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Abstract

With the explosion in the availability of spatio-temporal

tracking data in modern sports, there is an enormous oppor-

tunity to better analyse, learn and predict important events

in adversarial group environments. In this paper, we pro-

pose a deep decision tree architecture for discriminative

dictionary learning from adversarial multi-agent trajecto-

ries. We first build up a hierarchy for the tree structure

by adding each layer and performing feature weight based

clustering in the forward pass. We then fine tune the player

role weights using back propagation. The hierarchical ar-

chitecture ensures the interpretability and the integrity of

the group representation. The resulting architecture is a de-

cision tree, with leaf-nodes capturing a dictionary of multi-

agent group interactions. Due to the ample volume of data

available, we focus on soccer tracking data, although our

approach can be used in any adversarial multi-agent do-

main. We present applications of proposed method for sim-

ulating soccer games as well as evaluating and quantifying

team strategies.

1. Introduction

Coinciding with the advancement of computer vision

based tracking technologies, an enormous amount of track-

ing data is generated daily in the domain of sports analytics.

Vision-based player tracking systems have been deployed in

professional basketball, soccer, baseball, tennis and cricket

[32,34]. In multi-agent sports there exists several prediction

opportunities, ranging from prediction of the occurrence of

a single event, to prediction of a match outcome, or even the

final score. However, instead of utilising raw trajectories di-

rectly for prediction tasks, current approaches “hand-craft”

features and learn semantics at an abstract-level from these

features [28, 36].

It is our observation that these approaches posses sev-

eral inherent disadvantages compared to learning directly

from raw trajectories: i) the generated feature representa-

tion is an overrepresentation which is inefficient in terms

of memory1, ii) the learnt feature representations are not

interpretable and are non-informative for human operators

interacting with the data, which limits potential fine-grain

retrieval/knowledge-discovery applications [14], and iii) the

hand-crafted features may capture only abstract level se-

mantics, which might lead to the loss of important se-

mantics for the situation [8, 10]. In literature such as

[9, 11–13, 22, 23, 33] the authors elaborate on the key ad-

vantages of moving away from hand-crafted solutions in

favour of deep-learning approaches that learn features di-

rectly from the data.

In this paper, we propose a dictionary learning algorithm

for adversarial multi-agent trajectories which are encoun-

tered in competitive team sports. We are interested in pre-

dicting the occurrence of a goal from a shot in soccer. To the

best of our knowledge this is the first work that addresses

the above stated problem. The novelty of the proposed

method is a deep decision tree based approach that auto-

matically learns relevant features from multi-agent trajecto-

ries. Furthermore the learnt features are both interpretable

for domain experts as well as informative for many short

term prediction tasks.

In the proposed method, we first align the trajectories

to a template which is learnt directly from the data, then

we build our tree structure iteratively in a layer wise man-

ner, alternating between agglomerative clustering on fea-

ture weights and updating the weights using back propa-

gation of classification error. The result is a “deep deci-

sion” tree which ensures interpretability and the integrity of

the feature representation learnt. The experimental results

demonstrate the feasibility and applicability of the proposed

method.

1If a database consists of 10GB of raw-trajectories, but a feature repre-

sentation is 10x or 100x this, then we will need to store 100GB or 1TB in

memory which can be prohibitive.
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2. Related Work

2.1. Learning from handcrafted features

Even in domains where large-amounts of data do exist

such as sport, the first step has been to hand-craft features

and then learn high-level features on top of these [28, 36].

For example in [36], the authors have learnt separate mod-

els for predicting the probability of passes, shots and ball

possession by the current ball handler in basketball, and

then combined these individual models to generate the fi-

nal event prediction.

The main drawback of such handcrafted feature ap-

proaches is that complex dynamics cannot be modelled via

a handful of features. Such features may capture only ab-

stract concepts, and the learnt feature representation is non-

interpretable; so it cannot be used for data-mining or knowl-

edge discovery problems.

2.2. Learning from raw trajectories

Recently, Lucey et al. [25] and Bialkowski et al. [4] used

the raw trajectories to find soccer formations from player

tracking data for visualisation and data clean-up, but this

work did not consider prediction. Similarly, utilising video

data from soccer games, the authors in [24] have shown

that group activity patterns can be derived from interactions

among agents in the temporal domain. Cervone et al. [7]

used basketball tracking data to predict player behaviour

during a play. They used an expected possession value

model that assumes that the decision of the ball-handler de-

pends only on the current spatial configuration of the team

in possession. Carr et al. [30] used realtime player track-

ing data to predict the future location of play and point a

robotic camera in that location for automatic sports broad-

casting purposes. Yet none of these approaches have con-

sidered the problem of predicting future events.

2.3. Dictionary learning for trajectory data

In the general application of dictionary learning to clas-

sification tasks, most previous approaches treat dictionary

learning and classifier training as two separate processes,

e.g. [5, 16, 19, 26, 37]. In such approaches, a dictionary is

learnt first and the subsequent dictionary representation is

used to train a classifier such as an SVM.

In recent years supervised dictionary learning techniques

have attracted much attention among the vision commu-

nity. An iterative approach is proposed in [31], which al-

ternates between dictionary construction and classifier de-

sign. In [27], the authors have shown that this design may

suffer from local minima. In [35] the authors simultane-

ously learn an over-complete dictionary and multiple clas-

sification models for each class. However, the general as-

sumption in the above mentioned dictionary learning is that

each example is a linear combination of learnt dictionary

elements. In the case of image patches this assumption may

be valid, but in the case of dense non-liner trajectories this

assumption is highly unlikely to hold.

Our dictionary learning approach is inspired by works

from prediction works outside the multi-agent and trajec-

tory literature. In particularly, we were motivated by the

work of Hinton et al. [17] and Bengio et. al [3]. Hin-

ton et al. [17] proposed a “greedy learning algorithm for

transforming representations” to learn the weights of the

deep belief network that classified the MNIST dataset. The

weight vectors in each of the hidden layers were initialised

greedily layer wise iteratively, and are updated using back

propagation. In Bengio et. al [3], the authors have shown

that this achieves higher precision than random initializa-

tion of the weights. However a substantial amount of ef-

fort is required to extend the greedy layer wise learning

concept to the multi-agent trajectory domain. Recently,

Kontschieder et al. [21] proposed a Deep Neural Deci-

sion Forests structure which combines classification trees

with unsupervised feature learning in convolutional neu-

ral networks. As described earlier, directly unsupervised

feature learning techniques such as convolutional networks

and deep belief nets [17] will cause the loss of inter-

pretability and integrity of the group representation of the

multi agent trajectories. Therefore a considerable research

gap exists when applying unsupervised feature learning and

deep learning techniques to model multi agent behaviour.

2.4. Match prediction in Soccer

Considering the related work done in the area of soccer

match score prediction, Baio et al. [1] proposed a bayesian

hierarchical model which incorporates home and away con-

text into the prediction model. This was followed by the

works by Owramipur et al. in [29], by Baker et al. in [2]

and Constantinou et al in [6]. Yet these approaches [2,6,29]

have considered the problem of predicting the final results

(i.e whether a win, loose or a draw) rather than predicting

the final score. The latter is considered to be a more chal-

lenging problem as numerous factors have different degrees

of influences when deciding the final score.

3. Methodology

3.1. Problem Definition

We assume that each frame in our dataset is first prepro-

cessed and we have obtained the spatial coordinates of each

player at every time frame. Our observations of adversarial

multi-agent behaviours come in the form of fine-grain spa-

tial locations (x, y) of each agent sampled at a uniform rate

(i.e., 10fps). The trajectory of the ith agent across a period

of τ frames can then be defined by the vector,

xi = [x1, y1, . . . , xτ , yτ ]. (1)
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Given that we have a fixed number of agents, m, we can

represent the behaviour of a group/team as a concatenation

of each agent’s trajectory,

XA = [xT
1 , . . . ,x

T
m], (2)

where A is the identity of the group. To incorporate an ad-

versary, we concatenate one group with the second to form

the “play representation”,

Xplay = [XA;XB]. (3)

Our goal is to learn a model which maps Xplay to the

probability of a goal occurring from that particular shot,

P = [0, 1]. To simplify the problem, all events are of fixed-

length. In the experiments τ is set to 100; and we select the

10 seconds (i.e. 100 entries at 10 fps) directly prior to the

occurrence of the event of interest as our window for fea-

ture extraction. For simplicity we are considering only the

player trajectory, however the ball trajectory could also be

incorporated into the same framework.

We have the additional constraint of dealing with a rep-

resentation of the raw trajectories, so we have to ensure the

integrity of the group representation (i.e., don’t split up in-

dividual trajectories) as well as retaining interpretability. In

this paper, our core contribution is the development of a

framework to achieve this via a deep decision tree. Further-

more we demonstrate this framework on applications of the

learnt group attributes that are reliant on the preservation of

interpretability. Due to the volume of data available, we fo-

cus on soccer tracking data, although our approach can be

used in any adversarial multi-agent domain.

3.2. Data set

We utilise player tracking data from 3 Premier League

tournaments and 3 Champions League tournaments, ob-

tained from Prozone and Amisco tracking systems, result-

ing in more than 2000 matches. The dataset provides player

positions for every 1/10 th of a second. Such fine grain

precision is not available in any publicly available dataset.

3.3. Automatic feature learning from trajectory
data

Discovering the playbook, or a set of plays which are

representative of a team’s behaviour is an unsupervised

learning or clustering task. The simplest approach would be

to only use the ball trajectory, and cluster plays accordingly.

However, this is sub-optimal as the players and event infor-

mation are extremely important and capture semantics more

effectively. Conversely, not all the players are involved in

the play, making the dimensionality needlessly high.

Fig. 1 illustrates our approach. Our proposed approach

contains three main concepts: feature weights, decision

nodes, and prediction nodes, defined as follows:

Figure 1: Proposed Deep Decision Tree Architecture:

Given a large database of tracking data, we first align the

data to a formation template, and segment plays into coarse

groups. Then the decision tree with n+2 layers is formed.

We use back propagation to learn the tree which is seman-

tically interpretable as well as informative to the prediction

task at hand. Due to the interpretable and informative nature

of this learnt dictionary, it can be used for many knowledge

discovery tasks

1. Feature weights quantify the significance of each

player trajectory in a given play.

2. Decision nodes are internal nodes and are responsible

for routing the samples through the tree structure us-

ing a specific decision function. The decision function

used in the proposed work is a weighted clustering al-

gorithm that utilises feature weights.

3. Prediction nodes are the leaf nodes in the tree. They

generate the relevant classification using the assigned

plays.

Given a player tracking database, we first align the data

to a formation template using the method proposed in [4].

Aligning is necessary as the players tend to switch their po-

sitions throughout the game. Then these aligned plays are

passed through a series of decision nodes which routes the

plays based on the specified decision function which utilises

feature weights for the routing process. When the samples

reach the leaf nodes we generate relevant classifications us-

ing the prediction nodes. In the next step we back propagate

this classification error and update the feature weights. This

allows us to focus more on significant trajectories for the

prediction task when routing the examples. This approach

essentially is a decision-tree which is “deep” in nature.

We compare our proposed approach with a Deep Convo-

lution Neural Network (DCNN) approach, which is a bot-

tom up approach. In a general DCNN application we start

with raw pixels and we build features layer by layer, gath-

ering more information. However this approach cannot be
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directly applied to multi agent trajectories due to the nature

of multi agent behaviour. Any slight change in trajectory

will cause another dictionary element to occur. Hence, ev-

ery codebook element will have only 1 or 2 plays within

each bucket; and the model will overfit. DCNNs have found

success with image and videodata due to the enormous di-

mensionality; where variable imaging factors such as illu-

mination and scale can render a top down approach infeasi-

ble.

However, when considering the scenario of soccer, the

problem is more constrained. The variation at the highest

layer is much less than for an image problem. For instance,

the number of players is almost always fixed, and the di-

mensionality is much smaller as we have only the player

trajectories. Therefore we can reach the same solution in

a much faster manner. The proposed approach is outlined

in the following subsections: Sections 3.3.1 and 3.3.2 ex-

plain the decision nodes (DN) and prediction nodes (PN)

that make up the network. Section 3.4 explains how we use

back propagation to learn feature weights within the net-

work. The supplementary material presents the full algo-

rithm for our proposed approach.

3.3.1 Decision Nodes

Decision nodes, b (b ∈ B), are internal nodes of the tree

while prediction nodes, l (l ∈ L), are the terminal nodes.

Each prediction node, l ,holds a probability distribution over

P (Figure 1 (a) far right). Each decision node b is assigned

a decision function which is responsible for routing sam-

ples along the tree. The decision function is a feature weight

based clustering approach which we utilise to split the plays

passed from the layer above. The reason for using agglom-

erative clustering based on classification instead of a general

clustering approach is illustrated below.

General clustering approaches aim to assign each exam-

ple in the training set to a cluster which minimises the re-

construction error with respect to the number of clusters.

Let X = [Xplay
1 , . . . ,Xplay

N ] be the set of plays with of-

fensive and defensive player trajectories. Learning a recon-

structive dictionary with ϑ items can be accomplished by,

ϑ∑

i=1

∑

j

||Xplay
j −Υi||

2
2 , (4)

where Υi is the geometric centroid of the data points

for cluster i and ϑ is the number of clusters. The term

||Xplay
j − Υi||

2
2 denotes the distortion. It should be noted

that all the feature elements are weighted equally when eval-

uating the distortion measure. But for mutil-agent trajecto-

ries this is not optimal. Some trajectories are more signifi-

cant than others for the prediction task that we are interested

in. Therefore, we utilise a weighted distortion measure.

Let X
play
i = (xi,1, . . . ,xi,m) and X

play
j =

(xj,1, . . . ,xj,m) be two plays where m is the number of fea-

tures (i.e m = 22 in the case of soccer as there are 22 player

trajectories). α = (α1, . . . , αm) is the set of feature weights

(we outline how these feature weights are learnt in Section

3.4). The weighted distortion between X
play
i and X

play
j is,

Dα(Xplay
i ,Xplay

j ) =

m∑

l=1

αlDl(xi,l,xj,l), (5)

where Dl(xi,l,xj,l), in the case of squared Euclidean dis-

tance is given by,

Dl(xi,l, xj,l) = (xi,l − xj,l)
T (xi,l − xj,l). (6)

Therefore the objective of a decision node is to minimise

Eq. 5. By utilising a clustering objective as a decision func-

tion we are able to retain the semantic correspondence and

the interpretability of the data provided.

3.3.2 Prediction Nodes (PNs)

Once a sample ends in a leaf node, the related tree predic-

tion is given by the classifier associated with that particular

leaf node. The passed player trajectories are the features for

the classifier in the PNs. In addition to learning a recon-

structive dictionary which learns different play representa-

tions, we are also interested in learning a dictionary that

best discriminates the positive and negative examples for

the prediction task that we are interested in. We incorporate

this objective in prediction nodes as follows,

||pi − f(Xplay
i , πk)||

2
2 , (7)

where πk is the weight vector parameterising the classi-

fier f associated with the kth prediction node, and p =
[p1, . . . , pN ] are the class labels associated with each play.

The learnt probability distribution for each classifier can be

utilised for many prediction tasks. A set of potential appli-

cations are demonstrated in Section 5.

3.4. Back Propagation in the Decision Tree

In order to optimise the combined objective we can

utilise the two step optimisation strategy given in [21] where

the algorithm alternates the updates of α with updates of

π. We start with segmenting plays based on semantics into

free-kicks, open plays, corners and counter-attacks. Then

we create the desired tree structure and randomly initialise

the decision node parameters based on the procedure given

in [21]. Parameters α and π are learnt using stochastic gra-

dient decent.

4. Evaluation

In this section we evaluate the proposed prediction

model and in Section 5, we demonstrate it’s applications.
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No Experiment Mean Log Loss

1

Random Forest with 150 trees 0.4913

Logistic Regression 0.9482

SVM Regression 0.9109

2 Decision tree with 2 layers 0.3576

3 Decision tree with 4 layers 0.0891

4 Decision tree with 5 layers 0.0889

5 Decision tree with 6 layers 0.0890

Table 1: Evaluation results for short term prediction. As the

baseline model we handcrafted features proposed in [25]

and trained different classifiers (row 1). Then we evaluated

performance by altering the number of layers of the decision

tree (rows 2 to 5).

4.1. Evaluation protocol

We randomly divided the dataset into training and test-

ing sets where the training set contains 70% of the matches

(i.e 37,800 shots) and the testing set contains the remaining

30% (i.e 16,200 shots). As our baseline model we utilised

the hand-crafted features proposed in [25]. i) the shot lo-

cation, ii) positions of the closest 4 defenders, iii) positions

of closest 4 attacking players, and iv) position of the goal-

keeper. Using the above stated features we compared the ac-

curacy of predicting the likelihood of occurrence of a goal

from a shot using different classifiers: Random Decision

Forests [18], Logistic Regression [15] and SVMs [20].

4.2. Evaluation results

Shot Location X
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Figure 2: Distribution of handcrafted shot location feature

in the first 1000 examples. It can be seen that is difficult to

extract any high level understanding, or infer tactical infor-

mation from the hand-crafted feature.

The prediction performance in terms of log-loss are

shown in the second row of Table 1. Not surprisingly, the

Random Decision Forest performed the best due to its ca-

pacity to model complex behaviour. The optimal number

of trees was chosen as 150 as this provided the minimum

cumulative log-loss. Similarly, the maximum depth of each

tree is set to 3 after evaluating trees of depth 2, 3, 5 and

10. Then utilising the proposed algorithm and extending

the idea to 4 layers achieves a much better performance with

a log-loss down to 0.0891. With the addition of a layer the

log-loss is slightly reduced denoting that the model has con-

verged with 4 layers (see rows 2-4).

An important feature of the proposed approach is that

we maintain interpretability of the data. In Fig. 2 we have

shown the distribution of the shot location feature for the

first 1000 examples in our database. We compare it with the

learnt features of the proposed model (shown in Figure 3).

The proposed framework generates a codebook or a play-

book of scoring methods that teams use for scoring goals,

and an accompanying set of distributions quantifying the

likelihood of a goal being scored from that particular code-

book element (given in Figure 4). The process of generating

such distributions can be summarised as follows.

Given a set of bins Bk = (lk, . . . , lk+1) with fixed bin

width h = lk+1− lk, a set of plays X = [Xplay
1 , . . . ,Xplay

N ]
and a set of codebook element cj = [c1 . . . c36] , the deci-

sion tree assigns the given play X
play
i to a respective code-

book element ci and generates a probability pi of that play

being a goal,

(ci, pi) = fDecTree(Xplayi). (8)

The bin counts for codebook type cj are given by,

vk,cj =

N∑

i=1

I(ci ∈ cj ∩ pi ∈ Bk), (9)

where
∑
k

∑
j

vk,cj = N ; and I is an indicator function.

Then the distribution for codebook type cj is given by,

fcj =
vk,cj
ncjh

, (10)

where

ncj =
N∑

i=1

I(ci ∈ cj). (11)

Each of the codebook element captures the trajectories

of all the players for a 10 second time window that leads to

a shot on goal. It is worth noting that all shot types except

penalties were included in this analysis. It can be seen from

Figure 32 that our playbook captures several different plays

such as counter-attacks (P4, down the centre, and P2, P6

down the right), and free-kicks (P3, P6).

Contrasting Figure 2 to Figure 3, it is evident that hand-

crafted features don’t generate a meaningful representation.

Furthermore as they capture only abstract level semantics

2Note that Figures 4 and 5 only show the first 6 of 36 plays in our play-

book. Please see the supplementary material for for the complete code-

book.
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Figure 3: Play book of scoring methods ( Red is attacking team running left-to-right. Blue is defensive team defending

running right-to-left ). This figure shows only the first 6 of code-book elements. Please refer to the supplementary material

for the complete codebook.

Figure 4: Histogram of the expected goal values for each scoring method shown in Figure 3. In all plots the x-axis show the

expected goal value and the y-axis shows the frequency. Please refer to the supplementary material for the complete set of

distributions.

of the scene, for a single time instance they are not a rich

information source for prediction. In contrast, our proposed

unsupervised architecture captures the information for a 10

second time period leading to a shot on goal and outper-

forms the handcrafted approaches as shown in Table 1.

Additionally with the proposed framework we are able to

learn the weight of each role for offensive and defensive tra-

jectories, under different contexts (Figure 5); allowing us to

quantify the importance of individual positions for different

types of shots. This idea can be extended to each codebook

element, where one could analyse what player roles influ-

ence the occurrence of a goal.

5. Applications

5.1. Team strategy analysis

As illustrated earlier, our proposed approach provides us

with a codebook of scoring methods for soccer and like-

lihood distributions specifying the quality of that shot type

(i.e likelihood of a goal being scored from that shot type). If

we analyse this at a team level, and assign the shots played

by a particular team to the closest codebook element that we

have and then quantify it’s quality (i.e. was a goal scored),

we can represent the strategy of a particular team.

With that intent, from a recent season of a top-tier Euro-

pean league (380 games, 38 per team, 19 home and 19 away

matches), we analysed at a team level which methods teams

use to create chances offensively, as well as concede defen-

sively. 3 Figure 6 shows league wide tendencies for scoring

and conceding. From Figure 6 (a), we can see that P12 and

P14 are the most common methods of creating a shot. But

in terms of effectiveness, we can see from Figure 6 (b) that

3Due to privacy constraints, we have anonymised the league and the

team identities. As such we identify the teams as letters ranging from A-T.
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Figure 5: Absolute Weight Values α, base on Role. It can

be clearly seen that the importance of each role varies ac-

cording to the type of play.

there exists vast variability in the effectiveness of shooting

methods. This strategy plot is calculated by obtaining the

mean expected goal value per shot method. This gives us

a goal value per shooting method and visualise of whether

one team converts or concedes a chance in this manner.

Given the set of plays X
play
i = [Xplay

1 , . . . ,Xplay
N ] in

the season, the mean offensive strategy distribution can be

generated by,

fMSO =
∑

j

v∗cj , (12)
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where

v∗cj =

N∑
i=1

I(ci ∈ cj)qi

ncj

. (13)
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Figure 6: The left plot shows the frequency of each shot

type, P12 and P14 are the most common. The right plot

shows the mean ”Strategy Plot”, which shows the expected

goals per method offensively (blue) and defensively (red).

We can use this to normalise an individual teams distribu-

tion to understand how they compare to the league average.

Even though the average strategy plot is quite uniform,

we can see in Figures 7 and 8, at a per team level that they

are highly variable. We generate the relative strategy plots

(Figures 7 and 8) by subtracting the league average from the

team’s strategy plot. The offensive strategy of team t where

Tk = [Team1, . . . ,Team22] is given by,

fTSO
t =

∑

j

v∗(cj ,t), (14)

where

v∗(cj ,t) =

N∑
i=1

I(ci ∈ cj ∩ t ∈ Tk)qi

n(cj ,t)
. (15)

In the above equation n(cj ,t) is given by

n(cj ,t) =

N∑

i=1

I(ci ∈ cj ∩ t ∈ Tk). (16)

Then we can generate the relative strategy offence of team

t by,

fRSO
t = fTSO

t − fMSO. (17)

In Fig. 7 we have the relative offensive capability, com-

pared to Fig. 8 where we show the defensive capability per

shooting method. Note that in Fig. 7 and Fig. 8 we have

only the first 4 teams (A-D)4. For the offensive plots, hav-

ing more positive bins suggests that teams are offensively

stronger compared to the league average, where specific

peaks or dips highlight a particular strength or deficiency

respectively for that particular scoring method.
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Figure 7: Relative Offensive Strategy Plot. League wide

offensive strategy is subtracted at a team level. In all plots

the x-axis shows the shot type and y-axis shows the fRSO.
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Figure 8: Relative Defensive Strategy Plot. League wide

average defensive strategy is subtracted at a team level. In

all plots the x-axis shows the shot type and y-axis shows the

fRSD.

For the defensive plots, the opposite applies; having

more positive peeks suggests that the team is susceptible

to that scoring method, while more bars below suggests that

that team is strong in not allowing that particular scoring

method to lead to a goal compared to the league-average.

From these plots we can gain insights into a teams strengths

and weaknesses. For instance, we can see that while Team

A is inconsistent in attack, they are strong in defence; while

team C is very effective for a number of attacking plays,

they are also more vulnerable than average in defence.

5.2. Predicting Long Term Behaviour: Match Sim
ulation and Betting

Long-term events can be viewed as an aggregation of

short-term events. By utilising the features that improved

the short term prediction one can also improve long-term

prediction. The idea behind soccer match simulation is to

predict when and how (i.e which shot type) teams are going

to shoot, and how many shots will result in goals. As we

have distributions quantifying the probability of each team

scoring a goal from each shot type (shown in Fig. 7), and

the defensive strength of each team against different shot

types (shown in Fig. 8), we can aggregate the final score.

A problem with this naive approach is that the probabil-

ity of an event is dependent on the context, such as the score,

home team, and time remaining. As such, the prediction

of the long-term outcome needs to incorporate this context.

This approach is in contrast to current long term event mod-

elling approaches where the sub-event likelihoods are fixed

for the entire event. In this section, we show that by incor-

porating the context and learning a model for this situation

we can improve long-term prediction.

An approach for soccer match simulation is proposed by

4Please refer to the supplementary material for complete set of plots
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Baio et al. [1], which incorporates home and away context.

The number of goals scored by the home and the away team

in the gth game of the season is given by yg1 and yg2 re-

spectively. The vector of observed counts, y = (yg1,yg2)
is modelled as an independent Poisson:

ygj |θgj ∼ Poisson(θgj)

where the parameters,

θ = (θg1, θg2),

represent the shooting intensity in the g-th game for the

team playing at home(j = 1) and away(j = 2).

The random variable θ can be modelled using a log-

linear random effect model,

logθg1 = home+ atth(g) + defa(g)
logθg2 = atta(g) + defh(g).

The parameter home represents the advantage for the

team hosting the game and we assume that this effect is con-

stant for all teams throughout the season.

However, as described previously these descriptions are

rather coarse and do not give specifics about a team’s abil-

ity in different contexts. For example, a team maybe more

or less susceptible to “corner kicks” or “counter attacks”

depending on their style of play. Therefore when playing

against such a team an opponent may vary their style. Fur-

thermore a team may decide to attack or defend depending

on the current score and the time remaining.

5.2.1 Simulating Different Contexts

The decision tree indicates the likelihood of an event occur-

ring under different contexts. As such, simulation allows us

to estimate what the cumulative effects will be on long-term

prediction as we sequentially go through events (e.g. what

happens if a team scoring early vs a team scores late).

Our baseline model (M1) is to fix the probabilities of an

event occurring. At the start of the simulation the clock is

set to 00:00 and the occurrence of the next shot by the two

teams is predicted via linear regression. The current time

is selected and the probability of the event (i.e., goal being

scored) is quantised to either 0 or 1 by randomly sampling

the shot distribution of each team. The current score and

time is updated accordingly. The process is repeated until

the current time exceeds the stoppage time. We ran every

simulation 1000 times and the average score is recorded.

We then used our method (Our), in which the linear re-

gression model predicting the time of the occurrence of the

next shot takes context features into account. The selected

context features are: a binary feature indicating whether its

home/away; the current score and the remaining time.

Exp. No Method MSE

1 BHM: Bayesian hierarchical model [1] 1.92

2 M1: Fixed likelihood model 2.15

3 Ours: Varying likelihood model 1.42

Table 2: Evaluation results for match simulation: Mean

Square Error (MSE) is shown for the BHM [1], M1 and

our proposed model.

5.2.2 Evaluation protocol

Similar to Sec. 4.1, we divide the dataset into training and

testing sets, where the training set contains 70% of matches

in the original dataset and the testing set contains the rest.

We evaluated the average Mean Squared Error (MSE) for 3

prediction models: the Bayesian hierarchical model (BHM)

of [1]; our baseline model (M1); and our proposed method

(Our). The results are presented in Table 2.

5.2.3 Match simulation results

The results indicate that our approach outperforms the

BHM and M1 due to the fact that it allows the model to

capture the contextual information. When comparing the

MSE generated from individual models, M1 has the high-

est MSE as it doesn’t include any contextual information.

The prediction process goes blindly with a fixed probabil-

ity distribution for each team. When moving to the BHM

model the MSE decreases as it takes home/ away context

into account. With our model we show that one can further

improve the prediction process through an advanced con-

textual model which incorporates a rich set of features.

6. Conclusion

In this paper, we have proposed a novel dictionary learn-

ing algorithm for adversarial multi agent sports tracking

data. The proposed algorithm performs unsupervised learn-

ing of group attributes directly from tracking data. The

discriminative nature of the algorithm ensures that learnt

codebook elements are ideal for short term prediction tasks.

Furthermore the proposed deep decision tree architecture

preserves the interpretability of the learnt codebook, en-

abling domain experts to perform high level data mining and

knowledge discovery activities on the learnt dictionary. The

experimental results indicate a vast range of applications for

these codebook plays. We demonstrated the applicability of

this technique not only for short term predictions such as

predicting the occurrence of an event, but also for long term

predictions such as simulating games between two oppo-

nents. The informative nature of the codebook also allows

for strategic analysis permitting us to quantifying and com-

pare different strategies among teams.
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