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Abstract

Multi-camera systems have seen an emergence in var-

ious consumer devices enabling many applications e.g.

bokeh (Apple IPhone), 3D measurement (Dell Venue 8) etc.

An accurately calibrated multi-camera system is essential

for proper functioning of these applications. Usually, a

onetime factory calibration with technical targets is done

to accurately calibrate such systems. Although accurate,

factory calibration does not hold over the life time of the de-

vice as normal wear and tear, thermal effects, device usage

etc. can cause calibration parameters to change. Thus, a

dynamic or self-calibration based on multi-view image fea-

tures is required to refine calibration parameters. One of

the important factors governing the accuracy of dynamic

calibration is the number and distribution of feature points

in the captured scene. A dense feature distribution enables

better sampling of the 3D scene, while avoiding degenerate

situations (e.g. all features on one plane), thus sufficiently

modeling the forward imaging process for calibration. But,

single real life images with dense feature distribution are

difficult or nearly impossible to capture e.g. texture-less in-

door or occluded scenes.

In this paper, we propose a new multi-capture paradigm

for multi-camera dynamic calibration where multiple multi-

view images of different 3D scenes (thus varying feature

point distribution) are jointly used to calibrate the multi-

camera system. We present a new optimality criteria to se-

lect the best set of candidate images from a pool of multi-

view images, along with their order, to use for multi-capture

dynamic calibration. We also propose a methodology to

jointly model calibration parameters of multiple multi-view

images. Finally, we show improved performance of multi-

capture dynamic calibration over single-capture dynamic

calibration in terms of lower epipolar rectification and 3D

measurement error.

1. Introduction

The past few years have seen an emergence of multi-

camera system based devices, e.g. Dell Venue 8 7000 (3

cameras), IPhone (2 cameras), Facebook 360 (14 cameras)

to enable various computational photography applications

for consumer use. An accurately calibrated multi-camera

system is essential for proper functioning of these applica-

tions. Multi-camera calibration entails estimating intrinsic

parameters like focal length and principal point of individ-

ual cameras and the extrinsic parameters of relative rota-

tion and translation between all pairs of cameras. These

parameters can be used to accurately compute metric 3D

reconstruction of the imaged scene. This is a key compo-

nent driving many of the computational photography appli-

cations e.g. 3D measurement, depth based blurring/bokeh.

An out-of-calibration camera can result in inaccurate 3D re-

construction and thus affect the performance of many of

these applications. Thus, being able to calibrate multiple

view camera systems accurately is essential.

While the current industry practice is to have a one-time

calibration done in the factory floor as part of the device

manufacturing process, a pre-calibrated device is bound to

go out of calibration over time due to various factors like

heat, mechanical stress, moving auto-focus lens etc. These

effects render a one-time calibration inadequate over the

life-time of the device. Thus there is a need for meth-

ods to re-estimate the calibration parameters which adapt to

these changes. The traditional technical target based meth-

ods for calibration [6, 18] are not practical at the consumer

end due to requirement of buying accurate technical targets

and thereafter collecting calibration data. A more conve-

nient method is to have a dynamic/self calibration method

which can use multi-view images of natural scenes as input

to calibrate the multi-camera to its most recent geometric

configuration. Henceforth, a single capture of multi-view

images from a multi-camera system will be denoted as an

image frame set.

Typically, high accuracy technical target calibration re-

quires densely sampling the camera’s field of view in cap-

tured calibration images. This is because some of the pa-

rameters like image distortion are dependent on calibration

features being present at the image corners and at varying

scene depths [13]. Extrapolating this observation to single

image frame set based dynamic calibration means that an

ideal natural scene for dynamic calibration should be the

one with feature-points densely distributed. However, cap-

turing such ideal scenes is challenging and may require mul-

tiple attempts on the part of the user to get the best image

frame set. In-fact, occlusion in scenes will hide objects in

the back, thus never allowing to capture a scene with uni-

formly distributed dense set of features.
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Figure 1. (a, b, c) Three-view images with horizontal (b, c) and vertical parallax (a w.r.t b and c) parallax, (d, e, f) Disparity estimate using factory calibration,

single-capture and multi-capture dynamic calibration parameters. The disparity estimates are much smoother using dynamic calibration parameters. The

dark circles show regions where multi-capture dynamic calibration resulted in better resolution of disparity as compared to single-capture.

Our innovation in this paper lies in removing the con-

straint a single ”ideal” image frame set altogether, thus mak-

ing dynamic calibration much more adaptable for the user.

We achieve this relaxation by allowing dynamic calibration

to use cumulative feature points from multiple image frame

sets of completely different scenes. The accruing of feature

points from different scenes allows to create a dense distri-

bution of feature points which can be jointly used for dy-

namic calibration. This paradigm of multi-capture multi-

camera dynamic calibration is non-trivial due to two ma-

jor reasons. First, multiple image frame sets are indepen-

dently captured over an extended period of time. Thus, the

calibration parameters associated with them may be differ-

ent. How do we jointly model the different calibration pa-

rameters? and Second, given a pool of candidate image

frame sets, not all of them would be equally effective in

modeling a single-capture “ideal” image frame set. What is

the best set of image frame sets to select? How do we select

them without exhaustive search? In what order should they

be selected?

In this paper, we answer all of these questions and in

doing so present a complete framework for optimal multi-

capture multi-camera dynamic calibration and its benefits.

In summary, our main contributions in this paper are:

1. We propose a new framework of multi-capture multi-

camera dynamic calibration.

2. We propose a method to share the parameters among

the multiple image frame sets allowing us to leverage

the benefit of accrued feature points from these images

(Sec. 4.1).

3. We propose an optimality criteria, which takes feature

distribution as one of the factors, to select the best set

of image frame sets and their sequence to use for multi-

capture dynamic calibration. We show accuracy in cal-

ibration parameter estimates which are comparable to

those obtained after time-inefficeint exhaustive greedy

search for the best images (Sec. 4.2).

Fig. 1 is a visual representation of our results. The im-

ages shown in Fig. 1(a,b,c) are a set of three-view images.

Fig. 1(d) shows the disparity obtained using factory calibra-

tion. As can be seen, the device has lost its factory calibra-

tion settings resulting in incorrect rectified images and thus

noisy disparity map. Fig. 1(e, f) are the disparities obtained

after single and multi-capture dynamic calibration. As can

be seen, both single and multi-capture dynamic calibration

are able to restore calibration leading to better disparity es-

timates.

Sec. 2 presents related work. Sec. 3 gives an overview

of why dynamic calibration is required. Sec. 4 presents

our proposed framework of multi-capture multi-camera dy-

namic calibration. Finally, Sec. 5 presents quantitative and

qualitative results on real images to show the performance

of the presented framework.

2. Previous Work

Dynamic calibration of multi-camera systems has been

a well researched topic in computer vision mainly due to

its similarity to techniques of simultaneous localization and

mapping (SLAM) and structure from motion (SfM). Most

of the previous work in this area (feature based calibration)

can broadly be divided into three classes:

Class 1: Single camera with sequence of images: If

the intrinsic parameters are known with high accuracy, then

the problem of extrinsic estimation maps to the problem

of SLAM. If the intrinsic parameters are constant but un-

known, then a number of methods exist to do a linear es-

timation of intrinsic parameters under relaxed constraints

and then jointly refine the intrinsic and extrinsic parame-

ters [17, 9].

Class 2: Multi-camera with single image: If the multi-

camera system is homogeneous, i.e. all the cameras have

same intrinsics, then intrinsic calibration can be solved by

methods of Case 1 by treating multiple views as views from

a moving camera, followed by extrinsic estimation based

on computed intrinsic parameters and E-matrix computa-

tion [16]. Of-course these methods assume undistorted im-

ages. If the distortion was unknown, then under the assump-

tion of pure radialdistortion Fitzgibbon [10] have proposed

method to compute radial fundamental matrix and the dis-
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tortion parameters. For heterogeneous cameras with vary-

ing intrinsic and distortion parameters, this problem was

solved by Barreto [4].

Class 3: Multi-camera with sequence of images of

the same scene: This case has recently become popular

in robotics and autonomous driving systems. Assuming

known intrinsics, Carerra [8] proposed a feature-based non-

overlapping extrinsic-only calibration method based on vi-

sual SLAM algorithm upto scale. Heng [12] proposes to

do a metric estimation by adding a calibrated stereo pair

to their multi-camera system. They also assume that the

intrinsic parameters are accurately known based on target

calibration. Similar methods exist for multi-cameras in au-

tonomous driving [11, 14].

In this paper, we consider heterogeneous multi-camera

systems, thus methods in Class 1 are inapplicable to our

work. The methods in Class 2 and Class 3 are mostly based

on SLAM and SfM in some form, causing their accuracy

to be heavily dependent on the quality and distribution of

feature points in the imaged scene. Also, most methods in

Class 1 and Class 3 consider constant calibration parame-

ters for captured frames possibly to enable them to relate

tracked features across frames. But it may not always hold

for longer tracked image frames.

Comparatively, our proposed method of utilizing im-

ages of completely different scenes for dynamic calibration

while also not assuming that the calibration parameters are

constant doesn’t fall in any of the above categories. This

motivates us to propose a new class of dynamic calibration

methods: Class 4: Multi-camera with sequence of com-

pletely different scenes

3. Need for Dynamic Calibration

A factory calibrated multi-camera system can go out of

calibration due to external factors e.g.

1. Thermal heat generated due to continuous use can

cause the camera module components to temporarily

expand leading to physical change in camera focal

length or CMOS/CCD sensor expansion causing cap-

tured images to not to confirm to factory calibration.

Module Expands lens/sensor 
expands

Figure 2. Thermal heat changes individual camera geometry.

2. Mechanical stress generated due to everyday use e.g.

fall and transportation can cause the printed circuit

board (PCB) connecting cameras to bend. It can mod-

ify relative pose between the cameras.

3. Camera module non-rigidity can cause the camera op-

tics to change temporarily, e.g. tilting the device down-

ward can cause the non-rigid auto-focus lens to move

PCB bends cameras 

rotate

Figure 3. Mechanical stress modifies relative camera pose.

due to gravity. This can cause additional magnification

in captured images.

Device
Orientationscene

camera
module

smartphone/tablet

scenelens 
shifts

Figure 4. Camera non-rigidity causes movement of components leading

to change in calibration.

The following methods could be employed to re-

calibrate the system:

1. Factory-like calibration routine at regular intervals

(accurate but expensive and cumbersome) but buying a spe-

cific technical target could be expensive and extensive data

capture requirement makes it impractical.

2. Send back to manufacturer (accurate but not scal-

able) who re-calibrates the camera or replaces partial cam-

era modules but its not scalable.

3. Build mechanically robust systems (accurate but ex-

pensive) which are verse to the effects mentioned above.

But, designing them may be expensive due to specific re-

quirements on material types, module designs and robust

housing of the modules.

4. Dynamic calibration (accurate, scalable, inexpensive)

which requires everyday images as the sole input. The pro-

posed multi-capture approach will also utilize the existing

pre-captured images from the image library. Sec. 4 presents

the details of the proposed multi-capture dynamic calibra-

tion method.

4. Multi-Capture Dynamic Calibration

We define a reference image frame set as the one for

which the best calibration parameters are required to be

computed using single or multi-capture dynamic calibra-

tion. We also assume that a library of previously cap-

tured image frame set exists from which the images for

multi-capture dynamic calibration will be selected. Sec. 4.1

presents a method to jointly model calibration parameters

corresponding to different image sets. Sec. 4.2 presents our

optimality measure to select the best image frame set and

its sequence from the pool.

4.1. Joint Calibration Parameter Modeling

Each of the multiple image frame sets in our library im-

ages a different scene, thereby capturing different feature

point distributions, at different time instants. They also

have their own unique capture setting of intrinsic and ex-

trinsic parameters. As there is no shared information (pa-

rameters+3D points) between different image frame sets, a
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simple joint calibration of multiple image frame sets will

only be equivalent to performing individual single-capture

dynamic calibration on each image frame set. Thus, in order

to truly leverage the advantage of multiple image frame sets

in the form of accrued 2D feature points, we propose to re-

lax the assumption of uniqueness of calibration parameters

in each capture and assume that some of them are sharable

by all the multiple image frame sets. For example, the 3-

camera Dell Venue 8 tablet (Fig. 8) used in all of our exper-

iments has an auto-focus camera with moving lens module.

Gravity effects on the lens module as the orientation of the

tablet changes while capturing data can cause intrinsic pa-

rameters of the camera to be unique. But, the relative pose

of the 3-cameras do not tend to vary among different cap-

tures.

Thus, we divide the different calibration parameter types

(intrinsic + extrinsic) into two sets: (1) low-frequency pa-

rameters which are expected to remain same for different

image frame sets e.g. pose between cameras. (2) high-

frequency parameters which are likely to vary for each

image frame set e.g. focal length of auto-focus camera.

As part of multi-capture dynamic calibration implementa-

tion, this classification is used to optimize only one instance

of low-frequency parameter type for all image frame sets,

while high-frequency parameter types have their own in-

stances in the optimization corresponding to each of the

multiple image frame sets.

4.2. Optimal Selection Criteria

There are two methods to sample the pool of candidate

image frame sets for multi-capture dynamic calibration:

Greedy: This is an exhaustive search approach where all

images from the pool are sequentially selected and jointly

used with the reference image frame set for multi-capture

dynamic calibration. If the obtained calibration parameters

result in reducing some measure of accuracy e.g. mean rec-

tification error on reference image frame set, then that im-

age frame set is selected. The above procedure is then re-

peated for all the remaining images in the pool, each time

adding a new one. Although accurate, this method has very

high runtime-complexity requiring O(N2) multi-capture dy-

namic calibrations for a pool size of N image frame sets.

Optimality Criteria: This is our second key innovation

where we design an optimality criteria to find the best im-

age frame set to add to current multi-capture image frame

set without an exhaustive greedy search, thus leading to

faster runtime of O(N) multi-capture dynamic calibrations.

As explained in Sec. 1, our goal is to give priority to images

of feature rich scenes with uniform feature distribution e.g.

dense vegetation; followed by images which are partially

feature-rich, e.g. urban scenes with have no/less features in

the sky; and finally sparse feature scenes e.g. indoors. In

order to quantify this metric on a given image frame set,

one of its component images is selected. This image is di-

vided into 2D bins of size b ∗ b (b = 5 in this paper). Also,

for all feature points in the image, their z-depth after sin-

gle capture dynamic calibration (Fig. 6) is recorded. The

z-depth is assumed to be divided into d blocks. In this work

d = 3 with ranges: [0m − 4m), [4m − 8m), [8m −∞). Thus,

the scene being imaged is divided into B = b ∗ b ∗ d bins

and each feature point with pixel location (I, J) and depth

z is assigned to one of the B bins. An example histogram of

this 3D distribution on two scenes is shown in Fig. 5. The

Figure 5. Feature distribution histogram (center top) for left and (center

bottom) for right image.

left image has features across a wide range of 3D depths

but each depth has less features. Right image has dense fea-

tures but those are located only in the nearby depth range

of [0m− 4m). Thus, each image have their own feature dis-

tribution. A combined histogram of a collection of images

will tend to have dense and uniform distribution.

Based on the above analysis, we propose our optimality

criteria in Eq. 1. It has three components. The first compo-

nent counts the number of feature points in all the candidate

images. The second component takes into account the mean

rectification error in each of the candidate image frame sets

computed using their own single-capture dynamic calibra-

tion parameters. The mean rectification error is a measure

of the goodness of single-capture calibration for that partic-

ular candidate image frame set favoring lower mean rectifi-

cation error. Lastly, the third component takes into account

the 3D feature point distribution in the scene with an even

distribution being favored as compared to a skewed spatial

distribution of points. Thus, optimality measure M selects

the best image frame set Iopt from a candidate pool Ii and

adds to the current set of multi-capture image frame set S:

Iopt = argmax
Ii∈{I1,...,In}6∈S

[α ∗#keypoints(Ii) + β ∗

1

Ei(Ii)

+ γ ∗ stddev((h(S) + h(Ii)) > 0)] (1)

Here, Ei(Ii) denotes the rectification error for image frame

set Ii using calibration done on image frame set Ii. h(S)
and h(Ii) denote the combined and individual 3D feature

point histogram for S and Ii respectively. The function

stddev() computes the standard deviation of the index of

the location of non-zero entries in the histograms. The pa-

rameters (α, β, γ) are weights which are obtained through

regression on a test set of images, where the best sequence

of images to add is based on the greedy approach.
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4.3. MultiCapture Dynamic Calibration Algo
rithm

In this section, we present the multi-capture dynamic cal-

ibration algorithm. Fig. 6 presents the single-capture dy-

namic calibration algorithm. It primarily consists of stan-

dard techniques from SfM, namely: (1) multi-view image

acquisition; (2) feature detection (AKAZE [3]); (3) feature

matching (2-nearest neighbor, ratio-test [15], symmetry-

test, fundamental matrix based RANSAC to remove out-

liers, all-pair feature matching); (4) 3D triangulation based

on factory intrinsics and pose from 5-point estimation [16];

(5) bundle-adjustment (CERES [2]); (6) guided feature

matching [5] to increase feature matches along epipolar

lines; (7) validation metrics (epipolar rectification error, 3D

measurement error, disparity).

Guided Feature 
Matching

Multi-view 
images

Feature Detection
(AKAZE)

Calibration 
Validation

1. rectification
2. 3D measurement
3. disparity

Feature Matching
1. pairwise 

1. 2NN
2. ratio-test
3. symmetry-test
4. RANSAC

2. n-view tracks

N-view tracks

1 

2 

3 

5-point +
3D triangulation

(least squares)

4 
Bundle Adjustment 
(calibration parameters, 3D 

points) (CERES)

Parameter 
Configuration

Setting

5 

6 7 

Iterate till no 
new feature 

matches

Figure 6. Flowchart of single-capture dynamic calibration (DynCal).

No
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Eref(Iref)
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Update: 
Eref(Iref)=Eref(S)

11.1

Remove Iopt from Ii

11.2

Compute 3D feature
point histogram: 

h(S)

11.3

reference image Iref,
candidate images: 

Ii∈{1,..,N},
opt sequence S ={Iref}

1

Execute: DynCal(Iref), 
DynCal(I1),…,DynCal(IN)

2

Compute: #keypoints(Iref),
#keypoints(I1),…#keypoints(I

N)

3

Compute 3D feature point 
histogram: h(S), h(I1),…, h(IN)

4

Compute mean rectification 
error: Eref(Iref), E1(I1),…, EN(IN)

5 Compute optimality 
measure M over

Ii∈{1,..,N}

6

Select the best 
candidate image Iopt

7

Compute mean 
rectification error: 

Eref(S) on Iref

10

Update: S = S + Iopt

8

Execute: 
MultiDynCal(S)

9

Remove Iopt from S

12.1

Assign: Sopt=S

12.2

Final calibration 
parameters: 

MultiDynCal(Sopt)

12.3

Figure 7. Flowchart of multi-capture dynamic calibration (MultiDynCal).

Fig 7 presents our proposed multi-capture dynamic cali-

bration pipeline which includes single-capture dynamic cal-

ibration as a block. The details of each of the blocks are

explained below. We denote the reference image as Iref,

which may be the most current captured image frame set,

as the data for which the dynamic calibration parameters are

needed to be estimated. We denote the pool of N candidate

image frame sets as Ii∈{1,...,N}.

1. Set Iref as reference image and Ii∈{1,...,N} as candi-

date image frame sets. Let the current optimal se-

quence be a singleton set S = Iref.

2. Execute single-capture dynamic calibration on each

candidate image set Ii∈{1,...,N} as well as Iref to get

the base performance metric of mean rectification er-

ror Eref(Iref).

3. Store the number of keypoints used for single-capture

dynamic calibration for Ii∈{1,...,N}.

4. Compute the 3D feature point histogram

h(S), h(Ii), . . . , h(IN) [Sec. 4.2]

5. Compute mean rectification error

Eref(Iref), EI1(I1), . . . , EIN(IN) on each image

frame-set from their own single-capture based (Step

2) dynamic calibrated parameters.

6. Compute optimality measure M for each candidate im-

age frame set in Ii∈{1,...,N}.

7. Select the image with highest measure M and assign it

as Iopt and the best image to add to sequence S.

8. Update the optimal sequence S = S+ Iopt.

9. Execute multi-capture dynamic calibration

MultiDynCal(S) on multi-capture sequence S

based on parameter modeling of Sec. 4.1, where

only one instance of low-frequency parameters is

optimized while high-frequency parameters have their

own instances for all the image frame sets.

10. Compute mean rectification error Eref on reference

image set Iref using calibration parameters from

MultiDynCal(S).

11. If the mean rectification error on Iref reduces then:

11.1. Update reference rectification error to correspond

to one obtained from DynCal(S).

11.2. Remove Iopt from candidate set Ii.

11.3. Compute joint 3D feature point distribution his-

togram of accumulated feature points in S and

goto Step 6.

12. Else adding Iopt didnt help in reducing mean rectifica-

tion error:

12.1. Remove Iopt from optimal sequence S.

12.2. Assign optimal sequence S as Sopt.

12.3. Output the calibration parameters obtained from

DynCal(S) in Step 9 as final result.

5. Results and Comparison

5.1. Data Collection

For all results in this paper, a three-camera system com-

mercially knowns as Dell Venue 8 7000 [1] is used to cap-

ture three-view images of a scene. The multi-camera system

consists of one 8MP auto-focus camera and two 2MP fixed-

focus cameras arranged in a triangular orientation. The

baseline between the 8MP and each of the 2MP cameras is

43mm, while the baseline between the 2MP cameras is 72mm.

See Fig. 8 for details on the multi-camera configuration.
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Figure 8. (left) Multi-capture data capture device: Dell Venue 8 7000 [1].

(right) Detailed view of the three-camera system.

5.2. Test Data Design

A set of 3 Dell Venue 8 7000 devices were used to cap-

ture 42 scenes each, resulting in a total of 126 scenes or

reference image sets. Each of these scenes was constrained

to be captured under the following four variations, thus re-

sulting in a wide variability in our test data-set:

1. Four lighting conditions (measured with light meter):

150 lux (indoor hallway), 400 lux (indoors with flu-

orescent lighting), 1000 lux (outdoors evening) and

5000 lux (outdoors with clear sky). See Fig. 9.

Figure 9. Light variation and 3D measurement target distance: (a) 150

lux,5 m (b) 400 lux,3 m (c) 1000 lux,7 m (d) 5000 lux,3 m in reference

scenes.

2. Three depths of 3m, 5m and 7m at which a textured

planar board was placed along with a subject for 3D

measurement validation.

3. Two orientation modes: landscape and portrait.

4. Three variations in feature point density: low-level (in-

doors), mid-level (outdoors with featureless walkway)

and high-level (dense vegetation). See Fig. 10.

Figure 10. (a) low feature distribution (b) mid-level feature distribution

(c) high feature distribution in reference scenes.

Figure 11. Multi-capture dynamic calibration candidate scenes.

All the 126 (42 sets *3 devices) image frame sets cap-

tured above will each be used as a reference image frame

set. The technique of multi-capture dynamic calibration re-

quires an additional pool of candidate scenes (image frame

sets). A total of 27 such scenes were captured using each

of the same 3 devices used to capture the reference image

frame sets. Each of the 27 scenes were captured under the

same variations of feature point density, light and orienta-

tion as mentioned above. Thus, in total, 81 scenes were

captured from 3 devices. An example set of these candidate

images is shown in Fig. 11.

5.3. Performance of Optimality Criteria

In this section, the performance of our optimality cri-

teria M (Eq. 1) is analyzed as compared to an exhaustive

greedy approach in for image frame set selection with re-

spect to mean rectification error over 8 different reference

image frame sets. The pool of candidate image frame sets

is kept same for both the methods. Fig. 12 shows our re-

sults with each of the 8 plots corresponding to 8 different

image frame sets. In each plot, the mean rectification error

is plotted against the current size of the multi-capture im-

age frame set (S in Fig. 7) used for doing multi-capture dy-

namic calibration and generating the calibration parameters

for rectification error. As can be seen, the mean rectification

error obtained from selections based on optimality criteria

are quite close to those obtained using exhaustive greedy

approach and also have better time complexity.
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Figure 12. Comparison of mean-rectification error (along Y-axis) on 8

different reference image sets computed from multi-capture dynamic cali-

bration method using greedy (deep blue with square markers) and optimal

approach (light blue with round small markers) on a candidate pool of size

9 (best viewed in color).
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5.4. Mean Rectification Error

The intrinsic and extrinsic calibration parameters can be

used rectify pair-wise images in a multi-camera system. An

accurately rectified image will typically have parallel epipo-

lar lines in the rectified images. Incorrect calibration can

result in shifting of epipolar lines, thereby resulting in a

vertical error (in pixel units) between an epiploar line and

feature point correspondence as shown in Fig. 13. This can

be used as a metric to evaluate calibration as it is indepen-

dent of pixel-reprojection error which is the criteria used to

optimize in dynamic calibration. The average of all pair-

wise rectification errors is called as the mean rectification

error. Fig. 14 shows the mean rectification error perfor-

epipolar line

rectification error
rectification

dynamic 
calibration

Figure 13. Geometry of rectification error for stereo cameras.

mance with respect to four methods: factory, single-capture,

optimal and greedy multi-capture for 12 randomly selected

reference image sets. An error of < 1 pxiels is desirable

as disparity estimation methods can handle that. Both ap-

proaches of multi-capture dynamic calibration perform bet-

ter than single-capture and factory, thus showing their effi-

cacy. Since greedy approach is exhaustive, it performs the

best but the optimal criteria approach is also close.
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Figure 14. Mean rectification error ( < 1 pixel is desired).

5.5. 3D Measurement Error

In this section, we compute the percentage accuracy of

3D measurement using calibration parameters computed

from different calibration methods: factory, single-capture

and multi-capture under variations of different factors of

feature density, light and the distance of the measurement

object from the system. The calibration parameters are first

used to rectify all the cameras in a multi-camera system to a

reference camera, followed by pairwise disparity computa-

tion [7], merging of different disparity estimates and finally

3D measurement on the merged disparity map. Thus, any

error in calibration propagates to final disparity as well as in

converting disparity to metric units. In all our reference im-

age frame sets, there is a planar texture board on which two

measurements are done and there is a person whose height

measurement from top of the head to the middle of the feet

is done, thereby resulting in 3 measurements per scene.

5.5.1 Scene Feature Density Variation

Fig. 15 shows the percentage accuracy with actual values in

Table 3 for all 126 reference image frame sets as a func-

tion of feature density variation. It is expected that both

single and multi-capture dynamic calibration will work best

on high feature density images as is evident from 95% and

94%accuracy for both methods. Multi-capture dynamic

calibration performs better in low ( 94%) and mid ( 95%)

feature images as compared to single-capture method be-

ing 91% and 92% accurate. This makes it more generic

to adopt as most of everyday images fall in these two cate-

gories. The performance of factory calibration is worse for

all the three cases being 87% (low), 89% (mid) and 87%
(high) accurate.
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Figure 15. 3D measurement accuracy w.r.t feature point distribution in

the reference image. Higher is better.

Figure 16. (µ, σ) of 3D measurement accuracy in Fig. 15.

5.5.2 Distance of 3D measurement object

Fig. 17 and Fig. 18 show the average percentage 3D mea-

surement accuracy as a function of distance of the planar

texture pattern on which measurements are made averaged

over all lighting conditions and reference image feature

point distribution. It can be seen that the multi capture per-

forms better than factory calibration and is slightly better or

equal when compared to single-capture calibration. The ac-

curacy of all methods goes down for measurements which

are done far from the multi-camera system.

5.5.3 Light Level Variations

Fig. 19 and Fig. 20 show the percentage accuracy of 3D

measurement with varying light conditions. The perfor-

mance of factory calibration is worse. Multi-capture cali-
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Figure 17. 3D measurement accuracy w.r.t distance of the object in the

reference image. Higher is better.

Figure 18. (µ, σ) of 3D measurement accuracy in Fig. 17.

bration method performs the best and is typically indepen-

dent of the lighting condition averaging around 93%−94%
accuracy. For case of low light reference image frames sets

(150, 400 lux), multi-capture method basically selects well

lit candidate images as they will have better distribution of

feature points, thereby obtaining improved results.
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Figure 19. 3D measurement accuracy w.r.t light conditions in the refer-

ence image. Higher is better.

Figure 20. (µ, σ) of 3D measurement accuracy in Fig. 19.

5.6. Image Undistortion: Single vs MultiCapture

Fig. 21 shows the effect of improved undistortion when

using a multi-capture dynamic calibration method. The ref-

erence image does not have any feature points in the lower

part of the image (see the inset image in Fig. 21(left)).

Single-capture dynamic calibration results in parameters

which results in over-curving of the image corners as evi-

dent in Fig. 21(middle) where the straight light fixture on

the ceiling curves. When applying the multi-capture dy-

namic calibration method, the additional image (seen in in-

set of Fig. 21(right)) used for calibration has many features

in the regions where the reference image lacked features.

The overall spread in the feature points on 2D image space

as well as 3D depth results in better calibration parameters

leading to expected undistortion of the light fixture, where

it remains straight.

Figure 21. Undistortion performance: (a) reference (b) undistorted image

using single-capture and (c) multi-capture dynamic calibration parameters.

5.7. Runtime Performance

All our results are based on a C++ code running on In-

tel(R) Core(TM) i7-5775C CPU @ 3.30GHZ (4 cores) with

8GB RAM and uses OpenMP (8 threads) and SSE (Stream-

ing SIMD Extensions) optimizations. The average runtime

over our dataset for single-capture dynamic calibration is

2.97 secs. The proposed multi-capture dynamic calibra-

tion (10 image frame sets) takes 11.48 secs as compared

to greedy approach which takes 570.65 secs making it 50

times faster.

6. Conclusion

In this paper, we have presented a new paradigm of
multi-capture multi-camera calibration which accrues fea-
ture points from image of completely different scenes for
dynamic calibration. We have shown methods to jointly
model calibration parameters along with an optimality cri-
teria to select the best set of scenes to use as part of
joint calibration. We have shown better performance of
the multi-capture calibration parameters over factory and
single-capture parameters with respect to various validation
metrics.
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