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Figure 1: Overview of the proposed CoM estimation using visual hull and body parts dependent voxel-wise weighting.

Abstract

This paper presents a method to estimate the 3D posi-

tion of a center of mass (CoM) of a human body from a set

of multi-view images. As a well-known fact, in sports, col-

lections of CoM are important for analyzing the athletes’

performance. Most conventional studies in CoM estimation

require installing a measuring system (e.g., a force plate or

optical motion capture system) or attaching sensors to the

athlete. While such systems reliably estimate CoM, casual

settings are preferable for simplifying preparations. To ad-

dress this issue, the proposed method takes a vision-based

approach that does not require specialized hardware and

wearable devices. Our method calculates subject’s CoM

using voxels with body parts dependent weighting. This in-

dividual voxel reconstruction and voxel-wise weighting re-

flects the differences in each body shape, and are expected

to contribute to higher performance in analysis. The re-

sults using real data demonstrated the performance of the

proposed method were compared to force plate data, and

provided a 3D CoM visualization in a dynamic scene.

1. Introduction

The quantitative data obtained by sports motion analy-

ses are used to improve the performance of athletes [1, 13].

In many sports, superior balance ability, the ability to per-

form a task while maintaining or regaining a stable position

[21] is necessary not only to achieve high level competitive

levels [10] but also to avoid injury [8]. Traditionally, the

feasible movements for the control of balance are described

in a single-dimensional space related to the horizontal po-

sition of the body center of mass (CoM) [17]. Therefore,

accurate quantification of an athlete’s dynamic CoM in the

field plays an important role in many sports applications.

Indeed, literatures [11, 20] show that the CoM affects the

performance of the athletes in some sports.

Motion capture systems and force plates are often used

for measuring the CoM of the human body [4, 15]. How-

ever, these systems are large and expensive, and designed

only for special environments such as lab and studios. Gon-

zalez et al. proposed a method to estimate CoM using a

portable Wii balance board and Kinect to make the whole

system affordable [7]. On the other hand, the applications
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are limited to indoor scenarios because of the poor outdoor

performance of Kinect sensors. The recent active develop-

ments in wearable motion capture systems have revealed

that wearable devices can be used for CoM estimation [16].

While the wearable systems are capable of estimating posi-

tions of body joints even outdoors, many sports communi-

ties forbid wearing electronic devices during games.

From this background, we propose a method to mea-

sure CoM of athletes during sports games (Figure 1). This

method, for example, enables data analysts to compare

movements during practice and matches; in addition, they

will be able to analyze the other team’s players. To achieve

this, our method must meet the following three conditions.

• The method is capable of outdoor CoM estimation

• without wearable devices,

• and has ability to reflect athlete’s figure to CoM with-

out prior personalization.

To satisfy these conditions, we propose to estimate CoM

using multi-view RGB images only. First, we reconstruct

a 3D model of the subject’s body using multi-view RGB

images. The 3D model is divided into nine body parts,

and weights depending on the body parts are assigned to

each part. Then, the weighted average of the parts calcu-

lates the whole body CoM. Since the proposed method uses

only RGB images, wearable devices are not necessary and

outdoor CoM estimation is achieved. Moreover, 3D shape

reconstruction of subjects’ body handles the differences in

individual’s figure when calculating CoM.

We evaluated the accuracy of the proposed method via

an experiment using three people and four static postures.

Also, to replicate an actual sports scene, we estimated the

transition of the CoM for swinging a baseball bat, thus con-

firming that we could obtain reasonable results.

2. Related work

CoM trajectories, which describes the player’s balance

ability, plays a key role to in improving athletic performance

as well as preventing sport-related injuries [10, 8, 9]. Dif-

ferent types of devices, such as force plates, motion cap-

ture systems, depth sensors, and wearable devices have been

used to estimate CoM depending on the environment.

The force plate approaches measure ground reaction

forces to calculate CoM motion based upon Newton’s Sec-

ond Law, which states that the net external force acting upon

a body is equal to its mass multiplied by its acceleration.

The motion capture approaches use multiple markers on the

body to track and measure the position of body segments,

incorporating an anthropometric model to calculate seg-

mental center of mass positions. Saini et al. compared the

accuracy of these two simple methods and confirmed that

they could accurately estimate CoM when subjects moved

slowly [18]. Carpentier et al. proposed a method to estimate

CoM by combining the data from force plates and motion

capture systems [4]. They reduced sensor noise by using

data fusion based on complementary filtering. However,

force plates can only be used when the body is touching the

ground. In addition, it is difficult to move force plates and

motion capture systems and these devices limit the range of

movement of the subject.

To relax the restrictions on the measuring environments,

González et al. proposed to use Kinect and Wii balance

board together [7, 6]. They reported that the method could

estimate CoM with accuracy close to that of a Vicon mo-

tion capture system by personalizing each part of the hu-

man body beforehand [7]. However, the measurement ac-

curacy of Kinect decreases outdoors. Besides, just as with

motion capture, Kinect acquires only the skeleton of the hu-

man body, and volumetric properties, therefore, are ignored

in the CoM estimation without the pressure sensor.

Wearable motion capture systems can perform CoM

measurements with fewer restrictions regarding environ-

ments [16]. Najafi et al. estimated the trajectory of CoM

during a golf club swing by using wearable sensors; they

showed that wearable technologies based on inertial sensors

are a viable option for assessing dynamic postural control

in complex tasks. This method requires the player to wear

sensors. However, as most sports forbid wearing electronic

equipment during games, wearable sensors cannot be used

to estimate players’ CoM during actual matches.

Consequently, the proposed framework is the first at-

tempt towards an end-to-end automated process for CoM

trajectory estimation considering volumetric properties of

the measured athlete using image inputs only, although

skelton-based approaches using manually selected joint lo-

cations in images have been used for CoM estimation [5].

3. Method

3.1. Overview

The proposed method estimates the CoM of a single per-

son in a process. We place N calibrated cameras (N ≥ 2)

so as to record the target. A schematic of the proposed pro-

cess is shown in Figure 1. The input is only RGB images

taken from multiple viewpoints. Those images are used for

3D reconstruction of body shape and 3D kinematic structure

estimation of the human body. Based on the joint positions

obtained via the estimation of body structure, the human

body model is segmented into nine parts. Then, CoM is

obtained by assigning a weight to each part of the human

body, determined in advance.

3.2. 3D reconstruction of the human body

The 3D reconstruction of the human body is performed

using Laulentini’s method [12]. We extract the subject’s
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Figure 2: Variables in a segmented part.

2D silhouette from the input images (e.g., using [19]) and

reproject the silhouettes to a 3D world. In case that the

subject holds tools, we shall have a choice whether if we

include and exclude the tools from the following CoM cal-

culation. The common parts of the reprojected silhouette

are the 3D shape of the body V. V(∋ vj) denotes a set of

voxels, where each voxel element vj contains 3D positional

information. In order to retrieve precise 3D model, cameras

should be placed so that the common part is as small as pos-

sible. The arrangement of cameras depends on the posture

of the subject and the number of cameras N . By recon-

structing the 3D shape of the subject’s body, it is possible to

reflect any individual’s unique figure.

3.3. Human kinematic structure estimation

CoM is the unique position at which the weighted po-

sition vectors of all the parts of a system sum up to zero.

Because each body part has a different density [2], it is ex-

pected that assigning the appropriate weight to each body

part will lead to more accurate CoM estimation. As shown

in Figure 2, the 3D model reconstructed in Section 3.2 is di-

vided into nine parts, head, body, shoulder, back arm, fore-

arm, hand, thigh, calf, and toe.

We apply the method of Cao et al. [3] to the input images

to obtain 18 keypoints, which represent the joints and face

of an individual on the 2D image. By applying the direct

linear transform to each 2D keypoint q to triangulate them,

we obtain the 3D position p of each q.

As shown in Figure 2, the 3D model V is segmented into

Vi (0≤ i <9) based on the distance between line segments

Li connecting adjacent keypoints p and each voxel vj . Al-

gorithm 1 shows the segmentation procedure. A voxel vj

which exists within a distance λi from Li is classified as

Vi. A voxel vj located in the common area of two or more

body parts is classified as the part with the smaller distance.

All voxels vj that are not classified as any body part are

removed. We weight the segmented model based on the

weight of each part of the human body as reported by Lava

Algorithm 1: Proposed segmentation procedures

Vi: A part of 3D human body model V

vj : A voxel costituting the 3D model V

pi, p
′

i: Keypoints that divide V into Vi

Li(pi,p
′

i): Line segment between pi and p′

i

1 foreach vj do

2 foreach Li(pi,p
′

i) do

3 Di ← CalcDistance(vj ,Li)

4 end

5 if Min(Di) < λi then

6 stock vj to Vi

7 else

8 remove vj

9 end

10 end

[14]. The overall CoM of the human body C is computed

via Eq. (1), which represents their weighted average:

C =
1

M

M∑

i=1

wivi (1)

where M denotes the total number of voxels and wi repre-

sents the weight assigned to Vi.

4. Experiments

This section provides two performance evaluations of the

proposed method using real data. First, we compare three

methods to show that the proposed method outperforms in

the accuracy in terms of center of posture (CoP) error met-

ric [22]. Second, we present a 3D visualization of differ-

ent performances to demonstrate that the proposed method

has ability to provide meaningful 3D data for sports perfor-

mance analysis.

4.1. Evaluating CoP accuracy

4.1.1 Setups

As shown in Figure 3, a force plate (TF-6090) and five

cameras (GoPro, 30fps, 1920×1080 resolutions) are uti-

lized in this evaluation. The intrinsic parameters of these

cameras are estimated by Zhang’s method [23] beforehand.

These cameras are set so as to surround the force plate at

0◦, 45◦, 100◦, 260◦, and 300◦ respectively, where 0◦ repre-

sents a face-on view of the subject, capturing the subject

standing on the force plate. Three subjects (two male and

one female) each stood on the force plate in four static pos-

tures: upright standing, single-leg standing, squatting, and

bending forward. We extracted human region using a semi-
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Figure 3: Experimental setup.

automated manner implemented on GIMP2 1 in this exper-

iment, to confirm pixel precise mask.

To demonstrate the performance of the proposed method,

we compared it with the following two methods:

Uniform: Voxels with a uniform weight This method es-

timates the CoM as the center of the reconstructed 3D

model in which all parts are assigned a uniform weight.

The CoM is computed by Eq. (1) with all wi = 1.

Articulated: Articulated joints model This method esti-

mates the CoM as the center of the weighted articu-

lated joint model. The CoM is computed by

C =
1

M ′

M ′∑

i=1

wiji, (2)

where ji denotes the 3D positions of the mid-points

of each joint and M ′ represents the number of mid-

points. The 3D joint positions are computed by trian-

gulation with the 2D joints detected by [3]

In this evaluations, the CoM estimation error of each

method is evaluated as the Euclidean distance of the 2D co-

ordinates of the center of pressure, q, which represents the

vertical projection of the estimated CoM as follows:

ECOP = |q − qf |, (3)

where qf denotes the CoP estimated from a force plate.

Note that the CoP estimated from a force plate is not al-

ways a completely accurate, but we consider a force plate

provides a reference measurement for comparison with the

proposed approach, since a force plate is commonly used

for measuring the CoP in the practical use of sports perfor-

mance measurement.
1https://www.gimp.org/

4.1.2 Results

Figure 4 shows input images from one view (first row),

the reconstructed 3D model showing joint positions (sec-

ond row), the labeled 3D model based on the joint posi-

tions (third row), and the 3D model with the estimated CoM

(fourth row). The results in the second and third row show

that the estimated 3D joint positions are sufficient to assign

each voxel to the appropriate body parts.

Figure 5 shows the average estimation errors of each

method. From these results, we observe that the proposed

method outperforms the other methods and robustly esti-

mates the CoM with errors of around 10 mm for CoP in all

postures. In particular, the Uniform and Articulated meth-

ods show degraded performance in the cases for which there

is some weight bias, such as squatting or bending forward.

However, the proposed method estimates CoM robustly in

these cases. In the case of standing upright, the estimation

precision of all methods is similar due to the absence of

weight bias among each body part.

The precision of all methods is greater in the case of

single-leg standing than for squatting or bending forward.

This is due to self-occlusion, which affects the precision of

the reconstructed 3D model and the estimation of joint posi-

tions. Such self-occlusion is greater in the cases of squatting

and bending forward than for single-leg standing.

4.2. CoM estimation for dynamic motion

4.2.1 Setups

Compared with the 2D CoP estimation approaches utilizing

a force plate, the vision-based approach including the pro-

posed method can estimate 3D positions of CoM, which is a

significant advantage for analyzing a player’s performance

in a sports scene. In particular, it is known that CoP esti-

mated with a force plate does not match the CoM projec-

tions when the subject is in motion, such as walking, run-

ning, and so on. Here we demonstrate that the proposed

method can estimate the 3D positions of CoM in such a

challenging situation.

In this evaluation, the four high-speed cameras (HAS-

U2, 200fps, 1280×1024 resolutions) are set so as to sur-

round the subject, a professional baseball player. The sub-

ject swings a bat two times assuming (a) an inside pitch and

(b) an outside pitch. We extracted the subject’s regions in

the same manner in the previous experiment (i.e., the bat

held by the subject is excluded by masking it out).

4.2.2 Results

Figure 6 illustrates the 3D trajectory of the estimated CoM.

The red and blue trajectories correspond to the case of (a)

inside and (b) outside pitch, respectively. The subject is a

left-handed batter and assumes that a ball is coming from
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(a) Upright standing (b) Single-leg standing (c) Squatting (d) Bending forward

Figure 4: Experimental results on static posture: first row shows the posture of the subjects, second row shows the 3D model

of human body as white dots and the keypoints as red spheres, third row shows the 3D model segmented into nine parts, and

fourth row shows the estimated CoM (green sphere) in the reconstructed 3D model.
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Figure 5: Error between reference value and vertically pro-

jected CoM estimated by each method.

Pulling arm phase
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Figure 6: 3D CoM trajectories of batter swings against “in-

side (red)” and “outside (blue)” balls.
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(a) Form-fitting clothes (b) Loose clothes

Figure 7: Comparison in the appearance between the sub-

ject wearing form-fitting and loose clothes.

positive to negative direction along the x-axis. Both trajec-

tories are almost the same as the arms pull back and the

gradually split in the swing phase. In the swing phase, we

can see that the CoM for the outside pitch goes through the

outside compared with the CoM for the inside pitch. From

these results, we can conclude that the proposed method

reasonably estimates the 3D trajectory of CoM in an active

sports scenes without requiring the installation of devices

such as force plates into the field and requiring the subject

to wear any electronic devices. These visualized estima-

tions of CoM allow analysis of the performance of a player

in various situations, for example, CoM trajectories can be

compared between training and a real sports game.

5. Discussions

Here, we discuss our future work of the proposed method

to clarify the current limitations.

5.1. Effects of clothes

The proposed method estimates the CoM as the gravity

point of a set of voxels. Therefore, one might suppose that

clothes affect the performance since the subject’s silhouette

changes. Here, we additionally demonstrate the effects of

clothes to the proposed method.

As shown in the first row of Figure 7, we utilized im-

ages from subjects wearing form-fitting and loose clothing

as input for the proposed method. From the second row

of Figure 7, we can see that the reconstructed 3D model

0

5

10

15

20

25

Upright standing Single-leg standing Sitting Anteflexion

Form-fitting clothes Loose clothes

Figure 8: Comparison of CoP errors between subjects wear-

ing form-firring and loose clothes.

with loose clothes is expanded compared with the subject

wearing form-fitting clothes, even when the subject stands

in the same posture. Figure 8 shows the quantitative re-

sults of such cases utilizing the same configuration intro-

duced in Section 4.1.1. These results show that the proposed

method degrades the accuracy when the subject is wearing

loose clothes. Reducing the effect of loose clothing on the

method’s accuracy is an aim of our future works.

5.2. Variations in segments

While we currently segment the body into nine parts, for

further improvement in the accuracy, we will need more

categories such as hair, clothes, shoes, tools, fat, bones,

muscles, etc. In practice, we consider that fitting available

anatomy models including the above-mentioned data to the

subject will lead to the higher reliability.

5.3. Tools held by subjects

We need further investigation on whether if we should

include tools held by subjects in CoM calculations (e.g., a

bat, a racket, a golf club, etc.) from a viewpoint of sports

data analysis, and how the difference appears in the CoM

estimation. Note that we removed the bat to obtain the CoM

of the subject only, in Figure 6, by masking the bat out in

the proposed pipeline as described in Section 3.2.

5.4. Estimating multiple subjects’ CoM

As the first step of our research, we currently assume one

subject in a scene. If we take multiple subjects into consid-

erations, we will definitely need an extension to separate

each person in a voxel space. While the CNN-based bone

estimation [3] can handle multiple persons in a single view,

we need to identify persons in multiple images, which will

need additional efforts.
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6. Conclusion

This paper proposed a novel vision-based CoM esti-

mation algorithm based on multi-view images for sports

performance analysis. The key approach of the proposed

method is to assign an appropriate weight to each voxel re-

constructed in a visual hull manner. Evaluations with real

data demonstrated that the proposed method can estimate

the CoM with errors of about 10 mm in terms of CoP com-

pared with the data measured with force plates in static con-

ditions. In addition, the proposed method reasonably esti-

mated the 3D trajectory of CoM in a dynamic scene.

References

[1] S. Barris and C. Button. A review of vision-based motion

analysis in sport. Sports Medicine, 38(12):1025–1043, 2008.

[2] R. N. Baumgartner, W. C. Chumlea, and A. F. Roche. Es-

timation of body composition from bioelectric impedance

of body segments. The American J. of Clinical Nutrition,

50(2):221–226, 1989.

[3] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In Com-

puter Vision and Pattern Recognition, 2017.

[4] J. Carpentier, M. Benallegue, N. Mansard, and J. P. Lau-

mond. Center-of-mass estimation for a polyarticulated sys-

tem in contact-a spectral approach. IEEE Trans. on Robotics,

32(4):801–822, 2016.

[5] R. Dawes, M. Mann, B. Weir, C. Pike, P. Golds, and

M. Nicholson. Enhancing viewer engagement using biome-

chanical analysis of sport. In NEM Summit, pages 121–126,

2012.
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