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Abstract

The prediction of human eye fixations has been recently

gaining a lot of attention thanks to the improvements shown

by deep architectures. In our work, we go beyond classical

feed-forward networks to predict saliency maps and pro-

pose a Saliency Attentive Model which incorporates neu-

ral attention mechanisms to iteratively refine predictions.

Experiments demonstrate that the proposed strategy over-

comes by a considerable margin the state of the art on

the largest dataset available for saliency prediction. Here,

we provide experimental results on other popular saliency

datasets to confirm the effectiveness and the generalization

capabilities of our model, which enable us to reach the state

of the art on all considered datasets.

1. Saliency Attentive Model (SAM)

In the last decades, a significant research effort has been

dedicated to the development of saliency prediction models,

which can predict human eye fixations. It has been shown

that emulating where humans look in a scene can enhance

many vision-based applications, ranging from image cap-

tioning [5, 6] to automatic cropping [7]. With the advent

of deep learning, saliency prediction has achieved a strong

improvement, thanks to both novel architectures and large-

scale datasets [11, 3, 13]. Even though these approaches

overcame by a big margin hand-crafted methods, the use

of machine attention models has been rarely investigated in

this task. We recently proposed a Saliency Attentive Model

(SAM) [4] which, in contrast, incorporates attentive mech-

anisms to iteratively refine saliency predictions. Overall, it

is composed by three main components: a Dilated Convo-

lutional Network that extracts feature maps from the input

image, an Attentive Convolutional LSTM which recurrently

enhances saliency features and a learned prior module that

incorporates the human-gaze center bias in the final predic-

tions. The overall architecture is shown in Fig. 1.

Dilated Convolutional Network. Deep saliency architec-

tures are usually built over a pre-trained CNN that extracts

feature maps from input images. One of the main draw-

backs of this approach is that it considerably rescales the

input image, thus worsening the saliency prediction perfor-

mance. To limit this rescaling effect, we use a Dilated CNN

that, thanks to dilated convolutions and modifications of

standard CNN architectures, produces saliency maps with

an increased output size. In particular, we propose two dif-

ferent variations of our model: one based on VGG-16, and

the other based on ResNet-50. Thanks to this strategy, the

predicted saliency maps are rescaled, for both versions, by

a factor of 8 instead of 32 as in the original CNNs.

Attentive Convolutional LSTM. The feature maps coming

from the dilated network are then input to an Attentive Con-

volutional model, which recurrently process saliency fea-

tures at different locations. We extend the traditional LSTM

to work on spatial features by substituting dot products with

convolutional operations, so that hidden states are feature

stacks instead of vectors. Moreover, we exploit the sequen-

tial nature of LSTM to process features in an iterative way.

The input of the LSTM is computed, at each step, through

an attentive mechanism which focuses on different regions

of the image. An attention map is generated by convolving

the previous hidden state and the input (i.e. a stack of feature

maps); once normalized through the softmax operator, this

is applied to the input with an element-wise product. The

result of this operation is a refined stack of features which

is iteratively fed to the LSTM. After a fixed number of it-

erations, the last hidden state is taken as the output of this

module.

Learned Priors. Finally, the output of the Attentive LSTM

is combined with multiple learned priors which are used

to model the center bias present in the human-eye fixa-

tions. Differently from existing works, which included pre-

defined priors, we let the network learn its own priors. To

reduce the number of parameters and facilitate the learning,

we constraint that each prior should be a 2d Gaussian func-

tion, whose mean and covariance matrix are freely learn-

able. In this manner, priors are inferred purely from data,

without relying on assumptions from biological studies.

Loss Function. During the training phase, the network is

encouraged to minimize a combination of different cost

functions, taking into account different quality aspects that
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Figure 1. Overview of our Saliency Attentive Model (SAM).

predictions should meet. In particular, our loss function

is given by a linear combination of three saliency evalu-

ation metrics: the Normalized Scanpath Saliency (NSS),

the Linear Correlation Coefficient (CC) and the Kullback-

Leibler Divergence (KL-Div), all commonly used to evalu-

ate saliency prediction models. We refer the reader to [2]

for an extensive analysis of these saliency metrics and those

used in the experimental section.

2. Experimental Results

Several saliency prediction datasets are currently avail-

able in literature. The largest one is SALICON [11] com-

posed by 20, 000 images with corresponding saliency maps

computed from mouse movements. Recently, a new version

of this dataset has been released in which authors replace

the original velocity-based fixation detection algorithm, re-

sulting in more eye-like fixations. Here, we extend the work

in [4] by using both versions of this dataset and comparing

the results of our model trained on the two annotations. Fur-

thermore, we also investigate on several other datasets.

Tables 1 and 3 report the results of both versions of our

model (SAM-VGG and SAM-ResNet) on the two releases

of the SALICON dataset, respectively. As it can be seen,

our model overcomes all existing methods on both versions

of SALICON and, as expected, the ResNet version obtains

better results than the VGG-based model. Nevertheless, the

version based on VGG-16 is still able to surpass the com-

petitors on almost all the considered metrics. Fig. 2 shows

some qualitative results on sample images from the SAL-

ICON dataset and visually highlights the differences be-

tween the two versions of the considered dataset.

Starting from our model trained on the two releases

of the SALICON, we also evaluate the effectiveness of

the proposal on other four popular saliency datasets:

MIT1003 [12], TORONTO [1], PASCAL-S [14] and DUT-

OMRON [20]. For a fair comparison with other methods,

we do not finetune our model on a subset of these datasets.

The comparison results are reported in Table 2. Again, we

CC sAUC AUC NSS

SAM-Resnet 0.842 0.779 0.883 3.204

SAM-VGG 0.825 0.774 0.881 3.143

ML-Net [3] 0.743 0.768 0.866 2.789

SalGAN [16] 0.781 0.772 0.781 2.459

SalNet [17] 0.622 0.724 0.858 1.859

DeepGazeII [13] 0.509 0.761 0.885 1.336

Table 1. Comparison results on SALICON 2015 test set [11].

Methods are sorted by the NSS metric.

observe that our model is able to quantitatively overcome

the drawbacks of different existing proposals. As a side

note, here the performance of the VGG-based model is of-

ten very similar to that of the ResNet-based one. Also, it

shall be observed that the 2017 version of SALICON shows

better generalization capabilities on all metrics except from

NSS. This can be partially explained by the fact that the

ground-truth maps of SALICON 2015 are less blurred than

in the second version of the dataset: this helps the NSS mea-

sure, which normalizes the prediction to have zero mean and

unit variance, thus increasing the weight of predicted pixels

when the prediction is less blurred.

3. Conclusion

We gave a short overview of our Saliency Attentive

Model (SAM). This incorporates dilated convolutions, an

attentive mechanism and learned prior maps: the combina-

tion of these components has shown to overcome the state

of the art on saliency prediction on different datasets, thus

confirming the effectiveness of the approach.
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Figure 2. Qualitative results on both 2015 and 2017 releases of the

SALICON dataset [11].
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