResNet,

in order to remove a certain convolution vertex, the graph

topology should be taken into consideration. Based on

the conception, we propose to adaptively prune network at

vertex-level by a more structural way.

The BN vertices are classified into articulation points

{Va} and non-articulation points {V̄a}. {V̄a} is further

split into to 1-to-1 connection {V̄
(1 1)
a }, 1-to-n connection

{V̄
(1 n)
a } and n-to-1 connection {V̄

(n 1)
a } BN vertices. Dif-

ferent constraints are conducted on different subsets,

min
W

f (I,W) +R(W) + λsRs ({γs}) + λgsRgs

({

γgs

})

s.t. γs ∈ {V̄ (1 1)
a }, γgs ∈ {V̄ (1 n)

a } ∪ {V̄ (n 1)
a } (5)

The vertices in {V̄
(1 1)
a } are regularized by ℓ1-norm Rs (·),

and those in {V̄
(1 n)
a } and {V̄

(n 1)
a } are constrained by

group sparsity, using ℓ2,1-norm Rgs (·), while each group

denotes the vertices that share the same parent or child ver-

tex.

2.2.2 Edge-level pruning

Different from vertex-level pruning, here we can treat a net-

work as graph at a coarser level: a set of filters in a convo-

lution layer is regarded as a single vertex. Similarly, a BN

vertex represents a whole BN layer in edge-level pruning.

1810

When there are multiple paths for data flow, the edges on

such paths become non-bridge. Thus the multi-path prun-

ing is equivalent to removing part of the non-bridge edges.

And the sparsity regularization to make non-bridge edges

pruning is conducted as steps below:

Firstly, the non-bridge edges are selected as candidates to

be pruned. We only choose the last edge in each path to con-

duct pruning. Furthermore, in CNNs, multiple paths are al-

ways combined together using a “concat” operation. There-

fore, we use concat-vertex to detect the edges to be pruned.

The set of selected edges is denoted as {Es}. Secondly,

each selected edge is scaled by an additional parameter γe,

acting as a measurement of the edge’s importance. The edge

scaling factors are therefore constrained using sparsity reg-

ularization,

min
W

f (I,W) +R(W) + λesRes ({γe}) , (6)

where, Res (·) denotes ℓ1-norm on the scaling factors {γe},

λes is the balance parameter.

2.3. Selftaught KD

The model compression may suffer from certain perfor-

mance degradation, and it can be compensated through fine-

tuning. In addition to naive finetuning, especially for clas-

sification task, we propose to finetune the network using a

self-taught KD strategy.

For the compressed network, the original model is appar-

ently a more complex model with better performance, and it

can act as the teacher in KD for finetuning. In addition, the

pretrained model is already provided, which is rather impor-

tant in practice, as there is always limited resource and time

to train a more complex teacher model for a specific task.

As the knowledge is distilled from the original model to the

pruned network, we denote it as self-taught KD. In the ex-

periments section, we will show that the self-taught KD can

work together with GAP to improve the model performance

after graph pruning.

2.4. ISS in LSTM

The computation of a LSTM [8] cell is (7):

it = σ(xt ·Wxi + ht−1 ·Whi + bi)

ft = σ(xt ·Wxf + ht−1 ·Whf + bf)

ot = σ(xt ·Wxo + ht−1 ·Who + bo)

ut = tanh(xt ·Wxu + ht−1 ·Whu + bu)

ct = ft ⊙ ct−1 + it ⊙ ut

ht = ot ⊙ tanh(ct)

(7)

Due to the element-wise operators (⊙ and +), removing

an individual component from one or a few vectors inde-

pendently can result in the violation of dimension consis-

tency. Thus the whole network must obey the dimension

consistency include input updates, all gates, hidden states,

cell states, and outputs. ISS [30] can be learned to reduce

the sizes of basic structures within LSTM units, including

input updates, gates, hidden states, cell states and outputs.

Removing a component of ISS will simultaneously decrease

the sizes of all basic structures by one and thereby always

maintain the dimension consistency. By learning ISS within

LSTM units, the obtained LSTMs remain regular while hav-

ing much smaller basic structures.

For the ISS learning method, the group Lasso regular-

ization is added to the loss function in order to generate

sparsity in ISS. Formally, the ISS regularization is:

R(W) =

N
∑

n=1

K(n)
∑

k=1

||W
(n)
k ||2, (8)

where W is the vector of all weights and || · ||2 is ℓ2-norm.

By learning ISS, a structurally sparse LSTM can be ob-

tained, which essentially is a regular LSTM with reduced

hidden dimension. In addition, ISS can also be extended to

vanilla RNNs and Gated Recurrent Unit (GRU), etc. One

thing should be noticed is that ISS belongs to weight prun-

ing methods, it also requires finetuning to make model per-

formance close to the original one’s.

2.5. 8bit quantization for deep network

Fixed-point quantization is an effective approach for

lowering the resource consumption of a network. This kind

of work includes quantizing weight and activation, so that

computation operation can be conducted with 8-bit instruc-

tion. Some other works try to also quantize gradients, which

can result in acceleration during the network training. Here,

we focus on 8-bit weight quantization and activation quan-

tization for inference optimization.

INT8 has significantly lower precision and dynamic

range compared to FP32, therefore quantization requires

more than a simple type conversion from FP32 to INT8. We

first categorized computational operation into three types:

conv2d, matmul and other elementwise ops. Conv2d and

matmul ops take a large amount of computing time during

inference, so we conduct quantization for conv2d and mat-

mul, the rest ops will execute with FP32. We adopt symmet-

ric linear quantization using a linear scale factor to trans-

form a FP32 value to range of INT8. Given a pretrained

FP32 model, the scale factors of weight parameters can be

obtained by sorting, then |max|s will be mapped to 127 us-

ing linear scale factors. Activations can be quantized ei-

ther on-line or off-line with a calibration dataset. On-line

quantization of activation is similar to that of weight. In

term of off-line activation quantization, we first run infer-

ence in FP32 on calibration dataset, then collect statistics

from activations of each layer, iteratively search for ratio-

nal scale factors based on calibration algorithm. When we

1811

get quantized weights and activations, we need to use INT8

conv2d/matmul ops replace original FP32 ops, and add de-

quantization ops for the outputs of INT8 ops, since element-

wise ops still run in FP32. Our experiments show that INT8

model encodes almost the same information as the original

FP32 model, and it does not require any additional finetun-

ing or retraining.

3. Experiments

A number of experiments were conducted to validate

our DL inference optimization pipeline including TD, GAP

with self-taught KD, ISS in LSTM and 8-bit quantization.

3.1. TD for CNN

We evaluated the effectiveness of the TD method using

a classification task and a detection task. For classifica-

tion task, CIFAR10 [15] was chosen as dataset and we used

wide ResNet (ResNet32, k =8) [34] for TD benchmark. All

units (totally 30 layers) in wide ResNet32 were selected for

TD, the results are shown in Table 1. For detection task,

we chose an in-house Optical Character Recognition (OCR)

detection model and 500 test images from ICDAR14 chal-

lenge dataset. We analyzed this detection model and tried

to decompose totally 8 middle and deep layers of its back-

bone ResNet50, so that its computational load can be re-

duced. Each of 8 layers was decomposed into a depthwise

and pointwise convolution through CP decomposition. Re-

sults are shown in Table 2.

To measure the inference efficiency, we used three cri-

teria: model Compression Ratio (CR), theoretical Speedup

Ratio (SR) and practical SR. Model size and FLOPs be-

fore and after pruning were used to compute the model CR

and theoretical SR. We used the practical SR as an addi-

tional indicator of inference efficiency, since the memory

access and movement time are not considered in FLOPs.

From the result tables, we can see TD can effectively re-

duce model size and inference time, the pruned model can

achieve marginal loss in model performance through fine-

tuning. Furthermore, in order to improve accelerating, we

adopted depthwise operation in cuDNN and also manipu-

lated tensor layouts to avoid overhead caused by tensor di-

mension transpose.

3.2. GAP with selftaught KD for CNN

We first evaluated the effectiveness of the GAP method

using CIFAR10 [15]. Considering the “topology-adaptive”

attribute of GAP, DenseNet and ResNeXt were chosen for

the evaluation.

For experiments on CIFAR10, DenseNet-40 (k=12) and

ResNeXt-29 (8 × 64d) were adopted. All the layers were

pruned simultaneously based on an adaptive threshold,

which was determined by the pruning proportion.

Pruning results of ResNeXt and DenseNet are shown in

Table 3. The networks are pruned with the same percentage

for channel-level, vertex-level and edge-level. The results

suggest that the strategy of finetuning with self-taught KD

performs better than naive finetuning in restoring the degra-

dation of classification accuracy caused by pruning. We can

see that structurally pruning at vertex-level can get higher

model CR and theoretical SR, while vertex-level pruning

can still get better performance in classification error rate.

In ResNeXt, with approximately no-loss of accuracy, prun-

ing 60% off at vertex-level can get 2.68× practical SR while

only 1.69× at channel-level. In DenseNet, channel-level

pruning achieves almost no speed-up as it introduces addi-

tional selection operations, which increases the memory ac-

cess time. Edge-level pruning leads to the largest remaining

model size and FLOPs, because edge-level pruning can only

prune part of the graph. In ResNeXt, only the edges con-

tained in the group convolution can be pruned. Similarly,

only the dense connections can be removed in DenseNet.

Additionally, edge-level gets the worst error rate. This is

naturally because it prunes the network at a coarse-grained

level, which will do more harm on the network [22]. How-

ever, the benefit of edge-level pruning is that it has little gap

between practical SR and theoretical SR.

3.3. ISS for RNN

We evaluated ISS with two in-house scenarios. The first

one is a in-house Optical Character Recognition (OCR)

model based on Convolutional Recurrent Neural Network

(CRNN) [26], and the second one is a Neural Machine

Translation (NMT) model using GRU and attention mecha-

nism.

The in-house OCR recognition model consists of a

ResNet based CNN module and LSTM module. We used

model CR, theoretical SR and practical SR to evaluate the

ISS method for LSTM module. The results are shown in Ta-

ble 4. As we can see, with ISS for LSTM, the pruned model

only gets 0.23% loss in sequence accuracy. After pruning

LSTM module, the whole network model size decreases by

51.1%, the theoretical SR can achieve 2.4× for LSTM mod-

ule. For CPU testing, the end2end inference is accelerated

by 57% compared with baseline CRNN result. We find that

we do not get practical speedup with GPU, due to the time

lost to scheduling overhead.

ISS can also be extended to other RNN models such as

GRU. The NMT model consists of several layers of stacked

bi-directional GRU as encoder, a candidate layer of GRU

and stacked GRU layers as decoder. As shown in Table 5,

after learning the ISS from pretrained baseline model and

conducting weight pruning, we can get a new model, which

is 73.22% of original model size, with 1.17× practical SR

for end to end GPU inference. Meanwhile, BLEU of the

pruned model is 28.16, comparing 29.0 of baseline model,

1812

ISS makes inference more efficient with marginal loss of

model accuracy.

3.4. 8bit quantization

For CNN quantization, we tested ImageNet task using

GoogleNet, Inception V3 and ResNet50. For RNN quan-

tization, we tested TF-NMT models released with Tensor-

flow. And the in-house OCR recognition model in sec-

tion 3.3 is based on CRNN, which contains both CNN and

LSTM, it is a scenario to validate quantization result for the

combination of CNN and RNN. For each model, we only

conducted INT-8 quantization for conv2d and matmul ops,

the rest of elementwise ops still run in FP32. The quan-

tization results are shown in Table 6. We can see that the

INT8 quantized DNN model can be used for INT8 execu-

tion engine without finetuning, the gap between accuracies

of original FP32 model and INT8 model is ignorable. INT8

quantization can compress the model size and accelerate the

inference procedure. However, specific hardwares and op-

timized kernels are necessary for practical SR, which is our

ongoing work.

4. Conclusion and Future Work

In this paper, we introduce a DL inference optimization

pipeline, which consists of a series of model compression

methods, including TD, GAP, ISS in LSTM, KD and low-

bit model quantization. Experimental results show our in-

ference optimization pipeline can be applied to different

kinds of DL model and has potential to accelerate inference

engine with marginal loss of model accuracy for a variety of

modeling tasks. As future work, we are going to investigate

the scheme to automatically choose a compression method

or combine some of these methods, so that a more rational

model compression can be conducted for a network given

computation resource or latency limitation. Meanwhile, the

gap between theoretical and practical acceleration needs to

be minimized through the mutual adaptation of algorithm-

level and system-level optimization.

1813

Table 1. TD accelerates ResNet32 for CIFAR10.

Top1 accuracy
Model CR

(whole)
Theoretical SR)

Practical SR

(conv2d)

Practical SR

(end2end)

Baseline 95.5% - - - -

TD all units (30 layers) 94.9% 10.0× 10.4× 1.84× 1.41×

Table 2. TD accelerates in-house OCR detection model.

H-Mean
Model CR

(whole)
Theoretical SR)

Practical SR

(end2end)

Baseline 80.6% - - -

TD (8 layers) 80.43% 1.72× 1.89× 1.41×

Table 3. GAP on CIFAR10.
Pruned

/%
Error /%

(w/o KD)

Error /%
(w/ KD)

Model Size
(MB)

Model
CR

Theoretical
SR

Practical
SR

ResNeXt-29

Baseline
(Our impl.)

- 4.00 - 34.43 - - -

Channel-level [20] 60% 4.28 4.09 9.10 3.78× 4.24× 1.69×
Vertex-level 60% 4.08 4.03 6.71 5.13× 6.02× 2.68×
Edge-level 60% 4.55 4.11 24.61 1.40× 2.24× 2.41×

DenseNet-40

Baseline
(Our impl.)

- 5.60 - 1.06 - - -

Channel-level [20] 50% 6.38 5.70 0.58 1.83× 1.56× 1.03×
Vertex-level 50% 6.14 5.67 0.52 2.04× 2.09× 1.27×
Edge-level 50% 6.24 6.00 0.90 1.18× 1.39× 1.11×

Table 4. ISS for LSTM of in-house OCR model.
Sequence

Accuracy

CR

(LSTM)

CR

(whole network)

Theoretical

SR (LSTM)

Practical SR

(LSTM on CPU)

Practical SR

(end2end on CPU)

Baseline 74.22% - - - - -

ISS for LSTM 73.99% 2.93× 2.04× 2.40× 1.95× 1.57×

Table 5. ISS for GRU of in-house NMT model.

BLEU
CR

(GRU)

CR

(whole)

Theoretical

SR

(encoder)

Theoretical

SR

(candidate GRU)

Theoretical

SR

(decoder)

Practical

SR

(end2end on GPU)

Baseline 29.0 - - - - - -

ISS for GRU 28.16 3.02× 1.37× 4.2× 1.6× 1.47× 1.17×

Table 6. 8-bit quantization for different DNN models.

Baseline: FP32 Quantized model: INT8 conv2d/matmul

GoogleNet: top1/top5 accuracy 68.73 / 89.06 % 68.62 / 88.92 %

Inception V3: top1/top5 accuracy 78.54 / 94.30 % 78.28 / 94.17 %

ResNet50: top1/top5 accuracy 74.82 / 92.04 % 74.36 / 91.72 %

IWSLT-13 (English-Vietnamese): BLEU 26.2 26.0

WMT-15 (German-English): BLEU 28.8 28.4

NMT (Chinese-English): BLEU 25.0 24.98

in-house OCR recognition: seq/char accuracy 72.71 / 91.81 % 72.90 / 91.78 %

1814

References

[1] A. Dario et al. Deep speech 2: End-to-end speech recogni-

tion in english and mandarin. In International Conference

on Machine Learning, pages 173–182, 2016. 1, 2

[2] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compress-

ing deep convolutional networks using vector quantization.

arXiv preprint arXiv:1412.6115, 2014. 2

[3] S. Han. Efficient Methods and Hardware for Deep Learning.

PhD thesis, Stanford University, 9 2017. Submitted to the

Department of Electrical Engineering. 1

[4] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015. 2

[5] P. He, W. Huang, Y. Qiao, C. C. Loy, and X. Tang. Reading

scene text in deep convolutional sequences. In AAAI, pages

3501–3508, 2016. 1

[6] Y. He, X. Zhang, and J. Sun. Channel pruning for acceler-

ating very deep neural networks. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 2

[7] G. Hinton et al. Distilling the knowledge in a neural network.

arXiv preprint arXiv:1503.02531, 2015. 2

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Comput., 9(8):1735–1780, Nov. 1997. 4

[9] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 2

[10] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. arXiv preprint

arXiv:1608.06993, 2016. 1

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks. In Advances in Neural

Information Processing Systems, pages 4107–4115. 2016. 2

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and¡ 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016. 2

[13] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3128–3137, 2015. 1

[14] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin.

Compression of deep convolutional neural networks for

fast and low power mobile applications. arXiv preprint

arXiv:1511.06530, 2015. 1

[15] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical report, 2009. 5

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 1

[17] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and

V. Lempitsky. Speeding-up convolutional neural net-

works using fine-tuned cp-decomposition. arXiv preprint

arXiv:1412.6553, 2014. 1

[18] Y. Lecun, J. S. Denker, and S. A. Solla. Optimal brain dam-

age. 2:598–605, 1990. 1

[19] J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky.

Adversarial learning for neural dialogue generation, 2017.

cite arxiv:1701.06547. 1

[20] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through network

slimming. In IEEE International Conference on Computer

Vision (ICCV), pages 2755–2763. IEEE, 2017. 2, 7

[21] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning

method for deep neural network compression. arXiv preprint

arXiv:1707.06342, 2017. 2

[22] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J.

Dally. Exploring the regularity of sparse structure in convo-

lutional neural networks. arXiv preprint arXiv:1705.08922,

2017. 5

[23] S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen.

Exploring sparsity in recurrent neural networks. CoRR,

abs/1704.05119, 2017. 2

[24] A. Parashar et al. Scnn: An accelerator for compressed-

sparse convolutional neural networks. In Proceedings of the

44th Annual International Symposium on Computer Archi-

tecture, pages 27–40. ACM, 2017. 1

[25] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. arXiv

preprint arXiv:1412.6550, 2014. 2

[26] B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural

network for image-based sequence recognition and its ap-

plication to scene text recognition. CoRR, abs/1507.05717,

2015. 5

[27] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1

[28] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the

speed of neural networks on cpus. In Proc. Deep Learning

and Unsupervised Feature Learning NIPS Workshop, vol-

ume 1, page 4, 2011. 2

[29] S. Wang and J. Jiang. Machine comprehension using match-

lstm and answer pointer. CoRR, abs/1608.07905, 2016. 1

[30] W. Wen, Y. He, S. Rajbhandari, M. Zhang, W. Wang, F. Liu,

B. Hu, Y. Chen, and H. Li. Learning intrinsic sparse struc-

tures within long short-term memory. In International Con-

ference on Learning Representations, 2018. 2, 4

[31] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. In Advances in

Neural Information Processing Systems, pages 2074–2082,

2016. 2

[32] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggre-

gated residual transformations for deep neural networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 5987–5995. IEEE, 2017. 1

[33] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowl-

edge distillation: Fast optimization, network minimization

and transfer learning. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 2

[34] S. Zagoruyko and N. Komodakis. Wide residual networks.

CoRR, abs/1605.07146, 2016. 5

1815

