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Abstract

Most conventional digital video cameras face a funda-

mental trade-off between spatial resolution, temporal reso-

lution and dynamic range (i.e., brightness resolution) be-

cause of a limited bandwidth for data transmission. A few

recent studies have shown that with non-uniform space-time

sampling, such as that implemented with pixel-wise coded

exposure, one can go beyond this trade-off and achieve high

efficiency for scene capture. However, in these studies, the

sampling schemes were pre-defined and independent of the

target scene content. In this paper, we propose an adaptive

space-time-brightness sampling method to further improve

the efficiency of video capture. The proposed method adap-

tively updates a pixel-wise coded exposure pattern using

the information analyzed from previously captured frames.

We built a prototype camera that enables adaptive coding

of patterns online to show the feasibility of the proposed

adaptive coded exposure method. Simulation and experi-

mental results show that the adaptive space-time-brightness

sampling scheme achieves more accurate video reconstruc-

tion results and high dynamic range with less computational

cost, than previous method. To the best of our knowledge,

our prototype is the first implementation of an adaptive

pixel-wise coded exposure camera.

1. Introduction

Most conventional digital video cameras face a funda-

mental trade-off between spatial resolution, temporal reso-

lution and dynamic range (i.e., brightness resolution), be-

cause of a limited bandwidth for data transmission and a

delay in A/ D conversion. For the trade-off between spatial

resolution and temporal resolution, a few studies [5, 7, 14]

have successfully used non-uniform space-time sampling

(often implemented as pixel-wise coded exposure), by in-

corporating either smoothness in the spatial and temporal

domain or sparsity in space-time volumes for reconstruc-

tion. To apply a high dynamic range (HDR) to the moving

scene, Nayar and Mitsunaga [11] achieved one shot HDR

imaging using a filter mosaic that has different densities on

neighboring pixels. Despite their effectiveness, these sam-

pling schemes are pre-defined, fixed, and independent of the

target scene, which may be non-optimal for the recovery of

long videos. For instance, static regions should be sampled

at higher spatial resolution with longer exposure so as not to

waste the amount of light, while moving regions should be

sampled with pixel-wise coded exposure and reconstructed

using a sparse representation. Nayer and Branzoi [10] cap-

tured a scene with changing their image pixel-wise expo-

sure setting adaptively, and achieved high space-brightness

resolution. However this method cannot apply to moving

scene.

In this paper, motivated by these factors, and building

on previous work [7], we propose an adaptive space-time-

brightness sampling method to systematically optimize spa-

tial, temporal, and brightness resolution for video capture

with pixel-wise random coded exposure. This method ad-

equately allocates the hardware resources to scene resolu-

tion within a conventional bandwidth. This is achieved by

applying pixel-wise coded exposure to the moving regions

and the HDR exposure coding to static regions. Our contri-

butions include:

• Adaptive scene sampling. The scene content is cap-
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tured with high spatial-temporal-brightness resolution

by adaptively changing the pixel-wise coded exposure

patterns as a feedback loop. Conventional methods can

tackle only one of these trade-offs with a fixed and pre-

defined sampling scheme, or using expensive hardware

that has a large bandwidth for any capturing frame.

• High space-time-brightness resolution. This is

equivalent to “motion-aware” sampling. Note that it

is different to flexible voxels [5] that have fixed space-

time sampling and motion-aware reconstruction. The

moving region applied to random code for improving

space-time resolution and the static region is applied

to HDR code for increasing brightness resolution. For

motion detection, we used simple inter-frame subtrac-

tion, although other existing motion detection methods

can also be used.

We performed simulations for validation. The simula-

tions were performed with real video sequences captured

by high-speed cameras that have high brightness resolution

(16 bits) as the ground truth. Frames from the videos were

used to synthesize the coded images captured by pixel-wise

coded exposure. These images have similar characteristics

to the coded images captured by a real sensor. The simula-

tion results are shown in Section 4.1 and Fig.4.

We also built a prototype camera with adaptive pixel-

wise coded exposure, and carried out real experiments to

show the feasibility of adaptive exposure coding in prac-

tice. While being intuitive, implementing the above ideas

in hardware is nontrivial because there is no commercial

image sensor that can use a pixel-wise exposure. Thus, we

must demonstrate the effectiveness of our proposed method

using other optical devices. Most previous work [7, 14] has

used a spatial light modulator (SLM) such as a digital mi-

cromirror device (DMD) or liquid crystal on silicon (LCoS).

These SLMs often can only update preloaded patterns on

the fly. We also used a LCoS which can adaptively display

patterns via DVI video interface. A PC generates the adap-

tive coding patterns and display the patterns to the LCoS

from the feedback of the former captured image. We built

the prototype to capture the adaptive coded exposure video

in real time for real experiments.

The real experiment results shown in Section 4.2, Fig.

6 demonstrate the effectiveness of our proposed adaptive

pixel-wise coded exposure.

2. Related Work

Scene adaptive sampling and reconstruction. Nayar and

Branzoi [10] adaptively changed the throughput of the in-

coming light by pixels using a liquid crystal display (LCD)

and achieved HDR imaging. They achieved high spatial and

brightness resolution, but not temporal resolution. They

adaptively change the density of pixels form the feedback

of previous frame so that the pixel avoid a saturation of the

brightness range. There are a few studies of adaptive chang-

ing to capture or reconstruct a video. Yang et al. [22] pro-

posed to adaptively change the number of Gaussian mixture

model (GMM) basis for compressive video reconstruction.

Yuan et al. [24] adaptively changed the temporal compres-

sion rate based on the velocity of the motion. Warnell et

al. [20] proposed to adaptively change the number of mea-

surements for background subtraction.

Efficient video capture for high spatial-temporal reso-

lution. There are two approaches to overcome the funda-

mental trade-off between spatial and temporal resolution

for video capture. (1) With multiple cameras, multiple

video sequences can be combined to obtain complemen-

tary information [16, 4, 21, 1]. (2) With a single cam-

era, prior studies have focused on the design of the shut-

ter function (i.e., space-time sampling schemes) and the re-

construction with prior information (i.e., sparsity, smooth-

ness, motion, etc.). Examples of non-uniform space-time

sampling schemes include flutter shutter [8], flutter shutter

for periodic motion [18], coded rolling shutter [3], hybrid

grid shutter [2, 5], and pixel-wise coded exposure [7, 14].

For reconstruction with prior information, the smoothness

in either spatial or temporal domains is used for motion-

ware interpolation [2, 5]. Sparsity has been extensively

used [19, 15, 17, 7], as well as other constraints such as op-

tical flow [14]. Despite their effectiveness, these methods

use predefined space-time sampling schemes that are fixed

over time. These sampling schemes are also independent of

the scene content, which is good for the recovery of a sin-

gle coded image but may be non-optimal for the recovery of

multiple consecutive coded images. In contrast, our method

uses an adaptive approach that updates the space-time sam-

pling scheme for efficient video capture.

Our method is related to the work of Lichtsteiner et

al. [9], who built a new image sensor to detect and capture

only moving regions for output. However, their method has

limited spatial resolution and requires a specially designed

image sensor.

High dynamic range imaging. To use HDR imaging with a

normal commercial camera (many cameras have only 8-bit

brightness resolution), one captured multiple images of the

same scene with different exposures and combined them.

Because this technique is prone to errors when there is mo-

tion in the scene or camera, two types of approach have been

studied for such a moving scene (i.e., high temporal resolu-

tion). First, to compensate of the difference between mul-

tiple captured images whose appearance slightly changed,

and then analyzing them with post-processing [6] (e.g., op-

tical flow) or removing the motion blur [23].

Second, use special hardware. While a normal camera

uniformly samples scene intensity by all pixels, Nayar and

Mitsunaga [11] placed a density mosaic filter on their im-
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(h) Our approach: Adaptive 

Space-Time-Brightness Sampling
(g) Random Permutation 

and Offset Exposure [14]

Redundancy of 

Temporal and Spacial domein

Over-complete Dictionary

Motion segmentation

 [19]  [4]

 [6]
 [8,14]

Figure 1. Overview of our work and related space-time sampling schemes. When capturing a space-time volume (red rectangular box),

conventional digital cameras can either have (a) dense spatial sampling with coarse temporal sampling or (b) vice-versa . (c) By strobing

the exposure, the flutter shutter is used to recover periodic motion. (d) Coded rolling shutter is proposed to control the readout timing and

exposure length for each row of CMOS sensors. (e) A mixture of denser spatial samples and temporal samples are implemented as a grid

shutter for motion-aware high-speed imaging. (f) Pixel-wise coded exposure has been recently implemented for efficient video capture.

(g) Several different exposure offsets are randomly arranged on the spatial–temporal volume. There is no blocking between the exposure

times, and no wasted light. A variety of priors and constraints (dashed line boxes in (c)–(g)) are exploited for video reconstruction from a

few coded images (red square boxes). Nevertheless, in these work, both the coded exposure pattern and the priors are fixed. In our approach

(h), we adaptively change the coded exposure patterns (e.g., pixels in moving regions are randomly exposed for space-time recovery and

pixels in the static diamond are exposed for HDR).

age sensor and made the sensor have spatially different ex-

posures. They successfully obtained information with one

shot that was equivalent to the information of several shots.

However, this method degrades the original spatial reso-

lution of the image sensor, because a pixel that has high

brightness resolution is constructed from four pixels that

have low brightness resolution. This sampling scheme is

similar to that of a Bayer pattern when capturing a color

image (the HDR mosaic [11] samples the intensity not the

spectrum). It is difficult to change how to sample the scene

adaptively because the densities of the filter is optically

fixed.

A few studies have attempted to simultaneously achieve

efficient video capture and high dynamic imaging. As we

have shown above, Gu et al. [3] also developed a method to

reconstruct a video from the coded captured image. The im-

age recorded the information of motion and its high bright-

ness resolution on a 2D plane using a coded rolling shut-

ter, but it results in degradation of the spatial resolution.

The purpose of the study of Portz et al. [13] is most sim-

ilar to this study. They used several different exposure

offsets randomly arranged on the spatial-temporal volume

and attempted to reconstruct the video whose space-time-

brightness resolutions are all high. That video was recon-

structed by exploiting the redundancy of the spatial and

temporal volume. This method also repeatedly used the

same fixed sampling pattern that was pre-defined and in-

dependent of the scene content, and it only showed the fea-

sibility without any real experiments.

3. Adaptive Pixel-wise Coded Exposure

We propose space-time-brightness sampling by pixel-

wise coded exposure. We adaptively switch the coded pat-

terns, based on the motions of a scene: the pixels in the

moving region are randomly exposed and those in the static

region are exposed for the HDR, as shown in Fig. 1(h).
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Table 1. Comparison of Space-Time Sampling Schemes

Method Sampling Function Reconstruction Hardware Limitation

Wakin et al. [19]
Pixel-wise Random

S(x, y, t)
Greedy Algorithm

Sparsity Constraint

DMD

Beam Splitter
Not suitable for video

Veeraraghvan et

al. [18]

Flutter Shutter

S(t)
l1-norm

Minimization
Ferroelectric Shutter Only for periodical video

Gu et al. [3]
Coded Rolling Shutter

S(y, t)
Interpolation

Optical Flow
CMOS sensor with

modified control unit

Lack flexibility on

vertical direction

Gupta et al. [5]
Pixel-wise Grid

S(x, y, t)
Interpolation

Optical Flow

Projector

Beam Splitter
Ambient illumination,

low SNR

Reddy et al. [14]
Pixel-wise Random

S(x, y, t)
Sparsity Constraint

Optical Flow

LCoS

Beam Splitter

Multiple coded images

required

Hitomi et al. [7]
Pixel-wise Random

S(x, y, t)
Greedy Algorithm

Dictionary Learning

LCoS

Beam Splitter

background low SNR,

non-adaptive dictionary

Portz et al. [13]

Random permutation

and offset of different

exposures

S(x, y, t)

Exhaustive search

for the K-nearest

space-time patches

No real experiment No real experiment

Figure 1 summarizes several space-time sampling schemes.

Assume we capture a space-time volume (the red rectangu-

lar box) with high-speed motion objects (e.g., the moving

square and circle) and high-texture static objects (e.g., the

diamond). With a limited bandwidth, a high spatial reso-

lution camera can capture the texture on the static object,

but this results in motion blur of the moving object. In

contrast, a camera with a high temporal resolution can cap-

ture the motion but fails to preserve the texture. For con-

ventional digital video cameras, the space-time sampling

is constant, i.e., S(x, y, t) = 1. Fig. 1(c)–(g) show re-

cent flexible space-time sampling schemes that aim to ex-

ploit redundancy in videos for efficient video capture. Flut-

ter shutter [18] is a 1-D function S(t) used for the recov-

ery of periodic motion. Coded rolling shutter [3] controls

the readout timing and the exposure length in a row-wise

manner, which is a 2-D function S(y, t). Recently, full 3-D

sampling S(x, y, t) as pixel-wise coded exposure has been

implemented [5, 7, 14] and incorporated in a variety of

priors and constraints for the reconstruction, including spa-

tial/temporal smoothness, optical flow, and sparsity. Portz

et al. [13] only validated their method using simulation

experiments, and they achieved efficient spatial-temporal-

brightness sampling with random per-pixel exposure times

and offsets. Table 1 compares these methods in more detail.

Nevertheless, both the sampling schemes and representa-

tions are fixed over time.

We aim to develop an adaptive sampling scheme for the

recovery of long videos. Figure 2 shows an overview of

the process. Here, we define the frame f as the unit of the

captured image and time t indicates the latent high tempo-

ral images inside the captured frame. We generate a motion

segmented mask from last two capturing images. We adap-

tively change different exposure coding patterns based on

the motions of the regions in the mask. We apply a ran-

dom exposure pattern for the moving regions, and a den-

sity mosaic pattern for the static region from the real-time

feedback of the segmentation result. We also separately re-

construct the images based on the segments. The moving

regions of the images are estimated by compressive video

reconstruction. The static regions of the images are gener-

ated by HDR image estimation. These regions of the images

are integrated to the output image as

Ioutputt = Êt

⋃
IHDR, (1)

Êt

⋂
IHDR = ∅,

where Ioutputt is an output image that has a high spatial-

temporal-brightness resolution, and Êt and IHDR are the

reconstructed moving regions and the static region of the

images, respectively.

The benefits of our proposed methods are twofold:

• Adaptively pixel-wise exposure based on motion. Dy-

namic region and static region are adaptively applied

to random and HDR code of exposures respective to

motion segmentation.

• Enhancing space-time resolution for moving region

and brightness resolution for static region. Also by

only applying compressive video reconstruction to

moving region, we can reduce computational cost to

the previous approaches.

In the latter part of this section, we describe the detailed

coding and reconstruction methods for moving and static

regions in Section 3.2 and Section 3.3, respectively.
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Space-�me-brightness 
resolu�on frames)

Using code pa�erns

Captured coded image
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Figure 2. Overview of process for generating our adaptive coded exposure. It shows how to generate the exposure pattern to code frame

f +1 after we obtain frame f . The top row is the real scene that has high spatial-temporal-brightness resolution. The second row are the

generated exposure patterns used. The third row are the captured coded images. The bottom row is a workflow of motion segmentation.

Firstly, we subtract the current frame f from previous frame f − 1 and segment the moving/static region. Before subtraction, coded

exposure must be compensated with the corresponding known spatially varying exposure pattern. According to the obtained segmentation,

the new coding exposure pattern is generated. The region corresponding to the moving region consists of the random exposure patterns,

and the region corresponding to the static region consists of a HDR exposure pattern. It is then applied to code the next capturing scene.

3.1. Motion segmentation for adaptive coding

We propose to adaptively choice the exposure code pat-

terns region by region in a capturing frame. We assume

that dynamic regions are changing region caused by object

motions and camera motion etc. We use simple inter-frame

subtraction between last two frames f−2 and f−1 to gener-

ate the motion mask at frame f , as shown in Fig. 2. We get

the difference image from the subtraction and apply thresh-

olding and dilation to obtain the motion segmentation mask

for frame f . Random exposure coding and HDR coding

are applied to the dynamic and static regions respectively

based on the motion mask. We repeat this process for all

the frames to achieve adaptive coding.

3.2. Space-time coding and reconstruction for mov-
ing region

Our work is based on Hitomi’s method [7] for the mov-

ing regions. In the following, we give a brief summary of

the method [7].

Let E(x, y, t) denote the target video and I(x, y) be the

captured coded exposure image, we then have

I(x, y) =

N∑

t=1

S(x, y, t) ·E(x, y, t), (2)

where N is the number of frames within the target volume.

e3

e0 e1

e3 e0

e1 e2

e1 e2

e3 e0

e2

f

x

y

e0

e2

e1

e3

f=0 f=1 f=2 f=3

b. Density mosaic blocks in different framesa. Repeated pattern for 

whole image

Figure 3. Coded exposure pattern for spatial brightness sampling.

Specifically, each voxel in E(x, y, t) is assumed to

be a sparse linear combination of some basis motion

patterns from a learned overcomplete dictionary D =
[D1(x, y, t), D2(x, y, t), · · · , DK(x, y, t)], i.e., E = Dα.

Equation (2) can be rewritten in a matrix form as

I = SE = SDα. (3)

The over-complete dictionary D is learned from a ran-

dom collection of videos. D, S, I, and α̂ are estimated

using standard sparse reconstruction techniques such as or-

thogonal matching pursuit (OMP) [12], i.e.,

min ‖ α ‖0 s.t. ‖ I− SDα ‖22≤ ε, (4)

and Ê is represented as Ê = Dα̂.
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Figure 4. Results of a simulation experiment with some other methods for comparison. For ground truth video, we captured outdoor

scene from inside of the room using a high-speed camera with high brightness resolution. One of the captured frames is shown in the

right column. The other column images are generated from ground truth to imitate the images obtained using normal photography, HDR

exposure [11], random exposure [7], and our proposed method. The entire images that has high dynamic range(i.e., Spatial varying

exposure, our proposed and Ground truth) are shown with tonemapped. For easy to see and fair comparison, each row of zoomed images

are adjusted with the same tonecurve. See the reconstructed video data in the supplementary material.

3.3. Spatial brightness coding and reconstruction
for static regions

We apply high dynamic imaging using spatially varying

exposure to the static regions of a scene. Similar to the HDR

mosaic pattern [11], we also use the mosaic of four different

densities with every four neighbor pixels, as shown in Fig.

3. Fig. 3b shows the zoom up portion of a unit of four

neighboring patterns as a mosaic block. The densities of

the pattern make the different sensitivities or exposures ei,
where e0 < e1 < e2 < e3. The patterns of the block

are recursively changed by the frame f , as shown in Fig.

3b, and each mosaic block is repeated over all of the static

regions of the image, as shown in Fig. 3a. We formulate the

space-time exposure pattern as

S(x, y, f) = e(2y+x+f)mod4. (5)

We also describe the captured image with the coded expo-

sures as

I(x, y, f) = S(x, y, f) · E(x, y). (6)

After we obtain four consecutive frames, we can simply

reconstruct the HDR image at the frame f by

IHDR(x, y, f) =

3∑

i=0

I(x, y, f − i)/S(x, y, f − i). (7)

If we cannot obtain four continuous full frames as the

static region, we interpolate the lacking exposures of the

pixel from the neighboring pixels of the exposure. For this,

we use the nearest neighbor interpolation method in our ex-

periments. The proposed HDR exposure pattern is similar

to Nayar’s HDR pattern [11]. However, we also use tem-

poral changes of the patterns and reconstruct the original

spatial resolution, while Nayar’s HDR pattern is temporally

constant and the spatial resolution decreases by one-quarter

.
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(a) Our Prototype Camera(a) Our Prototype Camera (b) Optical Diagram(b) Optical Diagram
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Figure 5. A prototype of our adaptive coded exposure camera sys-

tem. (a) and (b) show the overview of the prototype camera and

its optical diagram. (c) and (d) show the overview of the entire

system and a diagram of signal connections between the camera

and the other equipment.

4. Experimental Results

4.1. Simulation

The simulation results for adaptive coded exposure are

shown in Fig. 4. We obtained the ground truth video us-

ing a high-speed camera (Point Grey GS3-U3-23S6C) with

high brightness resolution: spatial resolution 480 × 400,

temporal resolution 180 fps, and brightness resolution 16

bit . We compare our adaptive sampling scheme with nor-

mal photography (low temporal and brightness resolution),

HDR exosure [11] (low temporal resolution and high bright-

ness resolution), and random exposure [7] (high temporal

resolution and low brightness resolution). In Fig. 4, the

top rows shows one of the complete images from the video,

(the images of [11], [7], and our image are reconstructed

images). The other rows are the zoomed up one according

to the properties. Our proposed procedure works well and

obtained good image quality in all of the zoomed up regions

compared with the conventional methods. Thus, our pro-

posed method can sample the scene information adaptively

and correctly.

4.2. Real Experiment

We built a prototype coded exposure camera to show the

feasibility of our proposed motion-adaptive coded exposure

method. Fig. 5 shows the overview of the prototype camera.

It consists of an object lens (Tokina f = 12.5 mm), three

relay lenses, a polarizing beam splitter, LCoS (Holoeye LC-

R720), and CCD camera (Point Grey GS3-U3-28S5M). The

LCoS and CCD were connected to a PC (Core i7, 3.3 GHz)

via a DVI and USB3.0 interface, respectively. The refresh

rate of the LCoS was 180 Hz and the patterns were adap-

tively given by the DVI video interface from the PC. The

pulse generator generated the CCD shutter signal from the

V-sync of the LCoS display. The CCD was completely syn-

chronized by generating a 1:36 ratio of the V-sync. A coded

video was captured at 5 fps and each frame was coded by 36

exposure patterns, which was the same as the simulation ex-

periments. The PC adaptively generated the adaptive coded

exposure pattern in real time. Thus, we generated a 180

fps video after the reconstruction. We calibrated the cor-

responding pixels between the LCoS and CCD, and picked

the centered pixels of the CCD to make the coded expo-

sure image, because the pixel size of the LCoS was three

times larger than the CCD pixel size. Finally, we obtained

500×600 pixels of the coded video.

Fig. 6 shows the result of the real experiment: the cap-

tured images, adaptive moving/static segmentation and re-

constructed video frames. The top row of the figure shows

three captured frames from the prototype camera and the

other rows of the figure show some patterns (t = 15, 30)

of 36 moving/static segmentations and the corresponded re-

construction images as a page limitation. The segmented

moving region of the walking man slightly moved between

the three captured frames, because the masks were adap-

tively generated by the motion of the previous frame. The

captured images were coded by adaptive pixel-wise expo-

sure, the moving region of the scene was randomly sam-

pled, and static region was sampled with spatially varying

exposure. The third row of the figure shows some of the

reconstructed frames at 180 fps (= 5 fps × 36 coded pat-

terns). The man is walking in the reconstructed video. The

detail of outside the room can be seen, while the original

target scene has wide dynamic range and the exposure is set

for inside the room. Thus, we showed that adaptive coded

exposure can also work online with the prototype camera.

5. Conclusions and Discussions

In this paper, we propose an efficient way to capture

video by adaptive pixel-wise coded exposure. According to

the scene content, an efficient sampling scheme is automat-

ically selected. Random exposure is only applied to mov-

ing regions in the video to reduce reconstruction time. For

static regions (e.g., the background), HDR exposure is used

to obtain high brightness information. We demonstrated the

quality of the reconstructed video by simulation. In addi-

tion, we built a prototype camera and showed the feasibility

of the real-time adaptive coding in real experiments.

Our approach and current implementation have a few

limitations. The effectiveness strongly depends on the ac-

curacy of the moving/static region segmentation. While the

main aim was to propose an adaptive sampling scheme, for

improvement of this method, it is necessary to consider the
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Figure 6. Results of real experiments. Three consecutive frames (Frame 2 – 7) are extracted from the captured coded video. Top row

shows captured coded images. Second row shows the moving/static region segmentations. Note that 36 patterns were used to code each

captured frame, but here we only show two patterns (t = 15, 30). They were generated from image analysis of the former frame, so they

change each frames of the captured video. Third row shows the reconstructed and tonemapped images from the coded images with the

ratio of ×36. See the reconstructed video data in the supplementary material.

use of more sophisticated segmentation. In our current im-

plementation, there is three frames latency between the mo-

tion detection and capturing with the adaptive pattern for the

reagion. The motion blur or satulation would be appeared

in the first frame when the object or the motion is suddonly

appeared like a commertial adaptive exposure camera. We

ideally need a special CMOS imager which can detect the

motion and apply the adaptive exposure on chip for elimi-

nating the latency.
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