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Abstract

Automatic interpretation of sports games is a major chal-

lenge, especially when these sports feature complex play-

ers organizations and game phases. This paper describes

a bottom-up approach based on the extraction of semantic

features from the video stream of the main camera in the

particular case of soccer using scene-specific techniques.

In our approach, all the features, ranging from the pixel

level to the game event level, have a semantic meaning.

First, we design our own scene-specific deep learning se-

mantic segmentation network and hue histogram analysis to

extract pixel-level semantics for the field, players, and lines.

These pixel-level semantics are then processed to compute

interpretative semantic features which represent character-

istics of the game in the video stream that are exploited to

interpret soccer. For example, they correspond to how play-

ers are distributed in the image or the part of the field that is

filmed. Finally, we show how these interpretative semantic

features can be used to set up and train a semantic-based

decision tree classifier for major game events with a re-

stricted amount of training data.

The main advantages of our semantic approach are that

it only requires the video feed of the main camera to extract

the semantic features, with no need for camera calibration,

field homography, player tracking, or ball position estima-

tion. While the automatic interpretation of sports games

remains challenging, our approach allows us to achieve

promising results for the semantic feature extraction and for

the classification between major soccer game events such as

attack, goal or goal opportunity, defense, and middle game.

Index terms— semantic segmentation, soccer analysis,

semantic classification, deep learning

1. Introduction

The automatic interpretation of sports game is a chal-

lenging topic of research in the domain of computer-based

Figure 1. Overview of our scene-specific approach to extract se-

mantic features from the video stream of the main camera in a soc-

cer game. Three levels of semantic features are extracted: pixel-

level semantics, interpretative semantic features which represent

characteristics of the game in the video stream that are exploited

to interpret soccer, and high-level semantics of the game event.

techniques [38]. It also offers many possibilities of com-

mercial applications for the industry. For example, the au-

tomation of game statistics production can lead to tactical

analysis systems from which teams and players can assess

their performances.

In order to achieve the goal of an automatic analysis,

the first step is to have a system able to understand what

is going on in the video stream in a way similar to how hu-

mans proceed. A lot of research has been carried out for

sports, like soccer, whose content is interpreted by start-

ing with the extraction of particular features. In that spirit,

several works have focused on the extraction of pedes-

trians using universal methods [5, 29, 39, 40], and play-

ers in the case of sports along with scene-specific track-

ing techniques [11, 14, 21, 26, 42]. Other works aim
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at extracting the position of the ball in various types of

sports [21, 24, 31, 36] or compute a homography of the

field [10, 16, 28, 19].

The analysis of game events has also been addressed in

projects such as Aspogamo [20], which is based on ball

and players tracking methods using a field reconstruction

model. Several works in the detection of specific game

events have also been conducted [7, 8, 9, 15, 23, 35, 43].

Highlights detection has also been addressed in [33] using

enhanced hidden Markov models and in [1] where the soc-

cer’s semantics is encoded into a set of finite state machines.

Finally, audio analysis of the excitement of commentators

and detection of specific keywords in their speech has been

investigated to detect important events in [41].

Recently, with the emergence of deep learning, super-

vised classification has become more accurate and robust

and can be used in the sports domain to capture informa-

tion on the content of the image. Universal networks ap-

peared with the spread of extensive annotated datasets such

as ImageNet [6] or MS COCO [25]. Semantic segmentation

networks such as PSPNet [44] or Mask R-CNN [17] allow

to segment any image into more than a hundred different

classes. Semantic segmentation-based techniques have also

been used in video segmentation in the case of background

subtraction [3], which emphasizes the growing interest of

semantics in video analysis. Universal networks are robust

in many situations, but in soccer, the conditions do not vary

much from one game to another. This is why we explore

scene-specific techniques which generally perform better

than universal techniques in constrained conditions [4, 30].

This paper presents an approach to extract semantic fea-

tures from the video stream of the main camera without the

need for camera calibration, field homography, ball position

estimation, or player tracking. In fact, such information is

often difficult to obtain in a robust way or is unavailable by

the time of filming. We focus on the extraction of seman-

tic features that have a meaning understandable by humans.

First, we extract information at the pixel level correspond-

ing to meaningful classes for the understanding of the video.

In our case, these classes are the field, the players, and the

lines. These pixel-level semantics are the basis for further

analysis of the game sequence. The extraction of the pixel-

level semantics is presented in Section 2.

Once pixel-level semantics are obtained, we extract in-

terpretative semantic features as described in Section 3. We

concentrate on features that are also used by humans to un-

derstand the different soccer game events. To do so, we ana-

lyzed several soccer games in order to grasp what makes us

comprehend when and why a particular type of game event

is occurring. These interpretative semantic features repre-

sent characteristics of the game in the video stream that are

exploited to interpret soccer which are meaningful for hu-

mans. For example, the part of the field that is shown or the

way the players move.

Finally, we show that it is possible to set up a decision

tree classifier for the game events whose structure is based

on soccer semantics using the interpretative semantic fea-

tures. We selected four major types of soccer game events:

goal or goal opportunity, attack, middle game, and defense.

In Section 4, we evaluate the different steps of our

bottom-up approach and provide some observations. We

conclude and present further prospects in Section 5.

2. Extraction of pixel-level semantics

In this section, we explain how we classify the pixels of

the image in three semantic classes, namely field, line and

player pixels. Field pixels are obtained using a dynamic

thresholding method based on the hue histogram of the im-

age, while line and player pixels are obtained using a deep

learning semantic segmentation network. This leads to the

production of three segmentation maps corresponding to the

classes of interest.

2.1. Extraction of field pixels

The first method identifies the pixels that belong to the

field. Knowing which pixels belong to the field is a valuable

information since the portion of the field that is filmed is an

indicator of where the game is taking place.

In [21], a static field model has been used to extract the

field, where the mean color is computed given prior statis-

tics calculated on a large dataset. The method presented

in [36] is based on the peak of the histogram of the three

RGB channels in order to compute some field parameters.

An adaptive field model using the peak in the green chro-

maticity space has also been investigated in [34] for the par-

ticular case of robot soccer.

Our first step is to compute a field model based on the

color of the field, and then compare each pixel to this model.

Beforehand, we change the color space of the original im-

age from RGB to HSV which is more informative on the

color of a pixel.

To compute the field model, we make the assumption

that the field is present in a large part of the image, which

is a reasonable assumption for images provided by the main

camera. Since the hue component of the field is homoge-

nous within the image, we compute the hue histogram of

the whole image and search for a peak in it. This peak is

located close to the mean value of the hue component of the

field. We then threshold the image around this peak with a

fixed width. This results in an intermediate binary map con-

taining all the pixels whose value matches that of the field

model. Figure 2 shows an image, its hue histogram, and

the intermediate binary map obtained using the peak in the

histogram. The histogram is recomputed for each frame in

order to have a dynamical field model robust to illumination

changes.
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Figure 2. (a) Original image from which we extract the field pixels. (b) Hue histogram of the image. The peak corresponds to the dominant

color, which we assume to be the mean color of the field. (c) Intermediate map obtained by thresholding the original image in its hue

representation around the peak found in the histogram. (d) Final map of the field pixels obtained using post-processing operations on the

intermediate map. These consist in morphological opening and closing operations, contour and area selection, contour approximation, and

convex hull.

It is important to note that the audience in the stadium

sometimes represents half of the image, but their colors

have a greater variance than those of the field. In practice,

we noticed that the peak in the hue histogram still corre-

sponds to the mean hue component of the field even when

the field is shown in less than 20% of the global image,

which is due to its small variance in the hue component.

Finally, several post-processing operations are applied

on the intermediate binary map obtained at the previous

step. First, morphological opening and closing operations

with a 15× 15 square structuring element are performed in

order to remove small isolated objects located outside and

inside the field, respectively. Then, the contours of all the

objects within that mask are computed. From these con-

tours, we choose the one that encompasses the greatest area

to be the field. Then we compute an approximation of this

contour using the method presented in [37], which is im-

plemented in the OpenCV computer vision library [2]. This

removes small bumps on the contour. We also compute the

convex hull of this contour to remove small gaps on it. Fi-

nally all the pixels inside this contour are labeled as field

pixels. The final result is illustrated in Figure 2.

2.2. Semantic segmentation for line and player pix­
els

In this section, we present a novel lightweight deep

learning semantic segmentation network designed to clas-

sify pixels belonging to lines or players. Semantic segmen-

tation is an image segmentation technique that aims at la-

beling each pixel according to a finite set of classes. Many

works are carried out in that field. Region proposal-based

techniques such as DeepMask, SharpMask and Region-

CNN developed by Facebook AI Research [32] are common

approaches in semantic segmentation. More recently, deep

learning networks have been developed such as PSPNet [44]

or Mask R-CNN [17]. These networks automatically label

each pixel according to hundreds of different classes.

The architecture of the network that we developed is

based on the same principles as the universal network PSP-

Net which is mainly composed of a pre-trained ResNet

model that extracts the feature maps, a pyramidal pooling

module to collect global context information [44], and an

upsampling procedure. We designed a lightweight adapta-

tion of this network in the scene-specific case of soccer.

ResNet was introduced by He et al. [18]. The idea is that

rather than directly approximating the input-output func-

tion as in conventional networks, the network approximate

the residual function that has to be added to the input to

give the correct output. To do so, ResNet modules have

two branches, one performing non-linear operations to ap-

proximate the residual function and one that bypasses all

the connections from the input. The underlying equation is

then defined as:

H(x) = F (x) + x, (1)

where H(x) is the original function to approximate and

F (x) is the residue that has been added to the input. An il-

lustration of a typical ResNet module is shown in Figure 3.

ResNet modules have the advantage of alleviating the prob-

lem of increased optimization difficulty when adding new

layers in a network.

The goal of the pyramidal pooling module introduced

with PSPNet is to segment the image in regions of different

sizes in order to retrieve context information. The module

is composed of several branches which reduce the feature

maps obtained by the ResNet module into regions by aver-

age pooling. In the original PSPNet network, the image is

pooled into 1 × 1, 2 × 2, 3 × 3 and 6 × 6 regions, which

are designed for square images of relatively low resolution,

in order to get global information on what the scene repre-

sents.

The network that we developed for this work is a scaled

down version of the PSPNet network. In fact, PSPNet is

meant to be used for universal segmentation, meaning that

it must be robust for a large variety of scenes. In the particu-

lar case of soccer, we only have a few different classes com-

pared to the hundreds of classes that PSPNet is capable to

deal with. Also, the background and the objects of interest
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Figure 3. Typical ResNet module. The function H(x) is approxi-

mated using the input x and a residual function F (x).

are roughly the same from one game to another. By training

the model only on images of soccer, that is by being scene-

specific, we can further increase the performances of the

network by discarding elements it will never see. This has

the advantage of increasing the performances for our partic-

ular case while decreasing the complexity and the compu-

tation time of the network. To do so, we design one small

ResNet module that we scale down in terms of number of

parameters and remove some of the first convolutional lay-

ers. The pyramidal module is also adapted for the main

camera of a soccer game. In our case, we have full-HD wide

angle images rather than 473× 473, meaning that the pool-

ing module has to divide the image a bit more horizontally

than vertically. We modify the pyramid pooling module to

have 1 × 1, 3 × 2, 5 × 3 and 9 × 4 regions as shown on

Figure 4, which illustrates the entire network. Finally, we

train the whole network from scratch, meaning that we need

to provide our own annotations of soccer games. By doing

so, we managed to divide the number of parameters by a

factor 100 compared to the original PSPNet which results

in an drastic increase in training and prediction speed.

As stated above, if we want the network to be scene-

specific, we need to provide our own annotations which can

be laborious and time-consuming since each pixel has to be

labeled individually. For this reason, we decided not to im-

plement a fine-grained semantic segmentation. In fact, an-

notating accurately each pixel belonging to players or lines

would require too much effort. To alleviate this problem,

we redefine our classification problem from pixels belong-

ing exactly to a player or a line to pixels that are in the

neighborhood of a player or a line. We will see in the next

section that an approximate segmentation suffices to extract

our interpretative semantic features. This drastically speeds

up the annotation process since it can now be done with

blobs. With the annotation tool that we developed, it is pos-

sible to annotate 2 images/minute. Also, we noticed that

impressive results can already be obtained with 180 images

of a single game as training set with our network trained

from scratch.

Since we made a huge scale down compared to PSPNet,

our network can be trained at a rate of 250ms/image which

corresponds to 45 seconds/epoch on our 180 image dataset.

An example of annotation and the network’s segmentation

for the lines and players can be seen in Figure 5. All these

speeds up allow that, before a soccer game, an operator

could start from a pre-trained network and retrain it with

a few images annotated during the warm up period in order

to make the network more scene-specific and improve its

performances.

Finally, if a finer segmentation is required, we can use

the field model, computed in subsection 2.1, to remove field

pixels from the segmentation around the lines and players.

3. Higher-level semantic features for game

events classification

In the previous section, we explained how to extract

pixel-level semantics from soccer images. We now present

an approach that derives interpretative semantic attributes

based on the pixel-level semantics for game events classi-

fication. The choice for this bottom-up approach is moti-

vated by the observation that humans can understand a soc-

cer game just by looking at interpretative features visible in

the image such as which part of the field is filmed or the

direction in which the players move. Thus, we present a

semantic-based approach for game event classification us-

ing a decision tree whose structure is chosen based on how

humans interpret a soccer game, and show that this decision

tree can be trained with only a few annotated data. In the

first part of this section, we elaborate on how we choose the

game events to classify, the interpretative semantic features

and the structure of the decision tree. In the second part, we

detail how we extract the interpretative semantic features

used by the decision tree.

3.1. Decision mechanism

For the design of the decision tree, we identified three

important questions that summarize the information that un-

derpins the decision:

Question 1. Which interpretable game events do we want

to classify?

Question 2. Which interpretative semantic features are rel-

evant for classifying or highlighting these events?

Question 3. How do we incorporate the relevant interpre-

tative semantic features in the event classification pro-

cess?
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Figure 4. Overview of our semantic segmentation network architecture. We have four components: (a) the original image that will be

segmented into lines or players, (b) a single ResNet module with convolution layers in order to extract the feature maps, (c) the pyramidal

module to gather context information, and (d) the upsampling procedure that produces the final segmentation map, here showing the player

segmentation. The network is inspired by the design of the PSPNet network [44].

Figure 5. Semantic segmentation results. (a) Original image on

which to segment the lines and players. (b) Annotations corre-

sponding to pixels that are in the neighborhood of players or lines

in order to increase the speed of the annotation process. (c) Seg-

mentation results obtained with our scene-specific semantic seg-

mentation network. (d) Original image masked by the segmenta-

tion result for visualization purpose.

With respect to the first question, we choose to restrict our-

selves to the detection of four major classes of game events

in a soccer game, which are described hereafter:

1. Attack: when a team is approaching the great rectangle

of the other team.

2. Defense: when the team having the ball is close to its

own great rectangle.

3. Middle game: when one of the two teams is close to the

main circle and the players simply pass the ball from

one to another with no real intention of going towards

the goal.

4. Goal or goal opportunity: when there is an interesting

action that could lead or has led to a goal.

Let us note that, as a future step, it would be worth inves-

tigating how to split these classes in order to include sub-

classes of these game events such as the corner or the free

kick, which are sub-classes of the attack game event, or the

clearance from the goal keeper, which is a sub-class of the

defense game event.

With respect to question 2, we identified which inter-

pretative semantic features are representative of the afore-

mentioned game events. We analyzed several soccer game

events and determined what visually discriminates them.

From our experience, we concluded that we can accurately

separate the four major soccer game events with the four

following types of interpretative semantic features:

• A ternary indicator corresponding to which portion of

the field is filmed.

• A binary indicator corresponding to the presence of the

main circle in the image.

• A continuous groupment measure corresponding to

how much the players are close relative to each other.

• A binary motion indicator (towards the center of the

field / towards the goal or static position) correspond-

ing to the average motion in the horizontal direction of

the players.

More details on how we compute these indicators are pro-

vided in Section 3.2.

To answer question 3, we made the choice to design a de-

cision tree based on the semantics of a soccer game. We de-

cided to avoid working with fully supervised machine learn-

ing techniques since annotated data of game events are hard

to collect and to label manually for an entire sequence. On

top of that difficulty, it is often troublesome to have a precise

label on the game event since game events do often overlap

in time, so that the choice of a frame splitting two consecu-

tive game events is not unique. For this reason, we found it

appropriate to design a decision tree with a fixed hand-made
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structure induced by the semantics of the soccer game. In

this way, we ensure that the tree structure does not overfit

the limited amount of training data and that the interpreta-

tion is consistent with an intuitive human interpretation of

the game. Besides, this leaves room for further extensions

based on additional semantic features or other game events.

After some tests, we have built the final decision tree struc-

ture displayed in Figure 6. Given the restricted number of

trainable thresholds to determine, their optimal values are

learned by minimizing the classification error using a grid

search procedure.

3.2. Interpretative semantic features

In this section, we provide details on how we compute

the interpretative semantic features that are used by the de-

cision tree to classify game events. These features are based

on the pixel-level semantics computed in Section 2. First,

we present how we extract information from the field seg-

mentation map. Then, the line segmentation map is used to

compute the presence and coordinates of the main circle on

the image. Finally, we extract three interpretative semantic

features from the players segmentation map: a groupment

measure of the players, the average position of the players,

and the average direction of the players’ motion.

The first interpretative semantic feature that we extract is

the part of the field that the camera is filming. We are inter-

ested by where the camera is pointing at, horizontally. We

define three different types of views which are also shown in

Figure 7 with their corresponding field segmentation maps:

• Center view: the camera is mainly centered on the

field. It is characterized by a single separation in the

field segmentation map which has a small angle com-

pared to the horizontal.

• Side view: the camera is clearly filming one side or the

other of the field. It is characterized by the presence of

a corner in the field segmentation map.

• Goal view: the camera is zooming in on one of the

two goals. It is characterized by a single separation in

the field segmentation map which is almost diagonal

compared to the horizontal.

To compute the presence of a corner or the orientation of the

separation, we start by computing what we call the “charac-

teristic line” of the field segmentation map which is defined

as the line that joins the two uppermost intersections be-

tween the black and white separations at the edges of the

image. Examples of such characteristic lines are shown in

red in Figure 7. To know if there is a corner in the field

segmentation map, we compare the ratio of white pixels on

each part of the characteristic line. If the ratio is greater

than some learned threshold, then there is a corner. If no

corner is found in the previous step, then the tilt of the char-

acteristic line is computed. If this tilt is greater than some

other learned threshold, then it is a goal view; otherwise it

is a center view.

The second interpretative semantic feature that we ex-

tract is the main circle. This main circle is projected as an

ellipse on the main camera image and is present in the line

segmentation map found in Section 2.2. The ellipse is ex-

tracted using the RANSAC algorithm [12]. This algorithm

is used in many works for geometric fitting [22, 27].

The principle of RANSAC is to randomly select a subset

of the data points and to fit a model on this subset. Then,

all the data points are tested through a distance threshold

function that determines whether a particular point agrees

with the created model or not. The points that agree with the

model are called inliers. Finally, a score function evaluates

how well the model fits the original data. This procedure is

repeated several times and the model that has the greatest

score is selected and re-estimated using all the inliers of its

model. In our case, the distance function is a threshold on

the distance of a point to the ellipse, and the model is built

using the robust ellipse fitting method of Fitzgibbon [13].

Finally, we check that this ellipse is in the range of plausible

ellipses.

The last interpretative semantic features are extracted

from the player segmentation map computed in Section 2.2.

The first one is the barycenter of the players. It is straight-

forward to get such information from the player binary map

since it consists in computing the barycenter of all player

pixels. The fact that we have only access to pixels that are

close to players is not a problem since these surrounding

pixels are spread uniformly around the players. The sec-

ond one is a groupment measure that represents how much

the players are close one to another. To estimate the group-

ment measure, we compute the mean squared distance of

each point to the barycenter. The players are considered

as grouped when this value is smaller than some learned

threshold and as scattered otherwise. For the last interpreta-

tive semantic feature, which is the average horizontal direc-

tion of the players from a moving camera, we need the hor-

izontal difference between the barycenter of the players and

a reference point. Since we do not compute a homography

or use calibrated cameras, we use one of the two following

reference points, depending whether which one is visible in

the image: the center of the main circle that we extracted or

the end of the field segmentation map behind the goals.

4. Experiments

We evaluate the extraction of the pixel-level semantics

and the game event decision tree presented in our approach

on the 2015 Champions League final soccer game. The data

consists of a single full-HD video stream of the event. The

deep learning models for semantic segmentation are trained
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Figure 6. Structure of the semantic-based decision tree. The questions are chosen based on interpretative semantic features that can be

robustly obtained from the pixel-level semantics.

Figure 7. Examples of the three different types of views (left) and

their field segmentation maps (right) with the characteristic line

shown in red. (a) Center view with its characteristic horizontal

line of separation. (b) Side view, with the presence of a corner in

the binary map. (c) Goal view, with the diagonal separation.

on 180 images and tested on 20. For evaluating the qual-

ity of the decision tree, we have trained and determined its

parameters and thresholds (there are 5 of them) on one half

time of the game, and evaluated the decisions on the other

half. Finally a temporal smoothing on the last ten frames is

applied on the indicators of the interpretative semantic fea-

tures and the game event classification result using either

a majority vote when the indicator is discrete or a moving

average procedure when it is continuous.

4.1. Pixel­level semantics evaluation

We first evaluate the field segmentation map. The goal

is to cover as much as possible the field and avoid its sur-

roundings. To evaluate the method, we choose a criterion

that evaluates the proportion of the surface of the actual field

that is covered by the segmentation, i.e. the sensitivity:

sensitivity =
TP

TP + FN
. (2)

We also evaluate the ratio of the field that is uncovered,

which is represented by the specificity:

specificity =
TN

TN + FP
, (3)

where TP is the number of true positives, TN the num-

ber of true negatives, FP the number of false positives and

FN the number of false negatives. The performances are

evaluated on approximately 25 million pixels.

As can be seen in Table 1, almost all the field is covered

and the surroundings are rarely mistaken as well. Also, a

visual inspection of the results showed us that our approach

works well. Small errors occur only at the exact edge of the

field.

Next, we evaluate the semantic segmentation networks

for the lines and players. We defined that the goal of our se-

mantic segmentation is to label pixels that are in the neigh-

borhood of lines or players rather than belonging exactly

to a line or a player. Thus, we need a criterion that evalu-

ates the proportion of correctly classified line or player pix-

els among all the pixels classified as line or players. It is

important not to have too many false positives outside the

neighborhood polluting the segmentation map. This crite-

rion is called the precision and is given by:

precision =
TP

TP + FP
. (4)

Table 2 shows some performance indicators for the lines

and players segmentation which are evaluated on approx-

imately 45 million pixels. As it can be seen, the perfor-

mances are high even with few training images. This con-

firms that an operator can annotate a few frames before

the game in order to make the network more scene-specific

and improve its performances compared to universal net-

works. The training is also fast as it can be done at a rate

of 45 seconds/epoch with impressive results achieved after
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Performance indicators Field pixels

Sensitivity 0.997
Specificity 0.990
Accuracy 0.994

Computation time 30 ms/image
Table 1. Performance indicators for our field pixel extraction

method using the hue histogram of the image. The results are eval-

uated on approximately 25 million pixels.

Performance indicators Player pixels Line pixels

Precision 0.904 0.819

Accuracy 0.989 0.987

Computation time 78 ms/image
Table 2. Performance indicators for our scene-specific semantic

segmentation network of the performance indicators for player and

line pixels. The results are evaluated on approximately 45 million

pixels.

only 75 epochs with a network trained from scratch on a sin-

gle GPU. Furthermore, the modifications allow the network

to segment full-HD images coming from the main camera

at a framerate of 12.5 images per second on a single GPU,

including the time needed to transfer the data to the GPU

and get it back. It is thus possible to achieve real-time per-

formances of 25 frames per second on two parallel GPUs

which is an affordable set-up these days.

4.2. Game events classification evaluation

In order to evaluate quantitatively the whole system, we

annotate a few clips from one half time of the game and

tested the decision tree on the clips of the other half time.

These clips contain the different game events that are pre-

sented in this work. We evaluate here the output of the

whole semantic-based decision tree. For the four major

types of soccer game events, we have an accuracy of 91.8%
which is evaluated on 20, 000 frames taken from 20 small

clips of the 2015 Champions League final.

Apart from the quantitative evaluation, it is also inter-

esting to analyze the results qualitatively. In fact, the an-

notations do not always correspond to clear game events

because, sometimes and for some pairs of events, it is diffi-

cult to assign a unique event label for frames that separate

two consecutive game events. For example, the difference

between an attack and a middle game can be tricky since

an attack can start from the middle of the field. Thus, two

annotators could assign a different label to the same game

event. For that purpose, it is important to look at the out-

put sequences and have a global qualitative estimation of

the system as well, which is why we will provide a video

sequence of the entire system on a soccer game event that

includes all four types of game events.

5. Conclusions

In this paper, we presented a bottom-up approach to ex-

tract semantic features from the video stream of the main

camera in a soccer game. Our approach does not need cam-

era calibration, field homography, player tracking, or ball

position estimation, since these are often hard to get ro-

bustly or are unavailable. We first extract pixel-level seman-

tics by segmenting three types of classes in the image: the

field, which is found using a thresholding method based on

the hue histogram, and the lines and players which are ex-

tracted using our novel, tailored, scene-specific deep learn-

ing semantic segmentation network. Then, we show how

to extract interpretative semantic features based exclusively

on important characteristics of the game present in the video

stream that are exploited to interpret soccer: the part of the

field that is shown, the extraction of the main circle, the

mean position and direction of the players and an informa-

tion on the groupment of the players. From these, we show

that it is possible to learn the parameters of a decision tree

with a pre-defined semantic-based structure to classify the

following major soccer game events: goal or goal oppor-

tunity, attack, middle game and defense, for which we got

over 90% of classification accuracy.

Future work The approach that we presented in this pa-

per is far from being a solved subject of research. The list of

semantic features and types of game events to classify that

we presented is not exhaustive. With an increased amount

of labeled data, it should be possible to improve both the

extraction of semantic features and the decision mechanism

for game events classification. For instance, the structure

of the decision tree could be learned. More sophisticated

models such as deep learning temporal networks could also

be used. This could allow the classification of more com-

plex game events such as the corner, the free kick or the

clearance.
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