
ARC: Adversarial Robust Cuts for Semi-Supervised and Multi-Label

Classification

Sima Behpour, Wei Xing, and Brian D. Ziebart

Department of Computer Science

University Of Illinois at Chicago

{sbehpo2,wxing3,bziebart}@uic.edu

Abstract

Many structured prediction tasks arising in computer vi-

sion and natural language processing tractably reduce to

making minimum cost cuts in graphs with edge weights

learned using maximum margin methods. Unfortunately, the

hinge loss used to construct these methods often provides

a particularly loose bound on the loss function of inter-

est (e.g., the Hamming loss). We develop Adversarial Ro-

bust Cuts (ARC), an approach that poses the learning task

as a minimax game between predictor and “label approx-

imator” based on minimum cost graph cuts. Unlike max-

imum margin methods, this game-theoretic perspective al-

ways provides meaningful bounds on the Hamming loss. We

conduct multi-label and semi-supervised binary prediction

experiments that demonstrate the benefits of our approach.

1. Background

1.1. Notation and Learning Task

We consider n predicted variables, y = (y1, . . . , yn),
chosen from a fixed set of labels yi ∈ Y, ∀i ∈ [n],
where [n] = {1, . . . , n}. We denote the corresponding ran-

dom variables for these label variables using capitalization,

Y = (Y1, . . . , Yn), and denote vectors and multivariate

variables in bold. We denote given information or side in-

formation variables using a single vector, x ∈ X , with a

corresponding random variable denoted as X. (Strict sub-

portions of x may be relevant to each variable yi, but for

notational simplicity, we do not denote such partitions in

our formulation.) Our task in this setting is to make predic-

tions for y given an input x and a set of m training example

pairs, (x(j),y(j))j∈[m], where we index training examples

using a parenthetical superscript notation whenever neces-

sary to disambiguate between different examples or denote

this distribution as P̃ (X,Y). Aiding in this task are a set

of features relating the input variables to the predicted vari-

ables and to one another. We generically denote these fea-

ture vectors as φc(yc,x) for relationships over variables in

some subset of the y variables denoted by c ∈ C ⊆ 2[n].
For a subset c = {c1, . . . , cl} which contains l variables,

yc = {yc1 , . . . , ycl} is the corresponding set of label values

for the variables in the subset. For pairwise relationships

between yi and yj that also incorporate input variables,

this reduces to feature functions denoted as φi,j(yi, yj ,x)
and to φi(yi,x) for univariate feature functions. For many

datasets, variables that are closely related to one another

tend to have the same label. For example, pixels with sim-

ilar characteristics in the same region of an image tend to

belong to the same image segment. To capture this prop-

erty, we define pairwise features that reflect the difference

when two variables have different labels, and use a gener-

alized Potts model [5] to penalize assignments that do not

have the same label across the edges:

φi,j(yi, yj ,x) = I(yi 6= yj)δi,j(yi, yj ,x), (1)

where I() is a indicator function whose value is 1 only if

the inner logical expression is true.

y =
[

1, 1, 0, 0, 1, 1, 0, 0 . . .
]

Figure 1. An example image and its multilabel annotation vector

for label set: sky, clouds, trees, sunset, sea, ship, mountains, desert,

. . .

We consider the multilabel prediction task of annotating

images as a running example. Each training image, x, has an

associated vector of labels, y, corresponding to different de-

scriptors of the image, as illustrated in Figure 1. We define

unary and pairwise features for the labels as:

φsky(ysky,) = I(ysky=1) imgFeatures()

(2)

φsky,clouds(ysky, yclouds) = I(ysky 6= yclouds) (3)

| word2vec(sky)− word2vec(clouds)|−1,

2018

using features from the Mulan dataset [8] for image repre-

sentations and a deeply learned word embedding1 for word

semantics.2

In this paper, we focus on problems evaluated using the

Hamming loss:

loss(ŷ, y̌) =
1

n

∑

i

I(ŷi 6= y̌i), (4)

which measures the fraction of the labels that are correctly

predicted in the multilabel annotation task.

1.2. Markov Networks and Intractability

Estimating the conditional probability of label variables
using a Markov network is one powerful approach to this
structured prediction task. Markov networks can be writ-
ten as log-linear models when their densities are positive. A
Markov network has the following probability distribution:

P (y|x) =
1

Z(x)
e
Ψ(y,x)

, (5)

where the potential function Ψ decomposes into a set of po-

tential functions over subsets of the y variables, Ψ(y,x) =∑
c∈C ψc(yc,x), with these subset potentials defined as

ψc(yc,x) = θc · φc(yc,x) using a vector of estimated

weights θc that is specific to each c. Parameter sharing with

clique c′, φc = φc′ , can be employed to reduce the effec-

tive number of learned parameters of the model. The struc-

ture of these potentials corresponds to an undirected graph-

ical model in which the variables in set c are connected by

undirected edges, forming cliques in the graph.

Figure 2. The Markov network corresponding to the multilabel an-

notation prediction of Figure 1.

In our running example, all unary and pair-

wise subsets of variables are inlcuded in C =
{{sky}, {clouds}, {trees}, . . . , {sky, clouds}, {sky, trees}},

and the corresponding Markov network is the complete

graph over all of these class labels (Figure 2). Unfor-

tunately, even when restricted to pairwise and unary

potential functions, the most probable assignment of

values, y∗ = argmaxy∈Y P (y|x), and the normalization

term, Z(x) =
∑

y∈Y e
∑

c∈C
ψc(yc,x), are both intractable

to compute for Markov networks in general [9]. Restric-

tions are often placed on the potential functions so that the

corresponding undirected graph has low tree-width (e.g.,

chains, trees), which enables efficient maximization and

normalization computations [9].
1https://code.google.com/p/word2vec/
2We use element-wise operations to compute and invert the differences

between each embedded dimension.

1.3. Minimum­Cuts and Associative Markov Net­
works

Another direction for realizing tractable Markov net-

works exploits potential functions for which maximiza-

tion can be solved efficiently, even though normaliza-

tion is intractable due to the large tree-widths of their

graphs. Binary-valued Markov networks with non-negative

pairwise potentials are one example of this. Their maxi-

mum value assignments can be obtained using minimum-

cut/maximum-flow algorithms, as shown in Figure 3. Edges

from the source and to the sink nodes are weighted based on

unary feature potentials, and edges between predicted vari-

ables are weighted based on the pairwise feature potentials.

Large potentials prevent certain edge cuts (and correspond-

ing value assignments to the connected sink or source) from

the solution. In our running example, for instance, two se-

mantically related words (e.g., sky and clouds) are likely to

have large learned potentials that prevent one from being

an included label without the other. This class of models

has been employed extensively in computer vision applica-

tions for binary image denoising and segmentations prob-

lems [3, 2].

Figure 3. A directed graph used to augment a Markov network

(left) so that the minimum cut (right) provides the most probable

assignment of each variable based on its connection to the source

node (0) or target node (1).

2. Applications

We focus our attention on binary-valued structured pre-

diction tasks for which inference can be efficiently per-

formed without extremely restrictive limitations on the po-

tential functions or using approximation.

2.1. Semi­Supervised Classification

We first consider cut-based semi-supervised classifica-

tion [1] using four datasets from the UCI repository [4]. The

characteristics of these datasets are summarized in Table 1.

The vector y corresponds to the examples of each dataset.

Following previous work, we seek to leverage the relation-

ships between each example, in terms of input values xi,

and its label, yi, along with relationships between pairs of

labels (yi, yj) (and their inputs (xi,xj)). We construct unary

features directly from each example’s input vector xi and

pairwise features as the inverse of the absolute difference of

the two corresponding nodes features. We share the same

unary and pairwise parameters across all edges so that these

potentials can be applied to previously unseen examples at

2019

Table 1. Semi-supervised classification dataset characteristics; training/testing hinge loss and testing Hamming loss for SSVM; number of

testing-time cuts, training/testing game value and testing Hamming loss for our ARC approach.
Dataset Information SSVM ARC

Name #training #testing #features Hingetr Hingete Hammingte #cuts Valuetr Valuete Hammingte

Diabetes 600 168 8 1.27 1.22 0.37 9 0.39 0.35 0.31

Breast Cancer 500 183 10 0.44 0.58 0.12 8 0.42 0.23 0.10

Gisette 800 200 4971 1.26 0.54 0.21 17 0.45 0.29 0.16

Spect 187 80 22 1.30 1.28 0.29 10 0.38 0.34 0.26

Table 2. Multi-label dataset information and average testing Hamming loss for binary relevance (BR), multi-label KNN (ML-KNN), and

Rank-based support vector machines (Rank SVM), and our ARC approach (with average number of cuts).
Dataset Information Test Hamming Loss

Name Domain #Instances #Features #Labels BR MLKNN Rank SVM ARC #cuts

Bibtex text 7395 1836 159 0.015 ± 0.001 0.017 ± 0.001 0.120 ± 0.014 0.015 ± 0.001 20.8

Bookmarks text 87856 2150 202 0.238 ± 0.018 0.149 ± 0.011 0.176 ± 0.016 0.141 ± 0.014 19.3

Birds audio 645 260 19 0.156 ± 0.106 0.063 ± 0.001 0.124 ± 0.106 0.062 ± 0.010 7.4

CAL500 music 502 68 174 0.159 ± 0.016 0.113 ± 0.012 0.124 ± 0.016 0.102 ± 0.018 14.9

Emotions music 593 72 6 0.261 ± 0.018 0.198 ± 0.016 0.183 ± 0.012 0.174 ± 0.010 13.7

Flags images 194 19 7 0.271 ± 0.220 0.236 ± 0.014 0.234 ± 0.011 0.212 ± 0.010 18.5

Scene images 2407 294 6 0.139 ± 0.010 0.144 ± 0.012 0.241 ± 0.015 0.110 ± 0.016 12.1

Yeast biology 2417 103 14 0.238 ± 0.015 0.195 ± 0.110 0.210 ± 0.090 0.186 ± 0.014 11.6

NUS-WIDE images 269648 128 81 0.120 0.028 0.102 0.020 14.5

Average 0.177 0.127 0.168 0.113 14.8

test time. During training time, we only incorporate labeled

training examples. At testing time, we incorporate both the

training set and the unlabeled testing set on which predic-

tions are desired.

We compare our ARC approach with a structured sup-

port vector machine [6, 7] on the same feature representa-

tion.

2.2. Multi­Label Prediction

The second application that we investigate is multi-label

classification, like our running example. In this setting, mul-

tiple labels can be attached to each example and the pre-

diction task is that of predicting some subset of the label

set for each example. We treat each of the labels as a bi-

nary variable and follow the structure presented in the pre-

vious section to train an adversarial multi-label predictor by

learning to make adversarial cuts. Most of the features we

employ as unary and pairwise features are taken from the

Mulan dataset [8]. As shown in Table 2, our ARC approach

performs at least as well as the other methods on each indi-

vidual dataset, and much better on average.

3. Discussion

We investigated a robust approach for learning to make

cuts in graphs. It operates by making worst-case approxima-

tions to the training labels. This has benefits theoretically—

providing meaningful bounds on losses—and in practice,

as illustrated by our experiments. In future work, we plan

to investigate the benefits of our game formulation for mul-

ticlass problems where only approximately optimal graph

cuts can be obtained. We expect that because the equilib-

rium is defined over many different cuts, rather than the sin-

gle best alternative (as in structured SVM’s hinge loss), that

approximations will have a less detrimental impact on our

approach.

References

[1] A. Blum and S. Chawla. Learning from labeled and

unlabeled data using graph mincuts. In ICML, pages

19–26. Morgan Kaufmann Publishers Inc., 2001.

[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-

mate energy minimization via graph cuts. IEEE Trans-

actions on pattern analysis and machine intelligence,

23(11):1222–1239, 2001.

[3] D. M. Greig, B. T. Porteous, and A. H. Seheult. Ex-

act maximum a posteriori estimation for binary im-

ages. Journal of the Royal Statistical Society. Series

B (Methodological), pages 271–279, 1989.

[4] M. Lichman. UCI machine learning repository, 2013.

[5] R. B. Potts. Some generalized order-disorder trans-

formations. In Mathematical proceedings of the cam-

bridge philosophical society, volume 48, pages 106–

109. Cambridge Univ Press, 1952.

[6] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin.

Learning structured prediction models: A large margin

approach. In Proceedings of the ICML, pages 896–903.

ACM, 2005.

[7] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-

tun. Support vector machine learning for interdepen-

dent and structured output spaces. In Proceedings of

the ICML, page 104. ACM, 2004.

[8] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and

I. Vlahavas. Mulan: A java library for multi-label learn-

ing. JMLR, 12:2411–2414, 2011.

[9] M. J. Wainwright and M. I. Jordan. Graphical models,

exponential families, and variational inference. Foun-

dations and Trends in Machine Learning, 1(1-2):1–305,

2008.

2020

