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Abstract

In this paper, we introduce SoccerNet, a benchmark for

action spotting in soccer videos. The dataset is composed

of 500 complete soccer games from six main European

leagues, covering three seasons from 2014 to 2017 and a

total duration of 764 hours. A total of 6,637 temporal anno-

tations are automatically parsed from online match reports

at a one minute resolution for three main classes of events

(Goal, Yellow/Red Card, and Substitution). As such, the

dataset is easily scalable. These annotations are manually

refined to a one second resolution by anchoring them at a

single timestamp following well-defined soccer rules. With

an average of one event every 6.9 minutes, this dataset fo-

cuses on the problem of localizing very sparse events within

long videos. We define the task of spotting as finding the

anchors of soccer events in a video. Making use of recent

developments in the realm of generic action recognition and

detection in video, we provide strong baselines for detecting

soccer events. We show that our best model for classifying

temporal segments of length one minute reaches a mean Av-

erage Precision (mAP) of 67.8%. For the spotting task, our

baseline reaches an Average-mAP of 49.7% for tolerances δ

ranging from 5 to 60 seconds. Our dataset and models are

available at https://silviogiancola.github.io/SoccerNet.

1. Introduction

Sports is a lucrative sector, with large amounts of money

being invested on players and teams. The global sports mar-

ket is estimated to generate an annual revenue of $91 bil-

lion [17], whereby the European soccer market contributes

about $28.7 billion [18], from which $15.6 billion alone

come from the Big Five European soccer leagues (EPL,

La Liga, Ligue 1, Bundesliga and Serie A) [19, 20]. Af-

ter merchandising, TV broadcast rights are the second ma-

jor revenue stream for a soccer club [21]. Even though

the main scope of soccer broadcast is entertainment, such

videos are also used by professionals to generate statistics,

analyze strategies, and scout new players. Platforms such as

Wyscout [83], Reely [59], and Stats SPORTVU [72] have

made sports analytics their core business and already pro-

Figure 1. Example of events defined in the context of soccer. From

top to bottom: Goal: the instant the ball crosses the goal line.

Substitution: the instant a players enters the field to substitute an

other player. Card: the instant the referee shows a card to a player.

vide various products for advanced statistics and highlights.

In order to get such statistics, professional analysts watch

a lot of broadcasts and identify all the events that occur

within a game. According to Matteo Campodonico, CEO of

Wyscout, a 400 employee company focusing on soccer data

analytics [83], it takes over 8 hours to provide up to 2000

annotations per game. With more than 30 soccer leagues in

Europe, the number of games is very large and requires an

army of annotators. Even though Amazon Mechanical Turk

(AMT) can provide such workforce, building an annotated

dataset of soccer games comes at a significant cost.

Automated methods for sports video understanding can

help in the localization of the salient actions of a game.

Several companies such as Reely [59] are trying to build

automated methods to understand sports broadcasts and

would benefit from a large-scale annotated dataset for train-

ing and evaluation. Many recent methods exist to solve

generic human activity localization in video focusing on

sports [7, 10, 26, 42]. However, detecting soccer actions

is a difficult task due to the sparsity of the events within a

video. Soccer broadcast understanding can thus be seen as a

sub-problem of video understanding, focusing on a vocabu-

lary of sparse events defined within its own context.
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Contributions. (i) We propose the task of event spotting

within a soccer context. We define events as actions an-

chored to a single timestamp in a video and, thus, proceed

to define and study the task of spotting events within soc-

cer videos (Section 3). (ii) We propose SoccerNet, a scal-

able dataset for soccer video understanding. It contains 764

hours of video and 6,637 instances split in three classes

(Goal, Yellow/Red Card, and Substitution), which makes it

the largest localization dataset in term of total duration and

number of instances per class (Section 4). (iii) We provide

baselines for our dataset in the tasks of video chunk clas-

sification and event spotting. Our minute classifier reaches

a performance of 67.8% (mAP) and our event spotter an

Average-mAP of 49.7% (Section 5).

2. Related Work

This paper relates to the topics of Sports Analytics, Ac-

tivity Recognition and Action Localization Datasets. We

give a brief overview of work relevant to each of these top-

ics and highlight how our paper contributes to each of them.

Sports Analytics. Many automated sports analytics meth-

ods have been developed in the computer vision community

to understand sports broadcasts [7, 23, 26, 41, 58]. They

produce statistics of events within a game by either analyz-

ing camera shots or semantic information. Ekin et al. [24]

present a cornerstone work for game summarization based

on camera shot segmentation and classification, followed by

Ren et al. [60] who focus on identifying video production

patterns. Huang et al. [35] analyze semantic information to

automatically detect goals, penalties, corner kicks, and card

events. Tavassolipour et al. [76] use Bayesian networks to

summarize games by means of semantic analysis.

More recent work in this category focuses on deep learn-

ing pipelines to localize salient actions in soccer videos.

Baccouche et al. [6] use a Bag-of-Words (BOW) approach

with SIFT features to extract visual content within a frame.

They use such representations to train a Long Short Term

Memory (LSTM) network that temporally traverses the

video to detect the main actions. Jiang et al. [38] pro-

pose a similar methodology using Convolution Neural Net-

works (CNN) to extract global video features rather than

local descriptors. They also use a play-break structure to

generate candidate actions. Tsagkatakis et al. [78] present

a two-stream approach to detect goals, while Homayounfar

et al. [33] recently present a deep method for sports field lo-

calization, which is crucial for video registration purposes.

The main impediment for all these works is the lack of

reference datasets/benchmarks that can be used to evalu-

ate their performance at large-scale and standardize their

comparison. They all use small and custom-made datasets,

which contain a few dozen soccer games at most. We argue

that intelligent sports analytics solutions need to be scalable

to the size of the problem at hand. Therefore, to serve and

support the development of such scalable solutions, we pro-

pose a very large soccer-centric dataset that can be easily

expanded and enriched with various types of annotations.

Activity Recognition. Activity recognition focuses on

understanding videos by either detecting activities or clas-

sifying segments of video according to a predefined set of

human-centric action classes. A common pipeline consists

of proposing temporal segments [9, 11, 28, 64], which are

in turn further pruned and classified [30, 80]. Common

methods for activity classification and detection make use

of dense trajectories [29, 79, 80, 81], actionness estima-

tion [14, 28, 87], Recurrent Neural Networks (RNN) [8, 9,

25], tubelets [40, 63], and handcrafted features [11, 49, 86].

In order to recognize or detect activities within a video,

a common practice consists of aggregating local features

and pooling them, looking for a consensus of characteris-

tics [42, 67]. While naive approaches use mean or maxi-

mum pooling, more elaborate techniques such as Bag-of-

Words (BOW) [15, 68], Fisher Vector (FV) [36, 54, 56],

and VLAD [4, 37] look for a structure in a set of fea-

tures by clustering and learning to pool them in a manner

that improves discrimination. Recent works extend those

pooling techniques by incorporating them into Deep Neural

Network (DNN) architectures, namely NetFV [46, 55, 74],

SoftDBOW [57], and NetVLAD [3, 30]. By looking for

correlations between a set of primitive action representa-

tions, ActionVLAD [30] has shown state-of-the-art perfor-

mance in several activity recognition benchmarks.

To further improve activity recognition, recent works

focused on exploiting context [10, 16, 50], which repre-

sent and harness information in both temporal and/or spatial

neighborhood, or on attention [51], which learns an adap-

tive confidence score to leverage this surrounding informa-

tion. In this realm, Caba Heilbron et al. [10] develop a se-

mantic context encoder that exploits evidence of objects and

scenes within video segments to improve activity detection

effectiveness and efficiency. Miech et al. [50], winners of

the first annual Youtube 8M challenge [2], show how learn-

able pooling can produce state-of-the-art recognition per-

formance on a very large benchmark, when recognition is

coupled with context gating. More recently, several works

use temporal context to localize activities in videos [16] or

to generate proposals [28]. Furthermore, Nguyen et al. [51]

present a pooling method that uses spatio-temporal atten-

tion for enhanced action recognition, while Pei et al. [53]

use temporal attention to gate neighboring observations in a

RNN framework. Note that attention is also widely used in

video captioning [34, 44, 48].

Activity recognition and detection methods are able to

provide good results for these complicated tasks. However,

those methods are based on DNNs and require large-scale

and rich datasets to learn a model. By proposing a large-
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scale dataset focusing on event spotting and soccer, we en-

courage algorithmic development in those directions.

Datasets. Multiple datasets are available for video un-

derstanding, especially for video classification. They in-

clude Hollywood2 [47] and HMDB [45], both focusing

on movies; MPII Cooking [62], focusing on cooking ac-

tivities; UCF101 [71], for classification in the wild; UCF

Sports [61], Olympics Sports [52] and Sports-1M [42],

focusing on sports; Youtube-8M [2] and Kinetics [43],

both tackling large scale video classification in the wild.

They are widely used in the community but serve the objec-

tive of video classification rather than activity localization.

The number of benchmark datasets focusing on action

localization is much smaller. THUMOS14 [39] is the

first reasonably scaled benchmark for the localization task

with a dataset of 413 untrimmed videos, totaling 24 hours

and 6,363 activities, split into 20 classes. MultiTHU-

MOS [85] is a subset of THUMOS, densely annotated

for 65 classes over unconstrained internet videos. Activi-

tyNet [12] tackles the issue of general video understanding

using a semantic ontology, proposing challenges in trimmed

and untrimmed video classification, activity localization,

activity proposals and video captioning. ActivityNet 1.3

provides a dataset of 648 hours of untrimmed videos with

30,791 activity candidates split among 200 classes. It is

so far the largest localization benchmark in terms of to-

tal duration. Charades [66] is a recently compiled bench-

mark for temporal activity segmentation that crowd-sources

the video capturing process. After collecting a core set of

videos from YouTube, they use AMT to augment their data

by recording them at home. This dataset consists of a to-

tal of 9,848 videos and 66,500 activities. More recently,

Google proposed AVA [31] as a dataset to tackle dense ac-

tivity understanding. They provide 57,600 clips of 3 sec-

onds duration taken from featured films, annotated with

210,000 dense spatio-temporal labels across 100 classes, for

a total of 48 hours of video. While the main task of AVA is

to classify these 3 seconds segments, such dense annotation

can also be used for detection.

Within the multimedia community, TRECVID has

been the reference benchmark for over a decade [5, 69].

They host a “Multimedia Event Detection” (MED) and a

“Surveillance Event Detection” (SED) task every year, us-

ing the HAVIC dataset [73]. These tasks focus on finding

all clips in a video collection that contain a given event, with

a textual definition, in multimedia and surveillance settings.

Also, Ye et al. [84] propose EventNet, a dataset for event

retrieval based on a hierarchical ontology, similar to Activi-

tyNet. We argue that these two datasets both focus on large-

scale information retrieval rather than video understanding.

We propose SoccerNet, a scalable and soccer-focused

dataset for event spotting. It contains 500 games, 764 hours

of video and 6,637 instances split in three classes (Goal,

Figure 2. Dataset comparison in term of number of instance per

class, and total duration. The size of the hexagon shows the density

of the event within the video. Our dataset has the largest amount

of instances per class and the largest total duration, despite being

sparse, which makes the task of localization more difficult.

Yellow/Red Card, and Substitution), which makes it one of

the largest dataset in term of total duration and number of

instances per class. With an average of one event every 6.9

minutes, our dataset has a sparse distribution of events in

long untrimmed videos, which makes the task of localiza-

tion more difficult. The annotations are obtained within one

minute at no cost by parsing sports websites, and further

refined in house to one second resolution. We define our

dataset as easily scalable since annotations are obtained for

free from online match reports. Table 1 shows a breakdown

description and comparison of the datasets available for the

problem of action localization. Figure 2 shows a graphical

comparison between these datasets in terms of the number

of instances per class and the total duration of videos they

contain.

3. Spotting Sparse Events in Soccer

In this context, we define the concept of events and the

task of spotting events within soccer videos.

Events: Sigurdsson et al. [65] recently question the con-

cept of temporal boundaries in activities. They re-annotated

Charades [66] and MultiTHUMOS [85] (using AMT), and

conclude that the average agreement with the ground truth

is respectively 72.5% and 58.8% tIoU. This clearly indi-

cates that temporal boundaries are ambiguous. However,

Sigurdsson et al. [65] observe that central frames within an

activity offer more consensus among annotators.

Chen et al. [14] define the concept of action and action-

ness by underlining 4 necessary aspects that define an ac-

tion: an agent, an intention, a bodily movement, and a side-

effect. Dai et al. [16] define an activity as a set of events or

actions, with a beginning and an ending time. In our work,

we define the concept of event as an action that is anchored

in a single time instance, defined within a specific context
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Table 1. Comparison of benchmark datasets currently tackling the task of action localization.

Dataset Context #Video #Instance Duration Sparsity Classes Instance

(hrs) (event/hr) per class

THUMOS’14 [39] General 413 6363 24 260.4 20 318

MultiTHUMOS [85] General 400 38690 30 1289.7 65 595

ActivityNet [12] General 19994 30791 648 47.5 200 154

Charades [66] General 9848 66500 82 811 157 424

AVA [31] Movies 57600 210000 48 4375 80 2625

Ours Soccer 1000 6637 764 8.7 3 2212

respecting a specific set of rules. We argue that defining ev-

ery action with temporal boundaries is ambiguous for mul-

tiple reasons:

1. An action can occur in a glimpse, such as “a man

dropped his wallet” or “a man put a letter in the mail”.

While there are no well-defined boundaries for such

actions, a sole instant can readily define these events.

2. An action can be continuous within a live video, hence

it is unclear when it starts or stops. For instance, time

boundaries in video for actions such as “the night is

falling” or “the ice is melting in my glass”, rely on a

subjective discrimination between measurable quanti-

ties such as the illumination level or visual changes in

matter state.

3. An action can overlap and conflict with another. Con-

sider a video of a man walking his dog, when he sud-

denly receives a phone call. It is not clear whether the

activity “taking a phone call” actually cancels out the

activity “walking a dog”, or the activity “walking a

dog” should be split into two parts as opposed to one

single segment overlapping the “taking a phone call”

instance.

Current benchmarks such as THUMOS14 [39], Activi-

tyNet [12], and Charades [66] only focus on activities with

temporal boundaries and cope with ambiguities by anchor-

ing an activity with a consensus between several annotators.

This ambiguity motivates the recently developed AVA [31]

dataset that attempts to tackle the atomic characteristic of

actions by providing dense fine-scale annotations within a

short time duration (3 seconds).

In the multimedia community, the concept of events is

generally more vague and overlaps with the concept of ac-

tions and activities. In the MED task of the TRECVID

benchmark [5], an event is defined as a kit which consists

of a mnemonic title for the event, a textual definition, an ev-

idential description that indicates a non-exhaustive list of

textual attributes, and a set of illustrative video examples.

They propose a specific set of events, providing a descrip-

tion and defining rules for the start and end times. Such

work underlines our hypothesis that events need to be de-

fined with a set of rules and within specific circumstances.

In the context of live soccer broadcasts, it is unclear

when a given action such as “scoring a goal” or “making

a foul” starts and stops. For similar reasons, the beginning

and end of activities such as “scoring a 3 points shot” or a

“slam dunk” in a basketball broadcast are ambiguous. We

argue that sports respect well-established rules and define

an action vocabulary anchored in a single time instance.

In fact, soccer rules provide a strict definition of “goal”,

“foul”, “card”, “penalty kick”, “corner kick”, etc. and also

anchor them within a single time. Similarly, Ramanathan et

al. [58] define the action “basket-ball shot” as a 3 seconds

activity and its ending time as the moment the ball crosses

the basket. Defining starting or stopping anchors around

such events or fixing its duration would be considered as

subjective and biased by the application.

Spotting: Rather than identifying the boundaries of an

action within a video and looking for similarities within

a given temporal Intersection-over-Union (tIoU), we intro-

duce the task of spotting. Spotting consists of finding the

anchor time (or spot) that identifies an event. Intuitively,

the closer the candidate spot is from the target, the better

the spotting is, and its capacity is measured by its distance

from the target. Since perfectly spotting a target is intrin-

sically arduous, we introduce a tolerance δ within which a

event is considered to be spotted (hit) by a candidate. We

believe that event spotting is better defined and easier than

detection since it focuses only on identifying the presence

of an event within a given tolerance. An iterative process

can refine such tolerance at will by using fine localization

methods around candidate spots.

By introducing the task of spotting, we also define the

metric to be used for evaluation. First of all, we define a

candidate spot as positive if it lands within a tolerance δ

around the anchor of an event. For each tolerance, we can

recast the spotting problem as a general temporal detection

problem, where the tIoU threshold used is very small. In

that case, we can compute the recall, precision, Average

Precision (AP) for each given class, and a mean Average

Precision (mAP) across all classes. For general comparison,

we also define an Average-mAP over a set of predefined δ

tolerances, in our case below the minute.

1827



4. Data Collection

We build our dataset in three steps: (i) we collect videos

from online sources; (ii) we synchronize the game and

video times by detecting and reading the game clock; and

(iii) we parse match reports available in the web to generate

temporal aligned annotations.

4.1. Collecting Videos

We compile a set of 500 games from the main Euro-

pean Championships during the last 3 seasons as detailed in

Table 2. Each game is composed of 2 untrimmed videos,

one for each half period. The videos come from online

providers, in a variety of encodings (MPEG, H264), con-

tainers (MKV, MP4, and TS), frame rates (25 to 50 fps),

and resolutions (SD to FullHD). The dataset consumes al-

most 4TB, for a total duration of 764 hours. The games are

randomly split into 300, 100, and 100 games for training,

validation, and testing ensuring similar distributions of the

events between the classes and the datasets.

Table 2. Summary of the video collection for our dataset.

Seasons

League 14/15 15/16 16/17 Total

EN - EPL 6 49 40 95

ES - LaLiga 18 36 63 117

FR - Ligue 1 1 3 34 38

DE - BundesLiga 8 18 27 53

IT - Serie A 11 9 76 96

EU - Champions 37 45 19 101

Total 81 160 259 500

4.2. Game Synchronization with OCR

The video of the games are untrimmed and contains spu-

rious broadcast content before and after the playing time.

Finding a mapping between the game time and the video

time is necessary to align the annotations from the web

sources to the videos. Soccer games have a continuous

game flow, i.e. the clock never stops before the end of a

half, hence there is a simple linear relationship (with slope

1) between the video and the game time. Wang et al. [82]

propose a method using the center circle of the field and the

sound of the referee whistle to identify the start of the game.

We argue that focusing the effort on a single instant is prone

to error. In contrast, we focus on detecting the game clock

region within multiple video frames and identify the game

time through Optical Character Recognition (OCR) at dif-

ferent instants.

The clock is displayed in most of the frames through-

out the video, though its shape and position vary between

leagues. We leverage a statistical study of the pixel inten-

sity deviation within a set of N random frames to identify

candidates for the clock region. We run the Tesseract OCR

Engine [70] on the candidate clocks and look for a coherent

time format for each of the N frames. To cope with eventual

misreadings in the clock, we use a RANSAC [27] approach

to estimate the linear relation between the game clock and

the video time, enforcing a unitary gradient to our linear

model. Our method also checks for the temporal integrity

of the video, reporting temporal inconsistencies. To verify

the quality of this game-to-video temporal alignment, we

manually annotate the start of the game for all 500 games

and report an accuracy of 90% for automatically estimating

the start of both halves within a tolerance of two seconds,

using a set of N = 200 frames.

4.3. Collecting Event Annotations

For our dataset, we obtain event annotations for free by

parsing match reports provided by league websites1. They

summarize the main actions of the game and provide the

minute at which the actions occur. We categorize these

events into our three main categories: “goals”, “cards”

and “substitutions”. We parse and mine the annotations for

all games of the Big Five European leagues (EPL, La Liga,

Ligue 1, Bundesliga and Serie A) as well as the Champions

League from 2010 to 2017, for a total of 171,778 annota-

tions corresponding to 13,489 games. For sake of storage,

we focus on our subset of videos for the 500 games and use

only 6,637 events. To resolve these free annotations to one

second level, we manually annotate each event within one

second resolution by first retrieving its minute annotation

and refining it within that minute window. To do so, we

define the temporal anchors for our events from their defi-

nitions within the rules of soccer. We define a “goal” event

as the instant the ball crosses the goal line to end up in the

net. We define the “card” event as the instant the referee

shows a player a yellow or a red card because of a foul or

a misbehaviour. Finally, we define the “substitution” event

as the instant a new player enters in the field. We ensure

those definition were coherent when annotating the dataset.

Apart for the substitutions that occur during half time break,

almost all of our instances follow their definitions.

4.4. Dataset Scalability

We believe that scaling our dataset is cheap and easy,

since web annotations are freely available with one minute

resolution. Algorithm can either use the weakly annotated

events within one minute resolution or generate a complete

one second resolution annotation which is estimated to take

less than 10 minutes per game. We also argue that broad-

cast providers can easily scale up such datasets by simply

providing more videos and richer annotations.

1We choose www.flashscore.info to get our annotations since

they provide a wide number of summaries and have a consistent format

across their match reports.
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5. Experiments

We focus the attention of our experiments on two tasks:

event classification for chunks of one minute duration, and

event spotting within an entire video. For these tasks, we

report and compare the performance metrics for various

baseline methods when trained on weakly annotated data

(i.e. one minute resolution) and the improvement that is

achieved by training on one second resolution annotations.

5.1. Video Representation

Before running any experiments, we extract C3D [77],

I3D [13], and ResNet [32] features from our videos to be

used by our baselines. The videos are trimmed at the game

start, resized and cropped at a 224 × 224 resolution, and

unified at 25fps. Such representation guarantees storage ef-

ficiency, fast frame access, and compatible resolution for

feature extraction. C3D [77] is a 3D CNN feature extrac-

tor that stacks 16 consecutive frames and outputs at the fc7

layer a feature of dimension 4,096. It is pretrained on Sport-

1M [42]. I3D [13] is based on Inception V1 [75], uses 64

consecutive frames, and is pretrained on Kinetics [43]. In

this work, we only extract the RGB features at the PreLog-

its layer of length 1,024 so to maintain a reasonable compu-

tational runtime. They have been shown to produce only

meager improvements when flow features are used [13].

ResNet [32] is a very deep network that outputs a 2,048 fea-

ture representation per frame at the fc1000 layer. In particu-

lar, we use ResNet-152 pretrained on ImageNet [22]. Since

ResNet-152 applies to single images, it does not intrinsi-

cally embed contextual information along the time axis. We

use TensorFlow [1] implementations to extract features ev-

ery 0.5 second (s). In order to simplify and unify the di-

mension of those features, we reduce their dimensionality

by applying Principal Component Analysis (PCA) on the

5.5M features we extract per model. We reduce C3D, I3D,

and ResNet-152 features to a dimension of 512 and respec-

tively maintain 94.3%, 98.2%, and 93.9% of their variance.

For the benchmark purpose, we provide the original and

cropped versions of the videos, as well as the original and

the reduced versions of all the features extracted every 0.5s.

5.2. Video Chunk Classification

Similar to the setup in the AVA dataset [31], localization

can be cast as a classification problem for densely annotated

chunks of video, especially since we gather webly annota-

tions. We split our videos into chunks of duration 1 minute,

annotated with all events occurring within this minute, gath-

ering respectively 1246, 1558, 960 and 23750 chunks for

cards, substitutions, goals and backgrounds for the training

dataset, 115 of which having multiple labels. We aggre-

gate the 120 features within a minute as input for different

versions of shallow pooling neural networks. By using a

sigmoid activation function at the last layer of these net-

works, we allow for multi-labelling across the candidates.

We use an Adam optimizer that minimizes a multi binary

cross-entropy loss for all the classes. We used a step decay

for the learning rate and an early stopping technique based

on the validation set performances. Following best practices

in the field, the evaluation metric in this case is mAP (clas-

sification) across the three classes on the designated testing

set. In what follows, we report strong baseline results using

different video features, different pooling techniques, and

compare solutions to cope with the imbalanced dataset.

Learning How to Pool: We investigate the usage of dif-

ferent feature representations and various pooling methods.

We propose shallow neural networks that handles the in-

put matrix of dimension 120 × 512. We test a mean and a

max pooling operation along the aggregation axis that out-

put 512-long features. We use a custom CNN with a kernel

of dimension 512×20 that traverses the temporal dimension

to gather temporal context. Finally, we use implementations

of SoftDBOW, NetFV, NetVLAD and NetRVLAD pro-

vided by Miech et al. [50], who leverage a further context-

gating layer. After each of these pooling layer, we stack a

fully connected layer with a dropout layer (keep probability

60%) that predicts the labels for the minutes of video and

prevent overfitting.

Table 3 summarizes a performance comparison between

the various pooling methods when applied to the testing set.

First of all, we notice similar results across features by using

mean and max pooling, that only rely on a single representa-

tion of the set of 120 features and not its distribution. Using

the custom CNN layer, which is an attempt to gather tem-

poral context, ResNet-152 performs better than C3D which

performs better than I3D. We believe that the I3D and C3D

already gather temporal information for 64 and 16 frames.

We can notice that the gap between the features increases

by using the pooling methods proposed by Miech et al. [50],

which is a way to embed context along the temporal dimen-

sion. We believe that I3D and C3D features already rely on

a temporal characterization within the stack of frames. On

the other hand, the ResNet-152 provides a representation

that focuses only on the spatial aspect within a frame. We

believe that the temporal pooling methods provides more

redundant information for I3D and C3D, than for ResNet-

152. For this reason, we argue that ResNet-152 features

provide better results when coupled with any temporal pool-

ing methods provided by Miech et al. [50].

Focusing on the pooling, VLAD-based methods are at

the top of the ranking, followed by the deep versions of

the FV and BoW methods. Such improvement is attributed

to the efficient clustering for the 120 features learned in

NetVLAD [3] providing state-of-the-art results for action

classification [30]. Note that NetRVLAD performs simi-

larly if not better than NetVLAD by relying only on the
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average and not the residuals for each clustering, reducing

the computational load [50]. For the rest of the experiment

we are relying exclusively on ResNet-152 features.

Table 3. Classification metric (mAP) for different combinations of

frame representations and pooling methods.

Frame features

Pooling I3D C3D ResNet

Mean Pool. 40.8 40.7 40.2

Max Pool. 50.1 52.4 52.4

CNN 44.1 47.8 53.5

SoftDBOW 46.3 56.9 58.9

NetFV 44.7 59.6 64.4

NetRVLAD 41.3 59.9 65.9

NetVLAD 43.4 60.3 65.2

For the various pooling methods, the number of clusters

can be fine-tuned. In Table 3, we use k = 64 clusters, which

can be interpreted as the vocabulary of atomic elements that

are learned to describe the events. Intuitively, one can ex-

pect that a richer and larger vocabulary can enable better

overall performance [30]. We show in Table 4 that this in-

tuition is true within a certain range of values k, beyond

which the improvement is negligible and overfitting occurs.

The performance of all pooling methods seem to plateau

when more than 256 clusters are used for the quantization.

The best results are registered when NetVLAD is used with

512 clusters. Nevertheless, the computational complexity

increases linearly with the number of clusters, hence com-

putational times grow drastically.

Table 4. Classification metric (mAP) for different number of clus-

ter for the pooling methods proposed by Miech et al. [50].

Pooling Methods

k SoftBOW NetFV NetRVLAD NetVLAD

16 54.9 63.0 64.4 65.2

32 57.7 64.0 63.8 65.1

64 58.8 64.1 65.3 65.2

128 60.6 64.4 67.0 65.6

256 61.3 63.8 67.7 67.0

512 62.0 62.1 67.4 67.8

Coping with Imbalanced Data: The performance of clas-

sifiers are significantly affected when training sets are im-

balanced. Due to the sparsity of our events, we have nu-

merous background instances. Here, we present three main

techniques to cope with this imbalance. One method fo-

cuses on weighting (Weig) the binary cross-entropy with

the ratio of negative samples to enforce the learning of

the positive examples. Another method applies a random

downsampling (Rand) on the highest frequency classes, or

by hard negative mining (HNM), i.e. by sampling the ex-

amples that are misclassified the most in the previous epoch.

The third method uses Data Augmentation (Augm) to bal-

ance the classes. In that case, we use the fine annotation

of the event and slide the minute window with a stride of

1s within ±20s of the event spot to sample more video seg-

ments for the sparsest event classes. We argue that a chunk

of 1 minute within ±10s around the anchor of the event still

contains this event, and the pooling method should be able

to identify it. Although, note that our data augmentation

requires the data to be finely annotated.

Table 5 shows the classification mAP for the testing

dataset, training with the previous pooling methods on

ResNet features, and using the aforementioned strategies

to cope dataset imbalance. We see that weighting slightly

improves the metric. Both downsampling methods actually

lead to the worst results, because of the reduced amount of

data the model has been trained on at each epoch. Using the

second resolution annotations to augment the data helps to

achieve slightly better classification results.

Table 5. Classification metric (mAP) using different solutions to

cope with an imbalanced dataset on our pooling methods, using

ResNet-152 features.

Imbalance

Pooling Orig Weig Rand HNM Augm

Mean Pool. 41.5 42.4 40.9 42.4 43.9

Max Pool. 39.3 52.4 48.3 52.4 51.5

CNN 52.9 52.1 50.5 49.8 53.5

SoftDBOW 58.4 59.7 48.7 48.8 50.8

NetFV 64.2 63.8 58.0 60.5 65.2

NetRVLAD 65.2 64.9 61.4 61.0 66.7

NetVLAD 65.0 64.9 59.4 59.5 65.1

5.3. Spotting

In this section, we discuss the task of event spotting in

soccer videos. We use the models trained in the classi-

fier task and apply them in a sliding window fashion on

each testing video, with a stride of 1s, thus, leading to a

second resolution score along for each event class. We in-

vestigate the spotting results of three strong baselines (i) a

watershed method to compute segment proposals and use

the center time within the segment to define our candidate;

(ii) the time index of the maximum value of the watershed

segment as our candidate; and (iii) the local maxima along

all the video and apply non-maximum-suppression (NMS)

within a minute window. The evaluation metric is the mAP

with tolerance δ as defined for spotting in Section 3, as well

as, the Average-mAP expressed as an area under the mAP

curve with tolerance ranging from 5 to 60 seconds.

Comparison of Spotting Baselines: We investigate the

results for event spotting for our best weakly-trained classi-

fier, to leverage the use of webly-parsed annotations, i.e. we

train on the imbalanced minute resolution annotated data

and do not perform data augmentation. Specifically, we use

a NetVLAD model with k = 512 cluters based on ResNet
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(a) Model trained on chunks of 60s (b) Model trained on chunks of 20s (c) Model trained on chunks of 5s

Figure 3. Spotting metric (mAP) in function of the tolerance δ for model trained on chunks of size (a) 60s, (b) 20s and (c) 5s. The

Average-mAP is estimated through the area under the curve between 5s and 60s for each baseline.

features and the watershed threshold is set to 50%.

Figure 3a plots the mAP of each spotting baseline as a

function of the tolerance δ to the spot. As expected, the

mAP decreases with the spot tolerance δ. Above a toler-

ance δ of 60s, both three baselines plateau at 62.3%. Below

60s, the baseline (ii) and (iii) perform similarly and decrease

linearly with the tolerance. On the other hand, baseline (i)

decreases more gradually, hence provides a better Average-

mAP of 40.6%. Even though the model has been trained

using chunks of 1 minute, the method is still able to achieve

good spotting results for tolerances below 60s. We argue

that our model predicts positively any window that contains

an event, creating a plateau.

Training on Smaller Windows: Here, we train our clas-

sifiers from Section 5.2 using a smaller chunk size, ranging

from 60 seconds to 5 seconds. We expect these models to

perform in a similar fashion, with a drop in performance

(mAP) occurring for tolerances below the chunk size. Note

that we use finely annotated data to train such classifiers.

Figure 3 depicts the spotting mAP in function of the tol-

erance δ for the models trained on 60, 20 and 5 seconds.

They all have similar shape, a metric that plateaus for spot-

ting tolerance δ above the chunk video length they have be-

ing trained on, and a decreasing metric below such thresh-

old. By using baseline (i) on chunks of 20s we obtain the

best Average-mAP of 50% (see Figure 3b). Also, a drop

in performance occurs with models trained with chunks of

5s (see Figure 3c). We believe such gap in performance is

related to the amount of context we allow around the event.

With these experiments, we setup a baseline for the spot-

ting task but the best performance is far from satisfac-

tory. Nevertheless, we see our newly compiled and scalable

dataset to be a rich environment for further algorithm de-

velopment and standardized evaluations; especially when it

comes to novel spotting techniques.

6. Future Work

Activity detection is commonly solved by proposing can-

didates that are further classified. We believe that detection

can be solved by spotting a candidate and focusing attention

around the spot to localize the activity boundaries.

In future works, we encourage the usage of RNNs to

embed a further temporal aspect that will understand the

evolution of the game. We will also include more classes

for soccer events to enrich its contents and enable learning

potential causal relationships between events. We believe

for instance that the event “card” is mostly the result of an

event “foul”. Also, embedding semantic relationship infor-

mation from the players, the ball and the field can improve

soccer video understanding. Our video also contains an au-

dio track that should be used; visual and audio sentiment

analysis could localize the salient moments of the game.

The match reports from our online provider also includes

match commentaries. We collected and will release a to-

tal of 506,137 commentaries for the six aforementioned

leagues with a one second resolution. We believe such data

can be used for captioning events in soccer videos.

7. Conclusion

In this paper, we focus on soccer understanding in TV

broadcast videos. We build this work as an attempt to pro-

vide a benchmark for soccer analysis, by providing a large-

scale annotated dataset of soccer game broadcasts. We dis-

cussed the concept of event within the soccer context, pro-

posed a definition of “goal”, “card” and “substitution” and

parse a large amount of annotation from the web. We de-

fined the task of spotting and provide a baseline for it. For

the minute classification task, we have shown performance

of 67.8% (mAP) using ResNet-152 features and NetVLAD

pooling along a 512-long vocabulary and using a coarse an-

notation. Regarding the spotting task, we have establish an

Average-mAP of 49.7% with fine annotation and 40.6% by

using only weakly annotated data. We believe that focusing

effort on spotting, new algorithms can improve the state-of-

the-art in detection tasks.

Acknowledgments. This work was supported by the

King Abdullah University of Science and Technology

(KAUST) Office of Sponsored Research.

1831



References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-

fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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