
 

 

 
Abstract 

 
 The paper presents a technique to improve human 
detection in still images using deep learning. Our novel 
method, ViS-HuD, computes visual saliency map from the 
image. Then the input image is multiplied by the map and 
product is fed to the Convolutional Neural Network (CNN) 
which detects humans in the image. A visual saliency map 
is generated using ML-Net and human detection is carried 
out using DetectNet. ML-Net is pre-trained on SALICON 
while, DetectNet is pre-trained on ImageNet database for 
visual saliency detection and image classification 
respectively. The CNNs of ViS-HuD were trained on two 
challenging databases - Penn Fudan and TUD-Brussels 
Benchmark. Experimental results demonstrate that the 
proposed method achieves state-of-the-art performance on 
Penn Fudan Dataset with 91.4% human detection accuracy 
and it achieves average miss-rate of 53% on the TUD-
Brussels benchmark. 
 

1. Introduction 
 Human detection is an important topic in the field of 
computer vision [3, 4, 5, 6, 7]. The challenge for the 
detection has to overcome variations in human pose, light 
conditions, cluttered background, viewpoint variations and 
low resolution. Some challenging examples are shown in 
Figure 1. Moreover, a detection algorithm should be robust 
to occlusion and cluttered background in the frame.  
 Many human detectors [6, 8, 9, 10] have been developed 
to address these challenges. They extract features, such as 
Histogram of Oriented Gradients (HOG) [3], Haar-like 
descriptors [5], or their combinations [6, 11], from images 
and then apply classifiers as boosting [12], Support Vector 
Machines (SVM) [3], and structure SVM [6] detect a 
human(s) in a frame. Introduced by Dalal et al. [3], HOG is 
most popular amongst other approaches for human 
detection. HOG delivered significant improvements and 
therefore it is an important baseline feature. In order to 
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cope with partial occlusions, Wang et al. [6] combined 
HOG features with the local binary pattern (LBP). Mainly, 
the model exploits weak representations based on features. 

 
Figure 1: Sample images with cluttered background and strong 
occlusions. 
 
 Currently, CNN has outperformed handcrafted feature-
based classifiers. Many attempts have been made to predict 
several objects in the close range [41, 42, 43]. Currently, 
object detectors operate either by scanning the image in 
sliding window [10, 44] or by using the mechanism 
described in [45, 46]. Deformable part-based models 
(DPM) [8, 9, 10, 13, 14] are proposed to handle human 
pose variations. In order to handle more complex and larger 
variations, a learned mixture of each body part [14, 15] is 
used. E.g., Poselets. [15] are learned by clustering pose 
annotations and region appearances. 
 Over the last decade, deep learning has been applied to 
human detection with promising results [4, 16, 17, 18]. 
Instead of using handcrafted features, it automatically 
learns features in an unsupervised or supervised learning 
e.g., Restricted Boltzmann Machine (RBM), and 
discriminative RBM. The network is often stacked in many 
layers to map the raw data into higher-level representations 
[4, 19]. Then, the entire network is fine-tuned with given 
label information and the output of top-layer is often 
adopted as features to train a classifier. However, the 
hierarchical representations learned by deep model do not 
have semantic meanings e.g., the body parts; upper and 
lower, as in previous hierarchical DPM [8, 9, 10, 13, 14, 
20]. Ouyang et al. [18] and Girshick et al. [21] extend DPM 
to a deep model by learning feature representations and 
jointly optimizing the key components of DPM. However, 
the models did not suppress the influence of cluttered 
background. The above approaches work well for images 
with fewer non-occluding objects. On a closer analysis 
these methods fail to capture visual features of a human 
body during strong occlusions. As a solution, we propose to 

ViS-HuD: Using Visual Saliency to Improve Human Detection with Convolutional 
Neural Networks 

 
Vandit Gajjar1*¥ Yash Khandhediya1,2*¥£ Ayesha Gurnani1€ Viraj Mavani1€ 

Mehul S. Raval3 
1Computer Vision Group, L. D. College of Engineering 

2Dosepack LLC, Meditab Software Inc. 
3School of Engineering and Applied Science (SEAS), Ahmedabad University 

{gajjar.vandit.381,  gurnani.ayesha.52, mavani.viraj.604}@ldce.ac.in, 
yashk@dosepack.com, mehul.raval@ahduni.edu.in 

 

2021



use visual saliency to improve human detection in th
cluttered background or strong occlusions. 

1.1. Visual Salient Object Detection 
 Visual saliency detection is closely related to selective 
processing in the human visual system. It aims
highlighting visually salient regions or objects in an image. 
It is fundamentally an intensity map where high
signifies regions which draw human attention. 
decade, many improvements have been witnessed in visual 
saliency detection. It is computed using different algorithms 
and methods, after years of research in the field of 
cognitive science. Many supervised and unsupervised 
visual saliency detection methods have been proposed 
under several theoretical models [33, 34, 35
unsupervised algorithms and methods are based on low
level features and perform saliency detection on the 
individual image. Itti et al. [34] proposed a saliency model 
which linearly combines image features including color, 
intensity, and orientation over various scales to detect local 
prominence. Still, this method tends to enlighten the salient 
pixels and loses object information. Zhu et al.
a background measurement to characterize the spatial 
layout of image regions. Cheng et al. [36] address saliency 
detection based on the global region contrast, which 
simultaneously considers the spatial coherence a
regions and the global contrast over the image.
 The methods that consider only local contexts tend to 
detect high-frequency content and suppress the region 
inside salient objects. Achanta et al. [37] estimate visual 
saliency by computing the color difference between each 
pixel with respect to its mean. The work proposed
al. [38] uses both local and global set of features, which are 
integrated by a random field to generate a saliency map. 
Yan et al. [39] proposed a multi-layer approach t
high contrast regions. However, most method 
above integrates hand-crafted features to create the final 
saliency map.  

Recently, researchers uses visually salient features and 
CNN for classification or detection problems, e.g., Uddin et 
al. [47], Liu et al. [48], Happy et al. [49], Mavani 
[58], Gurnani et al. [57] for facial expression classification, 
Gajjar et al. [50], Wang et al. [51], Aguilar et al. [
human detection and tracking in video surveillance, Tong et 
al. [53] for face detection. Visual saliency has also been 
exploited in high-level vision tasks, e.g., object detection 
[16], person re-identification [22, 23].  

Visual saliency detection is still an open problem 
considering heavy occlusion or cluttered background as 
presented in a complex benchmark like the MIT Saliency 
Benchmark [28]. Our primary goal in this work is to 
improve the human detection performance with such 
difficult background. Towards this goal we use the
Multi-Level Network (ML-Net) [1] which has 
outperformed many other models on the SALICON Dataset 
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resented in a complex benchmark like the MIT Saliency 
Our primary goal in this work is to 

improve the human detection performance with such 
difficult background. Towards this goal we use the Deep 

] which has 
other models on the SALICON Dataset 

[40] and it also performs better on the MIT Saliency 
Benchmark. 

Our novel method uses visual saliency to detect humans 
under heavy occlusion or cluttered background. We use a 
direct feature learning process by computing visual saliency 
maps of the input image and then we multiply both; the 
image and its visually salient map. These results in the 
more efficient feature learning by subsequent CNN; the 
DetectNet resulting into higher detection accuracy in spite 
of occlusions. 

 
Overall, this paper makes the following contributions:

 
 We propose a novel method to learn features after 

computing visual saliency in order to accurately 
localize humans in spite of heavy occlusion and 
cluttered background. 
 

 We showcase state-of-the-art results on the challenging 
Penn-Fudan dataset [29] and achieve a competitive 
result on Tud-Brussels benchmark [

 
Rest of the paper is as follows: 

DetectNet architecture and a Visual Saliency Model
ML-Net. Section 3 discusses the 
HuD with the pre-processing steps, data augmentation, and 
implementation details. Dataset, preparation for 
validation and testing image-set, experiments and results 
are shown in Section 4. Section 5 con

2. Preliminaries  
2.1. DetectNet 
 DetectNet is a standard model
DIGITS with Caffe deep learning framework as back
end. DetectNet training data samples are large
contain multiple objects. It has fixed 3
format which enables to ingest images o
a change in number of objects. Figure 2
of annotated training images for training DetectNet. Each 
grid square is labeled with two key pieces of information: 
1) the class of human presence in the grid square
pixel coordinates for the corners of the bounding box 
around the human.  

 
Figure 2: Input data representation for DetectNet

  
 The coordinates are relative to the center of the grid 
square. When a human is absent in the grid square
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Visual Saliency Model using 

Section 3 discusses the proposed method ViS-
processing steps, data augmentation, and 

ion details. Dataset, preparation for training, 
set, experiments and results 

Section 5 concludes the paper. 

DetectNet is a standard model and uses NVIDIA – 
DIGITS with Caffe deep learning framework as back-

training data samples are large images that 
It has fixed 3-dimensional labeling 

format which enables to ingest images of different size with 
ber of objects. Figure 2 shows the process 

of annotated training images for training DetectNet. Each 
grid square is labeled with two key pieces of information: 

s of human presence in the grid square; 2) the 
the corners of the bounding box 

 

: Input data representation for DetectNet. 
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care class is used to maintain fixed size of 
coverage value of 0 or 1 is also provided to indicate 
whether a human is present within the grid square. In the 
case of multiple humans in the same grid square, 
selects the human that occupies the most pixels within grid 
squares.  
 
 DetectNet architecture points out three very important 
processes during training. 
 

 A fully-convolutional network (FCN) performs 
feature extraction and prediction of human 
and bounding boxes per grid square.

 Loss functions simultaneously measure the error in 
the two tasks of predicting the human coverage 
and human bounding box corners per grid square.

 A clustering function produces the final set of 
predicted bounding boxes during testing.

  
 The FCN sub-network of DetectNet has the same 
structure as GoogLeNet [2] except without the data input 
layers, final pooling layer and output layers. We chose 
DetectNet, as it can be initialized using a pre
GoogLeNet model, thereby reducing training time and 
improving final model accuracy. Furthermore, the network 
can accept input images with varying sizes and effectively 
applies a CNN in a stride sliding window fashion.

2.2. The Visual Saliency Model: ML –

 We used the Deep Multi-Layer ML-Network fo
saliency prediction. A CNN is used to compute low and 
high-level features from the input image. Extracted features 
maps are then fed to an Encoding network, which learns a 
feature weighting function to generate visual s
specific feature maps. The main purpose of using a visual 
saliency model is to propose possible regions where 
humans might be present in the input image. 

Figure 3: Visual salience image samples after passing fr
Net and multiplied by the input image. 

 Visual saliency maps would indicate higher intensity, 
where there are humans in the image. All the training 
images of Penn-Fudan and TUD-Brussels are passed from 
the ML-Net and then multiplied with the corresponding 
input images. Examples of the salience-windo
are given in Figure 3. The Deep Multi-Layer Network by 
Cornia et al. described in [1] outperforms all other models, 
and on a saliency prediction metrics achieves normalized 
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] outperforms all other models, 
and on a saliency prediction metrics achieves normalized 

scan path saliency (NSS) score on Correlation Coefficient 
(CC) of 0.74, AUC shuffled of 0.76, and AUC Judd of 
0.86. 

3. The Proposed Method 
 The detailed representation of our proposed method 
(ViS-HuD) is shown in Figure 4. The process starts by 
passing training images of both the datasets images into 
ML-Net [1] to compute the visual saliency maps. The 
network, which is based on a CNN, is used to extract the 
necessary feature. After computing visual saliency, we 
scale saliency map by a scalar (0.8) and multiply it to the 
input image to generate multiplied visual salie
(MVSI). Using labels and MVSI, we train the DetectNet. 
The B-Box regressor predicts, B
square. The total training loss is the weighted summation of 
the following losses: 

  
 L1: Loss of the coverage maps estimated by the 

network and ground truth. 
 ଵଶே ∑ |ேୀଵ ��������௧ − ��������

 
The coverage map extracted from annotated ground truth is 
coveraget and the predicted coverage map, while denoting 
the batch size is coveragep. 
 
 L2: Loss between the true and 

B-Box box for the human covered by each grid square.
 ଵଶே ∑ [ேୀଵ ห�ଵ௧ − �ଵห + ห�ଵ௧ − �ଵห + ห�ଶ௧

 
Where, (�ଵ௧, �ଵ௧, �ଶ௧ , �ଶ௧) are the ground
ordinates, while (�ଵ, �ଵ, �ଶ, �ଶ) 
coordinates. 
 

During the testing stage, we threshold the coverage map 
obtained after passing image through the FCN network, and 
use the B-Box regressor to predict the corners. Since 
multiple bound-boxes are generated, we finally clu
to refine the predictions.  

3.1. Preprocessing 
 In our method CNN requires fixed size for training, so 
we rescale images from both the dataset to a size of 
512×512.  

3.2. Data Augmentation 
 It is common in computer vision to 
samples from original data to increase the robustness. E.g., 
the Penn-Fudan Dataset contains 170 images with 345
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obtained after passing image through the FCN network, and 
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In our method CNN requires fixed size for training, so 
we rescale images from both the dataset to a size of 

It is common in computer vision to augment the training 
samples from original data to increase the robustness. E.g., 

et contains 170 images with 345

2023



Figure 4: Our method for detection of humans using DetectNet. (A) Using 
coverage map and B-Box co-ordinates. Total training loss is the weighted sum of coverage and B
coverage map and B-Box are generated from the FCN.

 
humans. These are not sufficient in number rendering the 
dataset prone to overfitting. We have used 
augmentation techniques to prevent overfitting. 
flipped all images horizontally. Then, each image is 
rotated and horizontally flipped with angles {
−3◦, 3◦, 5◦, 7◦}. This makes the model robust against the 
low rotational changes in the input image. All the variants 
result into dataset which is 13 times bigger than original. 
Figure 5 shows augmented samples for Penn

Figure 5: Augmented samples for Penn-Fudan Dataset.

3.3. FCN Training in DetectNet  
 Figure 4 illustrates training and testing architecture of 
DetectNet [54]. During training, the visual salient images 
with dimension 512 x 512 are labeled with data format 
required for DetectNet; i.e., human class, B
coordinates, and coverage value. The training data is 
given to fully convolutional network (FCN) predicting 

 

 

 
(A) Network Training 

 
(B) Network Testing 

 
for detection of humans using DetectNet. (A) Using the salient images with annotation, the FCN generates the 

ordinates. Total training loss is the weighted sum of coverage and B-Box loss. (B) At testing time, 
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coverage map for human class. The detailed 
representation of FCN network is shown in Figure 6. 
 

 

Figure 6: The FCN used in the D
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Figure 6: The FCN used in the DetectNet.

2024



Table 1: Overview of training, validation and testing image set.
 

 Training 
 Human 

Images 
Negative 
Images 

Positive
Images

Penn-Fudan 1000 - 
TUD-

Brussels 
1500 218 1092

Subtotal 2500 218 1092
Total Training Images – 3810

 
 

 
Figure 7: Performance evaluation plot of Network on the 
training and validation image set, after 45000 iterations.
 
 We have changed the number of class to only one; i.e., 
with a human. The Convolution layer includes 
Convolution, ReLU activation, and Pooling. As described 
in GoogLeNet [2], the inception layer includes the same 
module. For our experiments, we use pre-trained weights 
on ImageNet to initialize the FCN network. 
 We have used the workstation of Intel Xeon core 
processor accelerated by Quadro K5200. The model is 
trained for 90 epochs with each of 500 iterations. Figure 7
shows the training curve. We then train the model by 
minimizing the cross entropy loss function. 
optimizer, we train the FCN through stochastic gradient 
descent with the learning rate of 0.0001. After 60 epochs, 
for every 10 epochs the learning rate is dividing with 10. 
We have observed little over-fitting during training the 
model thus; we increased the dropout to 0.5. The overall 
training process has taken more than one-day to complete.
 
4. Experiments and Results 
 We evaluate our method on two public databases: 
Penn-Fudan Dataset [29] and TUD-Brussels [

4.1. Datasets 
 The Penn-Fudan Dataset consist 170 images with 345 
labeled pedestrians. The images are taken from the urban 
street and labeled pedestrians fall into 390 x 180 pixels. 

 

 

: Overview of training, validation and testing image set. 
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Human 
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Images 

Positive 
Images 

Human 
Images 

Negative 
Images

- 350 - - 1030 
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1092 626 - - 2528 
3810 Validation Images – 1252 Testing Images 
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zing the cross entropy loss function. Using Adam 
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fitting during training the 

model thus; we increased the dropout to 0.5. The overall 
day to complete. 

We evaluate our method on two public databases: 
ussels [30].  

Fudan Dataset consist 170 images with 345 
labeled pedestrians. The images are taken from the urban 
street and labeled pedestrians fall into 390 x 180 pixels. 

TUD–Brussels data is conceivably most popular dataset 
for human detection and it comes with pre
for training and testing. The training dataset consist 2810 
images (1776 annotated human labels, 1092 positive 
sample, and 218 negative samples). The testing dataset 
has 2006 images including 508 positive sam

 
4.1.1 Preparation of Training and Testing Data

  We prepare training, validation and testing split as 
per given table. We took care for splitting the data as the 
training and testing images do not overlap with each 
other. Therefore, using both datasets
are available for the training set, 1252 images 
validation set and 3036 images (1030 images of Penn
Fudan and 2006 images of TUD
for the testing set. Table 1 shows the overview of training, 
validation, and testing image set. 
 
4.2. Evaluation Metrics  
 For Penn-Fudan dataset, we evaluate the detection 
performance on the test set comparing detection results 
with the available ground truth and for TUD
follow evaluation criteria proposed in [
average miss rate is calculated by averaging the miss rate 
at nine False Positive per Image rates, which are evenly 
spaced in log-space in the range from 10
 We compare with the best-performing methods; i.e., 
HOG, Adaboost, SVM-HOG, and Adaboo
Penn-Fudan Dataset, while for TUD
we compare our performance using Viola Jones (VJ), 
HOG, Aggregated Channel Features (ACF), Multi
Feature + Motion, Roerei, Integral Channel Features 
Detector (ChnFtrs), CrossTalk, Macro Featu
Selection (MLS), pAUCBoost, 
Channel Features (LDCF), SpatialPooling, FPDW, 
FisherBoost, MF + Motion + 2PED, MultiFtr + CSS, 
ADABoost, SVM-HOG, and Adaboost
These methods detect humans on static images, and do 
not use external video motion information. We have 
performed three exhaustive experiments in order to 
showcase the effectiveness of our method.

Testing 
Negative 
Images 

Positive 
Images 

- - 
- 508 

- 508 
Testing Images - 3036 

Brussels data is conceivably most popular dataset 
detection and it comes with pre-defined subsets 

for training and testing. The training dataset consist 2810 
images (1776 annotated human labels, 1092 positive 
sample, and 218 negative samples). The testing dataset 
has 2006 images including 508 positive samples. 
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training and testing images do not overlap with each 
other. Therefore, using both datasets, total 3810 images 
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validation set and 3036 images (1030 images of Penn-
Fudan and 2006 images of TUD-Brussels) are presented 

. Table 1 shows the overview of training, 
 

Fudan dataset, we evaluate the detection 
performance on the test set comparing detection results 
with the available ground truth and for TUD-Brussels, we 
follow evaluation criteria proposed in [55], where the log-
average miss rate is calculated by averaging the miss rate 
at nine False Positive per Image rates, which are evenly 

space in the range from 10-2to 100. 
performing methods; i.e., 

HOG, and Adaboost-HOG for 
Fudan Dataset, while for TUD-Brussels benchmark, 

we compare our performance using Viola Jones (VJ), 
HOG, Aggregated Channel Features (ACF), Multi-
Feature + Motion, Roerei, Integral Channel Features 
Detector (ChnFtrs), CrossTalk, Macro Feature Layout    
Selection (MLS), pAUCBoost, Locally Decorrelated 

LDCF), SpatialPooling, FPDW, 
FisherBoost, MF + Motion + 2PED, MultiFtr + CSS, 

HOG, and Adaboost-HOG methods. 
These methods detect humans on static images, and do 
not use external video motion information. We have 
performed three exhaustive experiments in order to 
showcase the effectiveness of our method. 
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4.2.1 Cross-Dataset Validation  

 We performed cross-dataset validation without using 
our method, i.e., without using Saliency maps. We train 
DetectNet on one dataset and test on another. The 
detection accuracy on Penn-Fudan dataset was 
considerably low with 73.1%, and we achieve a very low 
average miss-rate of 71% on TUD-Brussels benchmark. 
The different viewpoint is the main factor affecting the 
performance as Penn-Fudan dataset have images in mid
field range, while TUD–Brussels benchmark has many 
far-field images compared to mid-field images. Thus, in 
order to improve the detection performance, we explored 
the use of visual saliency. 
 
4.2.2 Improving Performance using ViS

 Initially we trained DetectNet (without saliency) on 
Penn-Fudan and TUD-Brussels dataset. When tested on 
images from the respective dataset it resulted into 
accuracy of 81.3% for Penn-Fudan and average mi
of 67% for TUD-Brussels dataset. 
 

 
(A) 

 

 
(B) 

 
Figure 8: (A) Some of the test objects are not detected and miss
rate was comparatively high when network was trained without 
using visual saliency (B) Correct detection by the trained 
network using visual saliency on same test images.
the True Positive; while yellow shows the False Positive. First 
two images are of Penn Fudan dataset, while other two are of 
TUD-Brussels. 
 
 Secondly, using our method, as shown in Figure 4, 
resulted into detection accuracy of 85.7% Penn
set and average miss-rate of 57.9% on TUD
set. One can note significant improvement due to use of 
the saliency maps as direct feature learning process helps 
the network architecture. Figure 8 shows the
test images; without saliency and with our method. 
detection accuracy improves with the use of saliency map 
before person detection. 
  

 

 

dataset validation without using 
aliency maps. We train 

DetectNet on one dataset and test on another. The 
Fudan dataset was 

considerably low with 73.1%, and we achieve a very low 
Brussels benchmark. 

main factor affecting the 
Fudan dataset have images in mid-

Brussels benchmark has many 
field images. Thus, in 

order to improve the detection performance, we explored 

Improving Performance using ViS-HuD 

Initially we trained DetectNet (without saliency) on 
dataset. When tested on 

images from the respective dataset it resulted into 
average miss-rate 

 

 

are not detected and miss-
rate was comparatively high when network was trained without 

Correct detection by the trained 
on same test images. Red shows 

the True Positive; while yellow shows the False Positive. First 
two images are of Penn Fudan dataset, while other two are of 

as shown in Figure 4, 
Penn-Fudan test 

TUD-Brussels test 
One can note significant improvement due to use of 

as direct feature learning process helps 
shows the results on 

and with our method. The 
detection accuracy improves with the use of saliency map 

4.2.3 Ablation Experiments 
  
 To further improve the detection performance, we 
perform ablation experiments. Using both the dataset’s 
training images; we trained the network and tested the 
model on test images of the individual dataset. By 
combining both the datasets, the network learns the 
features of images in mid and far
achieves state-of-the-art detection accuracy with 91.4% 
(correct predictions for 942 images out of 1030 test 
images). Table 2 shows the comparison of different 
approaches.  
 Figure 9 shows the qualitative results on some of the 
test images of TUD-Brussels and Penn Fudan 
which contains heavy occlusion and cluttered 
background. First two images are of TUD
other are of Penn Fudan dataset. 
 
Table 2: Comparison with the different approach 
on Penn-Fudan Dataset. 
 

Approach Detection 
Accuracy

HOG [3] 67.76%
Adaboost [61] 72.23%

SVM-HOG [62] 78.93%
Adaboost-HOG [62] 85.14%

R-FCN [59] 86.31%
YOLO [9] 88.73%

Fast R-CNN [60] 90.38%
Ours 91.4%

 
 

 
Figure 10: Results of different detection 
Brussels dataset using standard evaluation settings.
  
  

 

To further improve the detection performance, we 
Using both the dataset’s 

training images; we trained the network and tested the 
model on test images of the individual dataset. By 
combining both the datasets, the network learns the 
features of images in mid and far-field. Thus, our method 

art detection accuracy with 91.4% 
(correct predictions for 942 images out of 1030 test 
images). Table 2 shows the comparison of different 

Figure 9 shows the qualitative results on some of the 
Brussels and Penn Fudan dataset 

contains heavy occlusion and cluttered 
background. First two images are of TUD-Brussels and 

different approach performance 

Detection 
Accuracy 

Number of 
Correct Human 

Detection 
67.76% 697/1030 
72.23% 744/1030 
78.93% 813/1030 
85.14% 877/1030 
86.31% 889/1030 
88.73% 914/1030 
90.38% 931/1030 
91.4% 942/1030 

 

: Results of different detection methods on TUD-
Brussels dataset using standard evaluation settings. 

2026



 

 

Figure 9: Qualitative detection result on some test images 
cluttered background. (A) Red shows the True Positive, while yellow shows the False Positi
 
 On TUD-Brussels benchmark, we achieve the 
competitive average miss-rate of 53% on the test set. The 
results in Figure 10 show that our proposed method 
outperforms the baseline detection [56] by approximate 
7%. It can be observed in general that for all other 
detection methods, performance drops significantly as the 
occlusion increases. 

5. Discussion and Conclusion 
 We observed that the proposed method converges after 
300 iterations per epoch; additional iterations do not gai
boost for detection. The limited size of the training 
images and diversity is the main characteristic of 
performance. Still, the experimental results on the Penn
Fudan dataset suggest that our detection method is not 
restricted to specific occlusion patterns or crowd 
densities. The performance further improved for TUD
Brussels dataset, having more complex and highly 
occluded scenes. 
 Our method shows a new direction for training a 
that uses multiplied visual salient image and data 
augmentation. When using two or more 
benchmarks, an image dimension becomes 
important factor. The detection results can be further 
improved by using uniform image size and 
images during pre-training a network. 
 Using saliency maps we wanted to
eliminate the background, but sometimes, blurring would 
create abrupt edges that confuse the filters during the 

 

 

 
(A) Test images of TUD-Brussels dataset. 

 

(B) Test images of Penn-Fudan dataset. 
 

: Qualitative detection result on some test images of TUD-Brussels and Penn-Fudan dataset which contains heavy occlusions
Red shows the True Positive, while yellow shows the False Positive.  

Brussels benchmark, we achieve the 
rate of 53% on the test set. The 

results in Figure 10 show that our proposed method 
] by approximate 

observed in general that for all other 
detection methods, performance drops significantly as the 

We observed that the proposed method converges after 
300 iterations per epoch; additional iterations do not gain 
boost for detection. The limited size of the training 
images and diversity is the main characteristic of 
performance. Still, the experimental results on the Penn-
Fudan dataset suggest that our detection method is not 

erns or crowd 
densities. The performance further improved for TUD-
Brussels dataset, having more complex and highly 

Our method shows a new direction for training a CNN, 
ent image and data 

more challenging 
becomes a very 

The detection results can be further 
using uniform image size and same type of 

to completely 
ometimes, blurring would 

create abrupt edges that confuse the filters during the 

training period. Also, low and mid frequency information 
remains well preserved when using a visual saliency. 
Moreover, one can still identify the content of the image, 
i.e., humans, cloth color from the visual
 Also by giving the multiplied visual salient image to a 
neural network, it is easy for the network to extract the 
features. Another promising future extension 
would be to detect humans on extremely dense scenes and 
tracking them. 
 Finally, the proposed method achieved
performance on Penn-Fudan dataset with 91.4% detection 
accuracy and achieves the competitive result on 
challenging TUD-Brussels dataset with average miss
of 53%.  
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