
Using Psychophysical Methods to Understand Mechanisms of Face Identification

in a Deep Neural Network

Tian Xu

University of Glasgow

Glasgow, United Kingdom

Tian.Xu@glasgow.ac.uk

Oliver Garrod

University of Glasgow

Glasgow, United Kingdom

Oliver.Garrod@glasgow.ac.uk

Steven H Scholte

University of Amsterdam

Amsterdam, Netherlands

H.S.Scholte@uva.nl

Robin Ince

University of Glasgow

Glasgow, United Kingdom

Robin.Ince@glasgow.ac.uk

Philippe G Schyns

University of Glasgow

Glasgow, United Kingdom

Philippe.Schyns@glasgow.ac.uk

Abstract

Deep Convolutional Neural Networks (CNNs) have been

one of the most influential recent developments in computer

vision, particularly for categorization [20]. The promise

of CNNs is at least two-fold. First, they represent the best

engineering solution to successfully tackle the foundational

task of visual categorization with a performance level that

even exceeds that of humans [19, 27]. Second, for compu-

tational neuroscience, CNNs provide a testable modelling

platform for visual categorizations inspired by the multi-

layered organization of visual cortex [7]. Here, we used

a 3D generative model to control the variance of informa-

tion learned to identify 2,000 face identities in one CNN

architecture (10-layer ResNet [9]). We generated 25M face

images to train the network by randomly sampling intrinsic

(i.e. face morphology, gender, age, expression and ethnic-

ity) and extrinsic factors of face variance (i.e. 3D pose,

illumination, scale and 2D translation). At testing, the net-

work performed with 99% generalization accuracy for face

identity across variations of intrinsic and extrinsic factors.

State-of-the-art information mapping techniques from psy-

chophysics (i.e. Representational Similarity Analysis [18]

and Bubbles [8]) revealed respectively the network layer

at which factors of variance are resolved and the face fea-

tures that are used for identity. By explicitly controlling the

generative factors of face information, we provide an alter-

native framework based on human psychophysics to under-

stand information processing in CNNs.

1. Introduction

CNNs offer examples of complex, nonlinear projections

of high-dimensional input images that can potentially serve

as intuition pumps for developing and testing complex mod-

els of human visual categorization, using behavioral and

brain measures ([3, 4, 17, 36]). However, though CNNs are

unquestionably powerful enough to develop embryonic ar-

tificial intelligence, their role as intuition pumps for under-

standing information processing in the brain first requires

understanding how they do what they do, so CNNs can

serve as actual models. Otherwise, all that is offered is a

silicon black box to understand the inner workings of a wet

one [16].

A good starting point to such understanding is to un-

cover the visual information that CNNs process across lay-

ers. Following nonlinear learning, the lower convolution

layers to the mid and higher-level layers represent features

of increasing complexity and receptive field size. Multi-

layered deconvolution (deconvnet) [40] can be used to iden-

tify these features. Thus, suitably constrained CNNs (by ar-

chitecture, sub-functions, time and so forth) could in princi-

ple learn the mid-to-high-level features that flexibly analyze

visual categories in a task-dependent manner, as humans do.

As with the brain, a better understanding of the informa-

tion processed in CNNs is key to further the understanding

of the mechanisms of that processing. Our main contribu-

tion is to tackle the challenge of understanding visual in-

formation processing in CNNs by adopting a psychophys-

ical approach that emphasizes a better control of stimulus

information. Specifically, we used face identification, a cir-

cumscribed but important categorization task that has been

extensively studied in humans. Unique to our approach, we

generated 25M 2D images of faces using an in-house 3D
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Figure 1. Extrinsic (a and b) and Intrinsic (c) Factors of Variance of the Generative Model of 3D Faces

generative model of face identity, where we explicitly con-

trolled the high variance of the resulting 2D images along

extrinsic and intrinsic factors (see Figure 1). This psy-

chophysical approach provides a unique platform to rigor-

ously test the behavior of CNNs (here, ResNet [9]) in re-

sponse to changes in each factor of image variance. Then,

we used state-of-the-art information mapping techniques

from psychophysics to understand information processing

within ResNet. Our approach, when combined with psy-

chophysical methods, develops a deeper understanding of

the information processing mechanisms that produce sim-

ilarities in the behavioral performances between deep and

human brain networks. These comparisons can depart from

analyses of superficial similarities of performance to reveal

the deeper similarities of the information processing mech-

anisms that produce these similar performances.

2. Related Work

Face categorization has been a longstanding topic of hu-

man and machine vision research. In human vision, the

challenge is to understand where, when and how brain

mechanisms realize face identification under the main con-

ditions of variance represented in Figure 1 (plus translation

and scaling). The Bubbles technique [8] is a psychophysical

technique that can reveal the use of information in recog-

nition tasks from behavioral and brain measures [32, 15].

Specifically, it is possible to represent which brain region(s)

represent which specific feature(s) (e.g. of a face) within a

given time window post stimulus. Representational Simi-

larity Analysis (RSA, [18]) is another method that proceeds

by comparing different sources of responses (e.g. human

behavior, computational models and brain activity) to the

same stimulus categories.

In computer vision, the focus has recently been on deep

learning to increase categorization performance. With a

large volume of data, deep learning methods (e.g. DeepFace

[34], FaceNet [29], face++ [43]) can perform above human

levels. However, as with the human brain, the challenge

remains to understand the information processing mecha-

nisms underlying high performance levels.

Much research is focused on understanding the informa-

tion processing mechanisms of CNNs. Zeiler and Fergus

[40] used deconvolutional networks to backtrack the net-

work computations and identify the image patches respon-

sible for patterns of activation. Simonyan et al. [31] pre-

sented a visualization technique based on gradient ascent

which generates a synthetic image that can maximally ac-

tivate a unit in a deep network. Zhou et al. [42] proposed

Class Activation Maps (CAM) that can highlight the im-

age regions that the network uses for discrimination. As

CNNs are inspired by human vision, to compare CNNs to

the human brain we can use psychophysical methods that

have already been successfully applied to understand the

relationship between variations of stimulus dimensions and

variations of brain responses. The approach is different to

that typical of CNNs because researchers try to isolate the

main factors of stimulus variance and to precisely measure

responses to these variations.This is difficult to achieve with

large datasets of unconstrained 2D images.

3. Dataset: Generative Model of 3D Faces

Several datasets (e.g. Labeled Faces in the Wild database

(LFW) [12], Youtube Faces DB [37]) have been used to

benchmark face recognition performance in CNNs. How-

ever, these databases cannot be used to analyze the effect

of each relevant factor of face variance on the performance

of the network. This arises because face images vary in the

wild according to intrinsic and extrinsic factors as discussed
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earlier that unconstrained 2D pictures do not control. Here,

we used a Generative Model of 3D Faces (GMF) [39, 41]

to generate realistic and well controlled but variable face

images to understand how CNNs perceive them.

Specifically, we randomly generated 2000 identities us-

ing intrinsic factors of 500 random face morphologies × 2

genders × 2 ethnicities. We then varied each identity using

additional factors of age (25, 45 and 65 years) and emotions

(i.e. “happy”, “surprise”, “fear”, “disgust”, “anger”, “sad”

and “neutral”). For each identity, we also varied extrinsic

rendering factors of rotation and illumination (both range

from -30◦ to +30◦ by increments of 15◦) along the X and

Y axes, producing a total of 25M 256 × 256 pixels RGB

images. Note that the network architecture learned images

with the added extrinsic factors of random face scaling and

2D translation in its data augmentation mode (see Figure 1

and Training Regimes below). Hence the variance of input

data was high, but controlled for the main dimensions of

face variance.

4. CNN: 10-layer ResNet

A 10-layer ResNet architecture was trained to learn the

face identities. We chose ResNet (Residual Network [9])

because it is a state-of-the-art architecture that has achieved

highest classification performance on various datasets (e.g.

ImageNet [19], COCO [21]). The architecture is composed

of several similar residual blocks (i.e. two layers with a

shortcut connection, see Figure 2). This facilitates opti-

mization in comparison to direct optimization of a network

without shortcut connections. Furthermore, direct connec-

tions within ResNet do not add extra parameters nor com-

putational complexity, which keeps the complexity of the

network low. Note that we use the simple 10-layer ResNet

(ResNet-10) which keeps the network complexity relatively

low, simplifying our detailed layer by layer analysis of in-

formation processing. ResNet also provides facilities to eas-

ily stack more layers (e.g. ResNet-50) for tasks of higher

complexity, however, since performance on our task here

was already saturated with 10 layers, this was not neces-

sary.

A general training regime was used as benchmark of the

overall face identification performance. For training the

model, we randomly selected 60% of the generated face im-

ages, for a total of 15,750,000 images. The remaining 40%

were used as testing images, for a total of 10,500,000 im-

ages. At training, we applied data augmentation to increase

the data complexity and alleviate the problem of model

overfitting. The trained images could be randomly scaled

(between 1× and 2×), translated in the 2D plane (between

0 and 0.3 of the total image width and height).

Across the 10,500,000 testing images, the network cor-

rectly generalized the face identity represented in the im-

ages with a remarkable accuracy of 99% and performance

Image
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pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 256, /2
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3x3 conv, 512, /2

Fc 2000

3x3 conv, 512

avg pool

Figure 2. 10-layer ResNet Architecture

saturated across the variations of all intrinsic and extrinsic

factors. Now the question is how to interpret the underlying

process of the deep neural network.

5. Psychophysical Testing of CNNs

To understand the mechanism of the remarkable perfor-

mance of this network, we applied several standard psy-

chophysical methods which have been proved to be effec-

tive in understanding human visual system.

5.1. Generalization Test

In this section, we used another two training regimes

to better understand the generalization performance of

ResNet. These two training regimes varied image similarity

between the training and the test sets by using similar vs.

dissimilar parameters of the Generative Model of 3D Faces.

5.1.1 Training Regimes and Testing

For the first training regime, the 2,000 face identities are

split into two disjoint groups, and different parameters were

used for each group as shown in Table 1. These parame-

ter values were chosen to minimize the similarity between

the image sets. At testing, we swapped specific parameter

values across identity groups to understand whether ResNet

could generalize across these differences. One testing ex-

ample (i.e. swapping X Axis Rotation) is highlighted in Ta-

ble 1. We tested whether a given identity from group 1

trained on X-axis rotations 15◦ and 30◦ could generalize to

rotations -30◦, -15◦ and 0◦, trained on group 2 of identities.

Similarly, we experimented with generalization of identi-

ties across changes of each of the listed factors of variance
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Table 1. Illustration of Training and Testing in the Regime that

Minimized Similarity.

Table 2. Illustration of Training and Testing in the Regime that

Maximized Similarity

(i.e. Emotion, X Axis Rotation, Y Axis Rotation, X Axis

Illumination, Y Axis Illumination).

For the second training regime, we again split the 2,000

face identities into two groups. However, here we maxi-

mized similarities between their parameters of both groups,

as demonstrated in Table 2 and then trained the network

with these parameters. Similar to the first regime, at test-

ing stage, we tested generalization of identities across each

of the listed factors of variance (i.e. Emotion, X Axis Ro-

tation, Y Axis Rotation, X Axis Illumination, Y Axis Illu-

mination), and one example (swapping X Axis Rotation) is

shown in Table 2.

Furthermore, for both the dissimilar and similar training

regimes, at testing we also swapped combinations of pa-

rameters (i.e. Rotation on both X and Y axis, Illumination

on both X and Y axis, both Rotation and Illumination on

both X and Y axis), to further understand the the general-

ization performance when more drastic changes have been

applied. Training and testing face image examples in Tables

1 and 2 are provided in the supplemental material1.

1This is available at https://sites.google.com/site/skytianxu/SuppMatCVPRW.pdf

5.1.2 Results

The overall testing performance is decreased compared to

the benchmark (Section 4) for both training regimes. To

understand this degradation, we turn to the comparison of

ResNet trained on dissimilar vs. similar images with the

swapping of parameters as described above and in Tables 1

and 2. As can be seen in Figure 3(a), following dissimilar

training, generalization of face identity remains high under

changes of emotion, but deteriorates as expected from hu-

man performance [10, 35, 25, 1] when generalizing across

new rotations and illuminations (i.e. not explicitly learned

for this identity), particularly so when these are combined.

As such generalization requires drastic extrapolations in the

networks modelled face space, the performance remains re-

markable.

As expected, following similar training, generalization

of face identity remains high across all factors except for
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emotion (see Figure 3(a)). Figure 3(b) details the identity

generalization gradients across changes of rotation and il-

lumination and Figure 3(c) provides the expanded data for

generalization of identity under changes of emotion.

In sum, Resnet-10 handled remarkably well generaliza-

tion of face identity under conditions of high variance. Psy-

chophysical testing of generalization under conditions of

dissimilar and similar training revealed the expected drop-

off in performance. When the network was trained on data

which covered the range of the different test parameters,

for example generalization by interpolation and extrapola-

tion to -30◦, 0◦ and +30◦ of rotation when the identity was

trained on -15◦ and +15◦ (see Table 2), performance was

degraded only slightly, primarily when extrapolating across

emotions. When the network had to extrapolate recognition

of identity into a more different set of parameters for exam-

ple generalization to -30◦, -15◦ and 0◦ of rotation (right side

of face showing) when this identity was trained on 15◦ and

30◦ (left side of face showing, see table 1), performance was

much more heavily degraded. This pattern of performance

degradation is qualitatively similar to that observed in hu-

man subjects [10, 35, 1]. Such similarity of performance

raises the question of whether the network learns represen-

tations that are similar to those of humans, or whether it re-

solves the task by different means. We now follow standard

psychophysical methods to understand the use of stimulus

information that can explain behavior.

5.2. Spatial Frequency Alterations

The human visual system is known to process stimuli

by decomposing their contents locally and simultaneously

across a number of different scales. In fact, such Gabor

decomposition is an integral part of the most successful

CNNs, including ResNet. Hence, it is legitimate to submit

the network to a test of its generalization of face identifi-

cation across a number of spatial frequencies, as is com-

monly done in human recognition studies (see [24, 33] for

reviews).

To this end, we used a Laplacian Pyramid [2] to recur-

sively decompose the frontal view (i.e. 0◦ of rotation) of

each face identity into five Spatial Frequency (SF) bands

of one octave each as shown in Figure 4. We produced test

stimuli according to separate regimes: (1) Blurring, by peel-

ing off one SF band, from the highest, (2) Deletion, by re-

moving only one of five SF bands and (3) Single, by using

only one SF band. We submitted ResNet trained according

to general training, as explained above, to the unseen frontal

view test images filtered as explained. Figure 4 presents the

results.

The first row of Figure 4 shows that generalization ac-

curacy with the full face is perfect (i.e. 100%), making this

view an ideal test bed for further investigations of the SF in-

formation underlying this performance level. Performance
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Figure 4. Spatial Frequency Tests (Blurring, Deletion and Single)

degraded nonlinearly in relation to increasing blurring, from

97% when the first SF band was removed, to 16% when the

first two bands and more were removed. This is qualita-

tively similar to human performance, for whom face iden-

tity information is represented between 8 and 16 cycles per

face width measured at eye level [24], where number of cy-

cles is with reference to the Fast Fourier Transform of the

face image. When deleting a single SF band (second row

of Figure 4), the performance degraded linearly with dele-

tion of lower SF bands. Finally, the third row demonstrates

the importance of SF combinations because performance is

dramatically reduced when only one SF band is present.

The interpretation of the ResNet SF generalization to SF

alterations is more complicated than human generalization

performance (e.g. row 2 and 3 are not observed in humans).

ResNet uses information from all SF bands (whereas hu-

mans use a narrower mid SF band). Use of SF information

progressively increases in ResNet from HSF to LSF (i.e.

from band 1 to 5), a performance characteristic not observed

in humans [24, 33].

5.3. Bubbles

To fine-tune the Identity SF information used in ResNet,

we used Bubbles [8], a method applied successfully to

model the stimulus information represented in human be-

havioral and brain data [14, 26, 15, 28] and also in CNNs

[23]. Bubbles samples (with Gaussian apertures) the in-

formation represented in each SF band. The stimulus is a

recomposed image, revealing only a subset of the informa-

tion sampled on this trial. Here, we tested ResNet with a
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Figure 5. Significant Face Identify Information Across 5 Spatial Frequency Bands using the Bubble Technique

different number of bubbles (between 200 and 2,000, with

increments of 200) to change the sampling density and per-

formed 12,000 testing trials with each density applied to

the full-face identity images of the testing set of the ResNet

trained with the general regime above.

For each pixel at each SF band, we applied Mutual In-

formation (MI) between pixel visibility (i.e. visible vs. not

visible, as determined by Gaussian sampling) and network

response (i.e. correct vs. incorrect identification of the face

from the sampled image) [13]. A permutation test provided

corrected statistical significance (FWER p < 0.05).

Figure 5 shows the SF decomposition of one image on

the first row, the raw MI coefficients for each pixel of each

SF band and the statistically significant pixels revealing the

features present in each band. The rightmost face reveals

the face information that the network uses to identify full

faces. As expected from the spatial frequency alteration

studies in Section 5.2, Bubbles reveals use of specific fea-

tures in SF bands 2 to 5. In SF band 2, these features can

be identified as representing details of the eyebrows and the

nose. SF band 3 represents the centre of the face whereas SF

bands 4 and 5 appear to represent coarse information about

the full face. These results of Bubbles for face identity par-

tially overlap to those reported in [30].

Here, we also compared the results of Bubbles with a

related network visualization technique Class Activation

Maps (CAM) [42]. The idea is to extract the output of last

convolutional layer of ResNet in response to a face identity

and compute the weighted sum of the feature maps result-

ing in a mapping resolution of 7×7. Following upsampling

and averaging across identities, we can compare the face

region that are most important to face identity to our result.

The CAM Heatmap in Figure 5 shows that the important

regions are similar to those revealed by Bubbles. However,

unlike Bubbles, this method is not designed to breakdown

the features of interest by SFs (cf. the specific eyebrows and

nose features revealed in SF band 2).

5.4. Representational Similarity Analysis

Complex multi-layer networks learn intermediate rep-

resentations across the layers of their architecture. Here,

we used Representational Similarity Analysis (RSA) [18]

at each layer of the architecture to understand the informa-

tion processing that is achieved across the layers consid-

ered. The core of RSA is simply the Representational Dis-

similarity Matrix (RDM), which is well-known in standard

pattern classification to underlie analyses such as Multi-

Dimensional Scaling [6].

Here, we applied RSA to the activation of each layer of

the ResNet in response to 10,000 face images randomly se-

lected from the testing dataset. It is important to emphasize

that these images varied across all extrinsic and intrinsic

factors of variance as explained earlier. For each layer, we

therefore computed the 10,000 × 10,000 pairwise RDMs

(i.e. 1−correlations) across all pairs of the layer activations

of the 10,000 face images. Note that here we use Pear-

son correlation to compute RDMs. Then we applied Pear-

son correlation again to compare the sorted RDM (accord-

ing to the feature category) to the corresponding categorical

model. The categorization model represents the ideal Pear-

son correlations that would result if the layers underneath

the layer of interest directly represented the factor of vari-

ance considered.

Figure 6 shows the outcome of this analysis and two de-

tailed examples. The identity (ID) is achieved in the 10th

layer of ResNet, ethnicity peaks in 6th to 7th layer, and an-

gle of rotation and illumination on the X axis (Anglex and

Anglelx in Figure 6(a)) peaks from the 1st to the 4th layers,
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Figure 6. Correlation between RDMs and Category Models for each Factor of Variance across all 10 Layers of ResNet. (Note that Anglex
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etc. Even though the network was trained for identity rather

than other specific features, it can still learn these paramet-

ric features implicitly. Generally, the network utilizes its

first several layers to learn different implicit features of the

face, and then develops more invariant representations that

can reliably discriminate identity across the parametric vari-

ance dimensions in the deeper layers.

Thus, by tightly controlling the categorical sources of

variance of an image set used to train a DNN, we derived an

understanding of the implicit categorizations that the net-

work could achieve at each layer.

6. Conclusion and Discussion

We used a 3D generative system of face identity with

intrinsic (morphology, gender, emotion, age and emotions)

and extrinsic (pose, illumination and data augmentation

of scaling and translation) factors of variance to generate

25M 2D face images. We submitted a 10-layer ResNet ar-

chitecture to three training regimes (general, minimizing

similarities and maximizing similarities) on a 15,750,000

subset of images. Testing with the remaining subset, we

found remarkable (i.e. 99%) generalization performances

in psychophysical testing, with deterioration when the im-

ages were most dissimilar between training and testing. To

start understanding the representations that the system uses

to achieve such a high level of performance and compare

it with humans, we used the psychophysical techniques of

spatial frequency alterations, Bubbles and RSA. Spatial fre-

quency alterations revealed that ResNet uses information

across all SF bands, with an increasing reliance on LSF

information. In contrast, human face identification relies

primarily on mid-band SFs. We then applied Bubbles to un-

derstand which specific information ResNet uses in each SF

band in full face pictures. We found usage of information as

expected between SF bands 2 and 5, with specific details of

the eyebrows and the nose in SF band 2. These Bubbles re-

sults with ResNet were related to those of Schyns et al. [30]

in humans and broadly similar to Class Activation Maps.

Finally, Representational Similarity Analysis revealed that

whereas identity is resolved only at layer 10, ethnicity is re-

solved in layer 7 and pose and illumination on the X axis

peak between the 1st and 4th layers.

In sum, our psychophysical testing revealed that the

Deep Network learned to generalize face identity, consid-
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ered to be the most difficult task with faces in a learning sit-

uation of high (but controlled) face variance. Performance

only catastrophically broke down when inputs were single

frequency bands. However, we do not know at this stage

whether the network weights could be applied to quickly

learn 2D faces from pictures taken in the wild and gener-

alize to new exemplars. This will be the object of further

studies though as Burton at al. showed human performance

in this task is weak [38].

We now briefly consider the general question of whether

our ResNet can be used as a model of human face iden-

tification. This is a broad question that we can address

at two levels. First, we can evaluate whether ResNet pro-

vides a good functional model of human performance —

i.e. a performance-to-performance mapping in the context

of stimulus-response relationships. Though our data sug-

gest interesting performance-to-performance mapping, we

would really need to consider the vast literature on face

identification and exhaustively test each known effect —

e.g. the varied generalization patterns from single learned

views of new identities [10], the poor generalization of the

same identities across face pictures taken in the wild [38]

and so forth. Such a tally would better characterize the per-

formance palette and identify performance areas requiring

improvement of the functional model. This leads the sec-

ond evaluation of models, in terms of whether ResNet pro-

vides a good mechanistic model of human performance –

a mechanism-to-mechanism mapping. Here, we are faced

with thorny difficulties that deserve extensive discussions

beyond the scope of this paper. CNNs are universal function

approximators [5, 11], where each nonlinear unit of the net-

work can serve as a building block for the approximation of

a complex cognitive function (e.g. associating all images of

birds with the category “bird”), which is realized across the

units of several layers. In deep, multi-layered architectures,

nonlinear building blocks are reused for different functions

(e.g. associating all images of other categories with their

corresponding labels). To use CNNs as intuition pumps,

it is necessary to understand the functions they apply to

visual information across nonlinear layers of their hierar-

chy, before testing the functions as models of information

transformation in the brain. And we face a similar situa-

tion with the brain, so a mechanism-to-mechanism mapping

is not currently achievable and even their use as intuition

pumps would require more precise mathematical (or empir-

ical) characterizations of their nonlinear projections. The

approach used here to focus on few categories and control

the stimulus information with a generative model (rather

than use large databases of 2D stimuli) is akin to that used in

neuroscience (and psychophysics) to understand the factors

that modulate the activity of the brain (and behavior). We

similarly used Bubbles to summarize the information pro-

cessed in the system to achieve performance (cf. Figure 5).

Our future work will focus on applying Bubbles and related

techniques (e.g. [22]) to the layers and units of DeepNets

to better understand how they process performance infor-

mation and reduce information not directly useful for the

task.
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