
Priming Neural Networks

Amir Rosenfeld , Mahdi Biparva , and John K.Tsotsos

Department of Electrical Engineering and Computer Science

York University

Toronto, ON, Canada, M3J 1P3

{amir, mhdbprv, tsotsos}@cse.yorku.ca

Abstract

Visual priming is known to affect the human visual sys-

tem to allow detection of scene elements, even those that

may have been near unnoticeable before, such as the pres-

ence of camouflaged animals. This process has been shown

to be an effect of top-down signaling in the visual system

triggered by the said cue. In this paper, we propose a mech-

anism to mimic the process of priming in the context of ob-

ject detection and segmentation. We view priming as hav-

ing a modulatory, cue dependent effect on layers of features

within a network. Our results show how such a process

can be complementary to, and at times more effective than

simple post-processing applied to the output of the network,

notably so in cases where the object is hard to detect such

as in severe noise, small size or atypical appearance. More-

over, we find the effects of priming are sometimes stronger

when early visual layers are affected. Overall, our experi-

ments confirm that top-down signals can go a long way in

improving object detection and segmentation.

1. Introduction

Psychophysical and neurophysiological studies of the

human visual system confirm the abundance of top-down

effects that occur when an image is observed. Such top-

down signals can stem from either internal (endogenous)

processes of reasoning and attention or external (exoge-

nous) stimuli - i.e. cues - that affect perception (cf. [35],

Chapter 3 for a more detailed breakdown). External stim-

uli having such effects are said to prime the visual system,

and potentially have a profound effect on an observer’s per-

ception. This often results in an “Aha!” moment for the

viewer, as he/she suddenly perceives the image differently;

Fig. 1 shows an example of such a case. We make here

the distinction between 3 detection strategies: (1) free view-

Figure 1: Visual priming: something is hidden in plain sight

in this image. It is unlikely to notice it without a cue on

what it is (for an observer that has not seen this image be-

fore). Once a cue is given, perception is modified to allow

successful detection. See footnote at bottom of this page for

the cue, and supplementary material for the full answer.

ing, (2) priming and (3) pruning. Freely viewing the image,

the default strategy, likely reveals nothing more than a dry

grassy field near a house. Introducing a cue about a tar-

get in the image1 results in one of two possibilities. The

first, also known as priming, is modification to the compu-

tation performed when viewing the scene with the cue in

mind. The second, which we call pruning - is a modifi-

cation to the decision process after all the computation is

finished. When the task is to detect objects, this can mean

retaining all detections match the cue, even very low confi-

dence ones and discarding all others. While both are viable

ways to incorporate the knowledge brought on by the cue,

1Object in image: Ø5O
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priming often highly increases the chance of detecting the

cued object. Viewing the image for an unlimited amount of

time and pruning the results is less effective; in some cases,

detection is facilitated only by the cue. We claim that prim-

ing allows the cue to affect the visual process from early

layers, allowing detection where it was previously unlikely

to occur in free-viewing conditions. This has also recently

gained some neurophysiological evidence [2].

In general, we view priming and pruning as complemen-

tary processes on the output of a system: let us represent the

output of the system as

y = F (I;w) (1)

where I is some input, F is whatever function the system

performs (e.g., classification, detection, segmentation) and

w are the parameters of F . Given some external hint h to the

system allows to modify the output of y using an auxiliary

function G. In pruning, we express this as:

y′ = G(F (I;w), h) (2)

On the other hand, priming can be expressed as:

y′′ = F (I;G(w, h)) (3)

In other words, while pruning (Eq. 2) operates on the

output of F , priming (Eq. 3) changes the computation in F

in a more fundamental way, dependent on h.

In this paper, we propose a mechanism to mimic the pro-

cess of visual priming in deep neural networks in the con-

text of object detection and segmentation. The mechanism

transforms an external cue about the presence of a certain

class in an image (e.g., “person”) to a modulatory signal

that affects all layers of the network. This modulatory ef-

fect is shown via experimentation to significantly improve

object detection performance when the cue is present, more

so than a baseline which simply applies post-processing to

the network’s result. Furthermore, we show that priming

early visual layers has a greater effect that doing so for

deeper layers. Moreover, the effects of priming are shown to

be much more pronounced in difficult images such as very

noisy ones.

The remainder of the paper is organized as follows: in

Sec. 2 we go over related work from computers vision, psy-

chology and neurophysiology. In Sec. 3 we go over the de-

tails of the proposed method. In Sec. 4 we elaborate on vari-

ous experiments where we evaluate the proposed method in

scenarios of object detection and segmentation. We finish

with some concluding remarks.

2. Related Work

Context has been very broadly studied in cognitive neu-

roscience [4, 3, 23, 37, 38, 24, 16] and in computer vision
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Figure 2: A neural network can be applied to an input in

an either unmodified manner (top), pruning the results af-

ter running (middle) or priming the network via an external

signal (cue) in image to affect all layers of processing (bot-

tom).

[12, 10, 34, 33, 27, 39, 22]. It is widely agreed [30] that

context plays crucial role for various visual tasks. Attempts

have been made to express a tangible definition for context

due to the increased use in the computer vision community

[34, 33] .

Biederman et al. [4] hypothesizes object-environments

dependencies into five categories: probability, interposition,

support, familiar size, position. Combinations of some of

these categories would form a source of contextual infor-

mation for tasks such as object detection [33, 30], semantic

segmentation [14], and pose estimation [6]. Context conse-

quently is the set of sources that partially or collectively in-

fluence the perception of a scene or the objects within [32].

Visual cues originated from contextual sources, depend-

ing on the scope they influence, further direct visual tasks

at either global or local level [34, 33]. Global context such

as scene configuration, imaging conditions, and temporal

continuity refers to cues abstracted across the whole scene.

On the other hand, local context such as semantic rela-

tionships and local-surroundings characterize associations

among various parts of similar scenes.

Having delineated various contextual sources, the gen-

eral process by which the visual hierarchy is modulated

prior to a particular task is referred to as visual priming

[35, 26]. A cue could be provided either implicitly by a con-

textual source or explicitly through other modalities such as

language.

There has been a tremendous amount of work on using

some form of top-down feedback to contextually prime the

underlying visual representation for various tasks [37, 38,
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24, 16]. The objective is to have signals generated from

some task such that they could prepare the visual hierar-

chy oriented for the primary task. [30] proposes contextual

priming and feedback for object detection using the Faster

R-CNN framework [29]. The intuition is to modify the de-

tection framework to be able to generate semantic segmen-

tation predictions in one stage. In the second stage, the seg-

mentation primes both the object proposal and classification

modules.

Instead of relying on the same modality for the source

of priming, [9, 25] proposes to modulate features of a vi-

sual hierarchy using the embeddings of the language model

trained on the task of visual question answering [1, 17].

In other words, using feature-wise affine transformations,

[25] multiplicatively and additively modulates hidden ac-

tivities of the visual hierarchy using the top-down priming

signals generated from the language model, while [30] ap-

pend directly the semantic segmentation predictions to the

visual hierarchy. Recently, [14] proposes to modulate con-

volutional weight parameters of a neural networks using

segmentation-aware masks. In this regime, the weight pa-

rameters of the model are directly approached for the pur-

pose of priming.

Although all these methods modulate the visual repre-

sentation, none has specifically studied the explicit role of

category cues to prime the visual hierarchy for object detec-

tion and segmentation. In this work, we strive to introduce

a consistent parametric mechanism into the neural network

framework. The proposed method allows every portion of

the visual hierarchy to be primed for tasks such as object de-

tection and semantic segmentation. It should be noted that

this use of priming was defined as part of the Selective Tun-

ing (ST) model of visual attention [36]. Other aspects of

ST have recently appeared as part of classification and lo-

calization networks as well [5, 41], and our work explores

yet another dimension of the ST theory.

3. Approach

Assume that we have some network N to perform a task

such as object detection or segmentation on an image I . In

addition, we are given some cue h ∈ Rn about the content

of the image. We next describe pruning and priming, how

they are applied and how priming is learned. We assume

that h is a binary encoding of them presence of some tar-

get(s) (e.g, objects) - though this can be generalized to other

types of information. For instance, an explicit specification

of color, location, orientation, etc, or an encoded features

representation as can be produced by a vision or language

model. Essentially, one can either ignore this cue, use it to

post-process the results, or use it to affect the computation.

These three strategies are presented graphically in Fig. 2.

Pruning. In pruning, N is fed an image and we use h

to post-process the result. In object detection, all bounding

boxes output by N whose class is different than indicated

by h are discarded. For segmentation, assume N outputs

a score map of size C × h × w , where L is the number

of classes learned by the network, including a background

class. We propose two methods of pruning, with comple-

mentary effects. The first type increases recall by ranking

the target class higher: for each pixel (x,y), we set the value

of all score maps inconsistent with h to be −∞ , except

that of the background. This allows whatever detection of

the hinted class to be ranked higher than other which pre-

viously masked it. The second type simply sets each pixels

which was not assigned by the segmentation the target class

to the background class. This decreases recall but increases

the precision. These types of pruning are demonstrated in

Fig. 8 and discussed below.

Priming. Our approach is applicable to any network N

with a convolutional structure, such as a modern network

for object detection, e.g. [20]. To enable priming, we freeze

all weights in N and add a parallel branch Np. The role of

Np is to transform an external cue h ∈ Rn to modulatory

signals which affect all or some of the layers of N . Namely,

let Li be some layer of N. Denote the output of Li by xi ∈
Rci×hi×wi where ci is the number of feature planes and

hi, wi are the height and width of the feature planes. Denote

the jth feature plane of xi by xij ∈ Rhi×wi .

Np modulates each feature plane xij by applying to the

fij(xij , h) = x̂ij (4)

The function fij always operates in a spatially-invariant

manner - for each element in a feature plane, the same func-

tion is applied. Specifically, we use a simple residual func-

tion, that is

x̂ij = αij · xij + xij (5)

Where the coefficients αi = [αi1, . . . , αici ]
T are deter-

mined by a linear transformation of the cue:

αi = Wi ∗ h (6)

An overall view of the proposed method is presented in

Fig. 3.

Types of Modulation The modulation in eq. 5 sim-

ply adds a calculated value to the feature plane. We have

experimented with other types of modulation, namely non-

residual ones (e.g, purely multiplicative), as well as follow-

ing the modulated features with a non-linearity (ReLU), or

adding a bias term in addition to the multiplicative part.

The single most important dominant ingredient to reach

good performance was the residual formulation - without
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Figure 3: Overall view of the proposed method to prime deep neural networks. A cue about the target in the image is given by

task direction, by scene knowledge, or some other source, communicated to each layer via top-down feedback. The process

of priming involves affecting each layer of computation of the network by modulating representations along the path.

it, training converged to very poor results. The formula-

tion in eq. 5 performed best without any of the above listed

modifications. We note that an additive model, while hav-

ing converged to better results, is not fully consistent with

biologically plausible models ([36]) which involve suppres-

sion/selection of visual features, however, it may be consid-

ered a first approximation.

Types of Cues The simplest form of a cue h is an indi-

cator vector of the object(s) to be detected, i.e, a vector of

20 zeros and 1 in the coordinate corresponding to “horse”,

assuming there are 20 possible object classes, such as in

Pascal [11]. We call this a categorical cue because it ex-

plicitly carries semantic information about the object. This

means that when a single class k is indicated, αi becomes

the kth column of Wi.

3.1. Training

To learn how to utilize the cue, we freeze the parame-

ters of our original network N and add the network block

Np. During training, with each training example (Ii, yi)

fed into N we feed hi into Np, where Ii is an image, yi
is the ground-truth set of bounding boxes and hi is the cor-

responding cue. The output and loss functions of the detec-

tion network remain the same, and the error is propagated

through the parameters of Np. Fig. 3 illustrates the net-

work. Np is very lightweight with respect to N , as it only

contains parameters to transform from the size of the cue

h to at most K =
∑

i ki where ki is the number of output

feature planes in each layer of the network.

Multiple Cues Per Image. Contemporary object de-

tection and segmentation benchmarks [19, 11] often contain

more than one object type per image. In this case, we may

set each coordinate in h to 1 iff the corresponding class is

present in the image. However, this tends to prevent Np

from learning to modulate the representation of N in a way

which allows it to suppress irrelevant objects. Instead, if

an image contains k distinct object classes, we duplicate

the training sample k times and for each duplicate set the

ground truth to contain only one of the classes. This comes

at the expense of a longer training time, depending on the

average number k over the dataset.

4. Experiments

We evaluate our method on two tasks: object detection

and object class segmentation. In each case, we take a

pre-trained deep neural network and explore how it is af-

fected by priming or pruning. Our goal here is not nec-

essarily to improve state-of-the-art results but rather to

show how usage of top-down cues can enhance perfor-

mance. Our setting is therefore different than standard

object-detection/segmentation scenarios: we assume that

some cue about the objects in the scene is given to the

network and the goal is to find how it can be utilized op-

timally. Such information can be either deduced from the

scene, such as in contextual priming [30, 18] or given by an

external source, or even be inferred from the task, such as

in question answering [1, 17].

Our experiments are conducted on the Pascal VOC [11]

2007 and 2012 datasets. For priming object detection net-

works we use pre-trained models of SSD [20] and yolo-v2

[28] and for segmentation we use the FCN-8 segmentation

network of [21] and the DeepLab network of [7]. We use

the YellowFin optimizer [40] in all of our experiments, with

a learning rate of either 0.1 or 0.01 (depending on the task).

4.1. Object Detection

We begin by testing our method on object detection. Us-

ing an implementation of SSD [20], we apply a pre-trained

detector trained on the trainval sets of Pascal 2012+2007 to

the test set of Pascal 2007. We use the SSD-300 variant

as described in the paper. In this experiment, we trained

and tested on what we cal PAS#: this is a reduced ver-

sion of Pascal-2007 containing only images with a single

object class (but possibly multiple instances). We use this

reduced dataset to test various aspects of our method, as
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Figure 4: (a) Performance gains by priming different parts

of the SSD objects detector. Priming early parts of the

network causes the most significant boost in performance.

black dashed line shows performance by pruning. (b) Test-

ing variants of priming against increasing image noise. The

benefits of priming become more apparent in difficult view-

ing conditions. The x axis indicates which block of the net-

work was primed (1 for primed, 0 for not primed).

detailed in the following subsections. Without modifica-

tion, the detector attains a mAP (mean-average precision) of

81.4% on PAS#(77.4% on the full test set of Pascal 2007).

Using simple pruning as described above, this increases to

85.2%. This large boost in performance is perhaps not sur-

prising, since pruning effectively removes all detections of

classes that do not appear in the image. The remaining er-

rors are those of false alarms of the “correct” class or mis-

detections.

Deep vs Shallow Priming

We proceed to the main result, that is, how priming affects

detection. The SSD object detector contains four major

components: (1) a pre-trained part made up of some of the

layers of vgg-16 [31] (a.k.a the “base network” in the SSD

paper), (2) some extra convolutional layers on top of the

vgg-part, (3) a localization part and (4) a class confidence

part. We name these part vgg, extra, loc and conf respec-

tively.

To check where priming has the most significant impact,

we select different subsets of these components and denote

them by 4-bit binary vectors si ∈ {0, 1}4, where the bits

correspond from left to right to the vgg,extra,localization

and confidence parts. For example, s = 1000 means letting

Np affect only the earliest (vgg) part of the detector, while

all other parts remain unchanged by the priming (except

 01_00
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Figure 5: Effects of early priming: we show how mAP in-

creases when we allow priming to affect each time another

layer, from the very bottom of the network. Priming early

layers has a more significant effect than doing so for deeper

ones. The numbers indicate how many layers were primed

from the first,second blocks of the SSD network, respec-

tively.

indirectly affecting the deeper parts of the net). We train

Np on 10 different configurations: these include priming

from the deepest layers to the earliest: 1111, 0111, 0011,

0001 and from the earliest layer to the deepest: 1000, 1100,

1110. We add 0100 and 0010 to check the effect of ex-

clusive control over middle layers and finally 0000 as the

default configuration in which Np is degenerate and the re-

sult is identical to pruning. Fig 4 (a) shows the effect of

priming each of these subsets of layers on PAS#. Priming

early layers (those at the bottom of the network) has a much

more pronounced effect than priming deep layers. The sin-

gle largest gain by priming a single component is for the

vgg part: 1000 boosts performance from 85% to 87.1%. A

smaller gain is attained by the extra component: 86.1% for

0100. The performance peaks at 87.3% for 1110, though

this is only marginally higher than attained by 1100 - prim-

ing only the first two parts.

Ablation Study

Priming the earliest layers (vgg+extra) of the SSD object

detector brings the most significant boost in performance.

The first component described above contains 15 convo-

lutional layers and the second contains 8 layers, an over-

all total of 23. To see how much we can gain with prim-

ing on the first few layers, we checked the performance

on PAS# when training on the first k layers only, for each

k ∈ {1, 2, . . . 23}. Each configuration was trained for 4000

iterations. Fig. 5 shows the performance obtained by each

of these configurations, where i j in the x-axis refers to hav-

ing trained the first i layers and the first j layers of the first

and second parts respectively. We see that the very first con-

volutional layer already boosts performance when primed.

The improvement continues steadily as we add more layers

and fluctuates around 87% after the 15th layer. The fluctua-

tion is likely due to randomness in the training process. This

further shows that priming has strong effects when applied
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to very early layers of the network.

Detection in Challenging Images

As implied by the introduction, perhaps one of the cases

where the effect of priming is stronger is when facing a

challenging image, such as adverse imaging conditions, low

lighting, camouflage, noise. As one way to test this, we

compared how priming performs under noise. We took each

image in the test set of Pascal 2007 and added random Gaus-

sian noise chosen from a range of standard deviations, from

0 to 100 in increments of 10. The noisy test set of PAS# with

variance σ is denoted PAS#
N(σ). For each σ, we measure the

mAP score attained by either pruning or priming. Note that

none of our experiments involved training with only images

- these are only used for testing. We plot the results in Fig.

4 (b). As expected, both methods suffer from decreasing

accuracy as the noise increases. However, priming is more

robust to increasing levels of noise; the difference between

the two methods peaks at a moderate level of noise, that is,

σ = 80, with an advantage of 10.7% in mAP: 34.8% com-

pared to 24.1% by pruning. The gap decreases gradually to

6.1% (26.1% vs 20%) for a noise level of σ = 100. We

believe that this is due to the early-layer effects of prim-

ing on the network, selecting features from the bottom up

to match the cue. Fig 6 shows qualitative examples, com-

paring priming versus pruning: we increase the noise from

top to bottom and decrease the threshold (increase the sen-

sitivity) from left to right. We show in each image only the

top few detections of each method to avoid clutter. Prim-

ing allows the detector to find objects in images with high

levels of noise (see lower rows of a,b). In some cases prim-

ing proves to be essential for the detection: lowering the

un-primed detector’s threshold to a minimal level does not

increase the recall of the desired object (a, 4th row); in fact,

it only increases the number of false alarms (b, 2nd row, last

column). Priming, on the other hand, is often less sensitive

to a low threshold and the resulting detection persists along

a range thereof.

4.2. Cue Aware Training

In this section, we also test priming on an object detec-

tion task as well as segmentation with an added ingredient

- multi-cue training and testing. In Sec. 4.1 we limited our-

selves to the case where there is only one object class per

image. This limitation is often unrealistic. To allow multi-

ple priming cues per image, we modify the training process

as follows: for each training sample < I, gt > containing

object classes c1, . . . ck we split the training example for I

to k different tuples < Ii, hi, gti >, i ∈ {1 . . . k}, where

Ii are all identical to I , hi indicate the presence of class ci
and gti is the ground-truth gt reduced to contain only the

objects of class ci - meaning the bounding boxes for detec-

tion, or the masks for segmentation. This explicitly coerces

the priming network Np to learn how to force the output to

correspond to the given cue, as the input image remains the

same but the cue and desired output change together. We re-

fer to this method multi-cue aware training (CAT for short) ,

and refer to the unchanged training scheme as regular train-

ing.

Multi-Cue Segmentation

Here, we test the multi-cue training method on object class

segmentation. We begin with the FCN-8 segmentation net-

work of [21]. We train on the training split of SBD (Berke-

ley Semantic Boundaries Dataset and Benchmark) dataset

[13], as is done in [42, 7, 8, 21]. We base our code on

an unofficial PyTorch2 implementation3. Testing is done of

the validation set of Pascal 2011, taking care to avoid over-

lapping images between the training set defined by [13] 4,

which leaves us with 736 validation images. The baseline

results average IOU score of 65.3%. As before, we let the

cue be a binary encoding of the classes present in the image.

We train and test the network in two different modes: one is

by setting for each training sample (and testing) the cue so

hi = 1 if the current image contains at least one instance of

class i and 0 otherwise. The other is the multi-cue method

we describe earlier, i.e , splitting each sample to several cues

with corresponding ground-truths so each cue is a one-hot

encoding, indicating only a single class. For both training

strategies, testing the network with a cue creates a similar

improvement in performance, from 65.3% to 69% for regu-

lar training and to 69.2% for multi-cue training.

The main advantage of the multi-cue training is that it

allows the priming network Np to force N to focus on dif-

ferent objects in the image. This is illustrated in Fig. 7.

The top row of the figure shows from left to right an in-

put image and the resulting segmentation masks when the

network is cued with classes bottle, diningtable and person.

The bottom row is cued with bus, car, person. The cue-

aware training allows the priming network to learn how to

suppress signals relating to irrelevant classes while retain-

ing the correct class from the bottom-up.

Types of Pruning. As mentioned in Sec. 3, we exam-

ine two types of pruning to post-process segmentation re-

sults. One type removes image regions which were wrongly

labeled as the target class, replacing them with background

and the other increases the recall of previously missed seg-

mentation regions by removing all classes except the tar-

get class and retaining pixels where the target class scored

higher than the background. The first type increases preci-

sion but cannot increase recall. The second type increases

recall but possibly hinders precision. We found that both

2http://pytorch.org/
3https://github.com/wkentaro/pytorch-fcn
4for details, please refer to https://github.com/shelhamer/

fcn.berkeleyvision.org/tree/master/data/pascal

2129

http://pytorch.org/
https://github.com/wkentaro/pytorch-fcn
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/data/pascal
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/data/pascal


σ
=
0

thresh=0.5 thresh=0.2 thresh=0.1 thresh=0.01

σ
=
2
5

σ
=
5
0

σ
=
1
0
0

(a)

σ
=
0

thresh=0.5 thresh=0.2 thresh=0.1 thresh=0.01

σ
=
2
5

σ
=
5
0

σ
=
1
0
0

(b)

Figure 6: Priming vs. Pruning. Priming a detector allows it to find objects in images with high levels of noise while mostly

avoiding false-alarms. Left to right (a,b): decreasing detection thresholds (increasing sensitivity). Top to bottom: increasing

levels of noise. Priming (blue dashed boxes) is able to detect the horse (a) across all levels of noise, while pruning (red

dashed boxes) does not. For the highest noise level, the original classifier does not detect the horse at all - so pruning is

ineffective. (b) Priming enables detection of the train for all but the most severe level of noise. Decreasing the threshold for

pruning only produces false alarms. We recommend viewing this figure in color on-line.

Figure 7: Effect of priming a segmentation network with

different cues. In each row, we see an input image and the

output of the network when given different cues. Top row:

cues are resp. bottle, diningtable, person. Given a cue (e.g,

bottle), the network becomes more sensitive to bottle-like

image structures while suppressing others. This happens

not by discarding results but rather by affecting computation

starting from the early layers.

types results in a similar overall mean-IOU. Figure 8 shows

some examples where both types of pruning result in seg-

mentations inferior to the one resulting by priming: post-

processing can increase recall by lowering precision (first

row, column d) or increase precision by avoiding false-

detections (second and fourth row, column e), priming (col-

umn f) increases both recall and precision. The second,

and fourth rows missing parts of the train/bus are recov-

ered while removing false classes. The third and fifth rows

previously undetected small objects are now detected. The

person (first row) is segmented more accurately.

DeepLab. Next, we use the DeepLab [7] network for

semantic-segmentation with ResNet-101 [15] as a base net-

work. We do not employ a CRF as post-processing. The

mean-IOU of the baseline is 76.3%. Using Priming, in-

creases this to 77.15%. While in this case priming does not

improve as much as in the other cases we tested, we find

that it is especially effective at enabling the network to dis-

cover small objects which were not previously segmented

by the non-primed version: the primed network discovers

57 objects which were not discovered by the unprimed net-

work, whereas the latter discovers only 3 which were not

discovered by the former. Fig. 9 shows some representa-

tive examples of where priming was advantageous. Note

how the bus, person, (first three rows) are segmented by

the primed network (last column). We hypothesize that the
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(a) input (b) gt (c) regular (d) prune-2 (e) prune-1 (f) priming

Figure 8: Comparing different methods of using a cue to im-

prove segmentation: From left to right: input image (with

cue overlayed), ground-truth (all classes), unprimed seg-

mentation, pruning type-2, pruning type-1, and priming. In

each image, we aid the segmentation network by adding a

cue (e.g, “plane”). White regions are marked as “don’t care”

in the ground truth.

priming process helps increase the sensitivity of the network

to features relevant to the target object. The last row shows a

successful segmentation of potted plants with a rather atyp-

ical appearance.

Multi-Cue Object Detection

We apply the CAT method to train priming on object de-

tection as well. For this experiment, we use the YOLOv2

method of [28]. The base network we used is a port of the

original network, known as YOLOv2 544 × 544. Trained

on the union of Pascal 2007 and 2012 datasets, it is reported

by the authors to obtain 78.6% mAP on the test set of Pascal

2007. The implementation we use5 reaches a slightly lower

76.8%, with a PyTorch port of the network weights released

by the authors. We use all the convolutional layers of Dark-

Net (the base network of YOLOv2 ) to perform priming. We

freeze all network parameters of the original detection net-

work and train a priming network with the multi-cue train-

ing method for 25 epochs. When using only pruning, per-

formance on the test-set improves to 78.2% mAP. When we

include priming as well, this goes up to 80.6%,

5. Conclusion

We have presented a simple mechanism to prime neu-

ral networks, as inspired by psychological top-down effects

5https://github.com/marvis/pytorch-yolo2

Figure 9: Priming a network allows discovery of small

objects which are completely missed by the baseline, or

ones with uncommon appearance (last row). From left to

right: input image, ground-truth, baseline segmentation [7],

primed network.

known to exist in human observers. We have tested the pro-

posed method on two tasks, namely object detection and

segmentation, using two methods for each task, and com-

paring it to simple post-processing of the output. Our ex-

periments confirm that as is observed in humans, effec-

tive usage of a top-down signal to modulate computations

from early layers not only improves robustness to noise but

also facilitates better object detection and segmentation, en-

abling detection of objects which are missed by the base-

lines without compromising precision, notably so for small

objects and those having an atypical appearance or in chal-

lenging, noisy images, without having trained for such im-

ages in advance. In the future we intend to explore addi-

tional priming mechanisms and richer types of cues.
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