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Abstract

In recent years sport video research has gained a steady

interest among the scientific community. The large amount

of video data available from broadcast transmissions and

from dedicated camera setups, and the need of extracting

meaningful information from data, pose significant research

challenges. Hence, computer vision and machine learning

are essential for enabling automated or semi-automated

processing of big data in sports. Although sports are diverse

enough to present unique challenges on their own, most of

them share the need to identify active entities such as ball

or players. In this paper, an innovative deep learning ap-

proach to the identification of the ball in tennis context is

presented. The work exploits the potential of a convoluti-

onal neural network classifier to decide whether a ball is

being observed in a single frame, overcoming the typical

issues that can occur dealing with classical approaches on

long video sequences (e.g. illumination changes and flicke-

ring issues). Experiments on real data confirm the validity

of the proposed approach that achieves 98.77% accuracy

and suggest its implementation and integration at a larger

scale in more complex vision systems.

1. Introduction

Sport matches have always attracted the attention of a broad

audience at various levels of involvement, from players and

coaches to the general public. The visibility given by broad-

casted events in the last decades has further magnified this

appeal. In fact, matches results and sport management deci-

sions are usually subjects of many debates and discussions,

meaning that both enthusiasts and insiders are interested in

many applications like tactics analysis, highlight identifica-

tion or, more generally, statistical analysis.

The advance in processing power and the growing impor-

tance of sport activities in various businesses has also at-

tracted the attention of the sport video research commu-

nity, given also the particular challenging conditions that the

context provides, opening the way to new perspectives and

paradigms referred to sports analysis. It is undoubted that

technological progress is providing a huge amount of video

data to the scientific community that needs to be processed.

For this reason, computer vision plays a fundamental role

for effectively exploiting big data and consequently ena-

bling the automated or semi-automated processing of such

videos. Significant information can be inferred knowing the

positions of the active entities during a match or a training

(i.e. balls or players), but each sport introduces different

challenges due to its rules and settings.

For example, in popular team sports such as soccer or bas-

ketball, many moving players need to be identified in usu-

ally chaotic environments, while the ball is moving on the

scene. Conversely, in tennis, the individual sport nature me-

ans that just a few players need to be considered during the

game that evolves in an uncluttered environment in which

a relatively small but fast ball is moving, providing some

interesting challenges for accurately tracking the ball. Va-

rious methodologies have been applied in the last decades

in game analysis, with results that continuously get better,

also due to methodological or technological advancements.

A pivotal research field that owes its progress to both is

machine learning, with the development of deep learning

and convolutional neural networks (CNNs) [5] that has been

proven to be useful in many computer vision applications in

the last years.

The work described in this paper is devoted to the automa-

ted identification of the ball in the tennis context with a deep

learning based approach.

1.1. Related work

Ball detection and tracking are challenging problems that

have attracted much interest, with a recent survey that can

be found in [3]. Given their complexity, it is reasonable that

some researchers proposed and built their solutions around

custom-setups, seeking maximum performance or control

over the data acquisition and subsequent processing. For

example, by establishing the fixed location of some came-
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ras, it is possible to enable ball detection techniques ba-

sed on background modeling or frame differencing. This

is the choice made by Pingali et al. [7] while developing

a custom multi-camera installation where ball segmentation

starts with frame differencing and detection relies on inten-

sity range cues, given the monochrome nature of the high-

speed cameras deployed. A custom multi-camera setup is

also proposed by Conaire et al. [1] where fixed cameras

enable the usage of methods relying on background mo-

deling and blob detection. Heuristics based on visual cues

and ball motion are also employed. Another multi-camera

system is presented in [10] where four cameras (two for

each side) are used in pair to reconstruct moving entities

in the 3D space and then perform domain knowledge-based

reasoning to identify balls and reconstruct their trajectories

by splitting and re-merging tracklets.

Other researchers have instead focused their work on data

coming from a single camera, or even more specifically

from a broadcast video, that enables a broader application

of the techniques, but can not be directly controlled. This

kind of approach limits the amount and accuracy of the in-

formation that can be extracted: spatial and temporal reso-

lutions can be low, cameras can move and zoom frequently,

images can be over exposed or too dark, compression arti-

facts can be present, etc. . .. To overcome these issues, some

works rely on user feedback, such as in [6] and therefore are

likely best suited for manual annotation of previously acqui-

red actions. Without user assistance, usually algorithms are

tuned for a particular sport and a particular setting, due to

the different challenges that most contexts provide, trying to

exploit every kind of information available a priori. In ten-

nis context, Yu et al. [14] propose a system for applications

where it is needed to insert 3D virtual content for supple-

menting the video feed. In the same work, they devised

a way to perform ball detection and tracking that is impro-

ved by exploiting the same camera auto-calibration methods

used for virtual content insertion. However, as they noted,

only partial 3D ball position data can be extracted from the

broadcast video. In snooker games, Rea et al. [9] exploited

appearance features for detection, like ball most dominant

color, while deploying a particle filter for tracking tasks. In

broadcast soccer videos, Yu et al. [15] use anti-models ba-

sed on high-level semantic representation and domain kno-

wledge for filtering out moving objects that are likely non-

balls, so that several ball candidates can be identified on a

frame by frame basis and then validated through trajectory-

based reasoning. Other approaches require the knowledge

of whole video sequences a priori and therefore cannot be

applied in real-time contexts. For example, Yan et al. [13]

perform ball detection and tracking constructing a weigh-

ted graph and optimizing an all-pairs shortest path (APSP)

problem.

In this paper the authors investigate the usage of a convolu-

tional neural network for ball detection that can work on a

frame by frame basis, without requiring any image prepro-

cessing step, like background subtraction or frame differen-

cing.

Approaches based on neural networks have already been

used for detection tasks, as in [2], where a method to detect

balls in soccer videos based on Hough transform and neu-

ral networks is presented. However, one of the advantages

provided by deep learning is related to its ability to automa-

tically extract relevant features from data. In this context,

the flexibility of convolutional neural networks on image

recognition tasks and the different datasets [11, 4] created

by the research community might suggest the availability of

a dataset or CNN architecture already experimented in the

tennis context. This does not look to be the case. Although

the available datasets on which popular classifiers have been

pre-trained often contain, among the classes, sport game

equipments such as tennis balls, those datasets are gene-

ral purpose by nature, since they have been employed for

discriminating among a high number of objects. Up to the

authors knowledge, there have not been studies focused on

the use of deep learning algorithms in a real world tennis

context, in which acquired images can suffer from problems

that usually are not present, nor considered, in sample ima-

ges obtained by digital cameras used to take static pictures,

such as illumination changes and flickering issues.

This work exploits the potentiality of a convolutional neural

network classifier trained on a dataset made of Ball and No

Ball examples, in order to classify image portions that are

likely to be a ball or not. This approach enables to perform

a single frame analysis to extract ball positions without the

application of specific background models, thus making the

methodology also robust to illumination changes and flic-

kering issues.

The rest of the paper is organized as follows. Section 2

presents the adopted methodology with a focus on the ar-

chitecture of the deep learning classifier used in this work.

In section 3 the experiments are described and the obtained

results are discussed. Section 4 concludes the paper with a

summary of the work and a perspective for the future.

2. Methodology

2.1. CNN Architecture

The methodology proposed in this paper makes use of a

deep learning classifier to decide whether an image patch

can be labeled as Ball or No Ball, namely a convolutional

neural network. Figure 1 represents the CNN diagram in

terms of subsequent layers, starting from the Input image

layer and ending with the Class output layer [5]. The net-

work has been designed to work with r × s RGB image

patches as image inputs. CNNs have the capability of pre-

serving the spatial relationships on the processed images by
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Figure 1. Diagram of the proposed deep learning network in which

each box represents a different layer. The input image is a RGB

r × s patch. Visual data is then processed by four deep learning

blocks of layers. Finally, a classical neural network followed by a

softmax and a class output gives the classification result.

finding a huge number of small filters, mimicking the hu-

man vision system, through linear and non linear operati-

ons. Linearity is represented by a Convolutional layer de-

voted to the identification of a bank of filters, i.e. the feature

maps, defined as 64 kernels of dimension 5×5 followed by a

Batch normalization. Non linearity is then introduced with

a Rectified Linear Unit function that supports the classifier

to work with non linearly separable classes. A 2 × 2 non

overlapping Max pooling layer, also called downsampling

layer, progressively reduces the dimensionality of the data.

Figure 2. Example of frame with a zoomed detail of a r × s patch

that contains a moving ball.

This means that the deep learning pipeline can be repeated

only a limited number of times (in our implementation 4, as

shown in figure 1). The parameters of the filters as well as

the total number of layers have been empirically determi-

ned to find a trade-off between computational complexity

and accuracy. The CNN architecture is completed by a 2
outputs Fully connected layer, followed by Softmax and fi-

nally the Classification output layer. A final remark should

be made about the rectangular patch size to be fed to the

CNN, that should be properly tuned in order to take into ac-

count all the possible ways the ball appears on the scene:

big or small due to the perspective, sharp or blurred due to

its speed. An example is given in figure 2 where a moving

ball is represented.

2.2. CNN Training and Outputs

The training of the CNN has been performed using the Sto-

chastic Gradient Descent with Momentum algorithm [8],

with an initial learning rate of 0.05 and a progressive re-

duction of this value given by a drop factor of 0.5. The

dataset is first randomly split in Training, Validation and

Test set. Then, the learning algorithm starts updating the

CNN parameters relying on all the Training images during

an epoch. The accuracy of the CNN is computed at the end

of each epoch on the Validation set, never used during the

learning phase, in order to avoid training bias. The drop

factor progressively reduces the learning rate at each epoch

to lower convergence time and prevent data overfitting.

It is worth pointing out the different kind of information that

can be extracted from the CNN in the final layers. First, the

classification of the whole patch as Ball or No Ball after the

Softmax evaluation is the classical CNN output. However,

this feature always labels a patch with the most probable

class label without taking into account the fact that the same

pixel belongs to many different patches. For this reason, the

pixel-wise average probability value for the class Ball has

been computed exploiting the output of the Fully Connected

Layer. In more details, let I ∈ N
h×w×3 be a RGB image

to be analyzed by the CNN, P a generic r × s× 3 patch, κ

the number of patches belonging to each pixel of coordina-

tes (u, v) and B : Nr×s×3
→ [0, . . . , 1] the function that

returns the Ball probability value for each RGB patch. The

Probability Image can then be defined as follows:

PI(u, v) =

∑
κ

i=1
B(Pi)

κ

u = 1, . . . , w v = 1, . . . , h

(1)

giving a pixel-based evaluation of Ball probability.
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Figure 3. Examples of Ball images (first row) and No Ball images (second row) extracted from the dataset considered in this paper. An

image patch has been labeled as Ball without imposing constraints about the position and the size of the ball and including blurred moving

balls. The other class is made of examples that are likely to be confused with a ball, such as the court lines (that in image patches can be

easily misclassified as a fast moving ball), as well as other sport equipments usually present during training sessions.

3. Experiments and results

3.1. Dataset description

A total number N = 116385 of r = 50×s = 50 RGB ima-

ges have been collected starting from RAW videos acquired

on a real setup by AVT Prosilica GT 1920C cameras. The

images have been acquired both during a tennis training ses-

sion and a friendly match performed on a clay court, and

then manually labeled as Ball or No Ball. Among the N

images, 27600 patches have been labeled as Ball and 88785
are considered as No Ball. Examples of images belonging

to the two classes are shown in figure 3, where the first row

reports Ball samples and the second row shows No Ball pa-

tches. A first observation should be made looking to some

of the Ball sample images selected and shown on the first

row: the ball is visible under different conditions, such as

alone, behind the net, in the hand of a player or blurred

as a consequence of a fast shot. Moreover, there is no re-

striction about the ball position relative to the image patch,

meaning that its presence can be observed on the corners of

the patch as well as on its center. This is an essential fe-

ature for the classifier to be more robust to real scenarios,

especially when it needs to be used on unknown images to

predict the position of a ball. In fact, in such situations, also

due to performance considerations, the whole image is ge-

nerally divided in partially overlapping patches to be fed to

the CNN, thus reducing the probability of capturing a ball

in the middle of the patch. Hence, no a priori knowledge

about the ball position and or size can be used. Looking at

the No Ball samples row it is immediate to observe various

situations, such as an over-exposed court line that might be

misclassified as a Ball, blurred backgrounds of the court,

cones and other equipments often present during a tennis

training session. It is worth noting that Ball and No Ball

samples are unbalanced in terms of cardinality, due to the

fact that, for each image, there are naturally less examples

of Ball with respect to the other class.

3.2. Quantitative and qualitative analysis

All the experiments have been performed in Matlab r2017

using the Neural Network toolbox to design, build, train,

validate and test the CNN described in the previous section.

As stated in the previous section, the whole dataset has

been randomly partitioned according to the following cri-

teria: 65% for the Training set, 15% for the Validation set

and finally 20% for the Test set.

Table 1 shows the quantitative results of the CNN perfor-

mance computed on the Test set that has never been fed to

the classifier during the training phase. The metrics used to

evaluate the results are computed in terms of True Positives,

False Positives, True Negatives and False Negatives, na-

mely Precision (P), Recall (R), True Negative Rate (TNR),

Accuracy (A) and Balanced Accuracy (BA) [12]. The first

result to analyze is that, for both classes, the CNN achieves

a score greater than 96% on test images, in particular the

overall accuracy is 98.77%. Looking at the results for Ball

classification, particularly useful on a realistic use case of a

vision system aimed to locate a ball on a scene, it is interes-

ting to discuss the percentages of Precision (98.77%) and

Recall (96.01%) that are strictly related to the performance

of the CNN in terms of false positives and false negatives.

These two metrics are useful to quantify how many selected

Table 1. Quantitative results of the CNN computed on the test set

in terms of Precision, Recall, True Negative Rate, Accuracy and

Balanced Accuracy computed for both Ball and No Ball classes.

Class Ball No Ball

P 0.9877 0.98772

R 0.96014 0.99628

TNR 0.99628 0.96014

A 0.98771 0.98771

BA 0.97821 0.97821
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elements are relevant (P) and how many relevant elements

have been selected (R), namely the No Ball patches labeled

as Ball and vice versa.

Figure 4 shows some examples of this phenomenon. On

the left side Ball false positives are shown, i.e. those ima-

ges labeled as No Ball but classified as Ball during the test,

mainly due to the fact that the lines of the court can be con-

fused with the motion blur of a fast ball, or because a stop-

ped ball left outside the court has been labeled as No Ball

in the dataset, as shown on the last row of figure 4. The

remaining images represent Ball false negatives, i.e. pat-

ches manually labeled as Ball but classified as No Ball by

the CNN. The misclassification causes are largely ascriba-

ble to the presence of a player or a racquet on the patch,

since several instances of racquet appearance were used as

negative examples during the training phase. In other cases,

a blurred image of a moving ball showing a striking simi-

larity with edge lines on the clay court can result in false

negative classification.

Anyway, the overall score of the CNN suggests that the

amount of false positives and negatives can be reasonably

neglected in a real setup, where additional information, de-

liberately not used in these experiments, are available. For

example, the domain knowledge about the scene can be con-

sidered to filter the output of the CNN and infer robust in-

formation. To further investigate the effectiveness of the

methodology, also qualitative results of the proposed ap-

proach can be considered, as shown in figure 5 where the

CNN is tested with some never before seen images that were

not used to create the dataset. In this experiment, the input

image is split in 50 × 50 overlapping patches that are indi-

vidually processed by the CNN. The cyan rectangles in the

example frames (figure 5 (a) and (d)) highlight the patches

labeled as Ball and show a certain number of false positives

in correspondence of the court lines. The first thing to ob-

serve is that a higher number of patches is labeled as Ball

in the neighborhood of the true positive patches if compa-

red to the number of Ball patches in false positive zones.

This behavior suggests a deeper investigation on the proba-

bility values produced by the fully connected layer of the

CNN that have been exploited to visualize the Probability

Image defined in equation 1, as shown in figure 5 (b) and

(e), where the [0, . . . , 1] range is mapped on a blue to yel-

low colormap. The evidence is that both the court lines on

(b) and the cluttered portion on the upper right part of (e)

are not depicted with high probability values. For this rea-

son, the two images have been filtered discarding the pixels

whose values are under a threshold τ defined as the 99th

percentile of all the Ball probability values of the image.

Finally, the filtered probability image is shown in (c) and

(f), proving that a certain number of false positives can be

effectively filtered out with negligible impact on previously

legitimate patches labeled as balls.

FP FN

Figure 4. Examples of false positives (FP) and false negatives (FN)

samples, with respect to the Ball class, extracted from the rand-

omly defined test set.

4. Conclusion and future works

In this paper, an innovative approach to ball detection in

tennis assisted by a convolutional neural network has been

presented. This is one of the first application of deep le-

arning techniques devoted to the sport analysis and repre-

sents a step towards the inclusion of such methodologies in

more complex systems for game analysis. Experiments on

real data have demonstrated that the classifier achieves very

high accuracy values, suggesting the feasibility of the ap-

proach. Future directions of this research will surely regard

the integration of the CNN based ball detection in complex

vision systems, to be effectively used in conjunction with

classical approaches where domain knowledge or cinema-

tic considerations can be used to further enhance robustness

introducing, as an example, the distinction between active

and inactive balls during a game. Finally, the extension of

the CNN application range will be investigated too, reinfor-

cing the classifier with more data and enabling its use on

different game settings.
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Example frames

(a) (d)

Probability images

(b) (e)

Filtered probability images

(c) (f)
Figure 5. Qualitative results of the proposed approach for two example frames. The full frame input images are first divided in overlapping

patches and then each patch is processed by the CNN. In the first column, cyan rectangles represent image patches classified as balls. The

second column contains the Ball probability image as defined in equation 1, while the last one shows only the probability values greater

than the 99th percentile computed on the whole probability image.
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