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Abstract

In this work, we consider the land cover classification

task of the DeepGlobe Challenge. This task features the

largest available labeled dataset for satellite imagery seg-

mentation. We propose an approach to this problem where

standard neural network image classification models are

augmented by superpixel extraction and postprocessing that

aims to directly optimize the average Jaccard index.

1. Introduction

Satellite imagery is a vast, critically important, and

greatly underutilized class of data. Government agencies

such as NASA or ESA and companies such as Digital-

Globe [6] have access to terabytes of satellite images that

can provide critical data for agriculture, urban planning,

sustainable development, early detection and prevention of

emergencies and natural disasters, and much more.

Satellite imagery has not yet become the target of much

research in computer vision and deep learning. There are

few large-scale publicly available datasets, and data label-

ing is always a bottleneck for segmentation tasks. The

DeepGlobe Challenge at CVPR 2018 is designed to bridge

this gap, bringing high-quality and at the same time labeled

satellite imagery. At the same time, the data in DeepGlobe

is still limited, and the labeling is far from perfect—just like

it most probably will be in a real life human labeling effort.

In this work, we present a segmentation model for the

land cover classification task, one of the competitions in the

DeepGlobe Challenge [5]. The main characteristic features

of our solution is that it does not rely on latest deep learning

architectures but rather introduces several ideas that stem

from classical computer vision, including superpixels and

postprocessing with direct optimization of the average Jac-

card index; we believe that these ideas can significantly im-

prove the results of even state of the art deep learning mod-

els.

Class RGB Description

0 Urban land 0,1,1 man-made, built up areas with human ar-

tifacts

1 Agriculture

land

1,1,0 farms, any planned (i.e. regular) planta-

tion, cropland, orchards, vineyards, nurs-

eries, and ornamental horticultural areas;

confined feeding operations

2 Forest land 0,1,0 any land with tree crown density plus

clearcuts

3 Water 0,0,1 rivers, oceans, lakes, wetland, ponds

4 Barren

land

1,1,1 mountain, land, rock, dessert, beach, no

vegetation

5 Rangeland 1,0,1 any non-forest, non-farm, green land,

grass

6 Unknown 0,0,0 clouds and others

Table 1. Descriptions of the seven classes in the dataset.

2. Dataset and Evaluation Metric

The input data in the Land Cover Classification task of

the DeepGlobe Challenge is satellite imagery collected by a

DigitalGlobe satellite with the resolution of 50cm per pixel.

The training dataset consists of 803 images, each of size

2448 × 2448 pixels, in 24-bit JPEG format, and the vali-

dation dataset consists of 171 images of the same size and

format.

Every image has a ground truth segmentation mask that

contains different kinds of land covers labeled with RGB

masks. Table 1 summarizes the class labels that are used

throughout the dataset. There are |C| = 7 classes in total,

including one background class “Unknown”.

One additional feature of the dataset that makes the com-

petition’s problem even harder is that the ground truth la-

beling quality is not perfect. Some of the segmentation

masks are incomplete; many ignore some of the terrain de-

tails. This is an intentional feature that makes the problem

harder and more realistic (real life handcrafted segmenta-

tion is, alas, also often imperfect).

The Land Cover Classification task evaluated the quality

of submission with a standard metric for segmentation qual-

ity, the pixel-wise mean Intersection over Union (mIoU), or
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Jaccard index:

mIoU =
1

6

6∑

c=1

IoUc,

where IoUc for a specific class c is defined as IoUc =
TPc

TPc+FPc+FNc

, i.e., the ratio of the number of true positive

pixels in class c ∈ C summed over the entire dataset and the

total number of pixels in the union of the ground truth mask

and the predicted mask. In the competition, the mIoU met-

ric was computed by averaging over the six “meaningful”

classes, all except the “Unknown” class.

3. Methods

3.1. Problems and the basic idea

The classification problem in the land cover classifica-

tion task has several features that make it especially diffi-

cult. First, the labeling is (intentionally) bad, with many

errors that reflect real life problems that occur with label-

ing. Second, not only are the classes imbalanced, but the

balance is completely different in the training and valida-

tion set; e.g., one of the classes has share 0.6 in the vali-

dation set, and another only 0.006. Moreover, one of the

classes (“rangeland”) has especially incomplete labeling, so

the mean accuracy one can expect from the classes varies

greatly.

As is common in segmentation problems, the objective

function (Jaccard index) does not match the maximal like-

lihood objective function (cross-entropy). There are two

possible approaches to this mismatch. First, one could de-

vise new objective functions that more directly optimize the

Jaccard index; previous work in this direction included the

Jaccard hinge loss [3] and the recently developed Lovász-

Softmax loss [4].

Another solution is to perform postprocessing, as done

in, e.g., [9]. For many segmentation problems the first ap-

proach is preferable, but in this case, since the balance be-

tween classes is skewed and very differently skewed in the

training and validation sets, it is unlikely to work well, so

in this work we tried the second approach, first applying

a standard classification network and then using different

postprocessing approaches.

3.2. Classification model: superpixels and Haralick
features

We trained the basic classifier on the cross-entropy loss

function. One important problem with it was that cross-

entropy converged very badly due to imperfect labeling in

the training set. To alleviate this problem, we propose

to unite pixels into superpixels on a larger grid; this ap-

proach improves convergence significantly, but obviously

introduces a tradeoff: large superpixels mean that fine de-

tails get lost in the process.

In our experiments, the best superpixel size proved to

be 115 × 115 pixels. The second parameter of superpixels

is their compactness, with a tradeoff between compactness

and boundary recall studied in [10]. We have tried several

algorithms for superpixels and found that the best one in our

experiments was simple linear iterative clustering (SLIC)

with a ruler of 15 [1]. The classification of superpixels was

done by classifying 50 × 50 squares sampled from the su-

perpixel; a similar approach has been used, e.g., in [2].

We have compared VGG and Inception v3 classifiers

trained on the cross-entropy loss. Moreover, to help the

classifiers, we added a separate input consisting of Haral-

ick features [8] and the average CIELAB color space fea-

tures that are known to work well for water segmentation

that are input before the first fully connected layer. Fig-

ure 1 shows the network architectures we have used and

compared. Since we have also added an extra dense layer

on top of the Haralick features, we have also compared the

Inception v3 architecture with an extra dense layer to make

sure that the performance gain indeed can be attributed to

Haralick features.

Numerical results of our experiments are shown on

Fig. 2. We have found that networks with additional Har-

alick features converge noticeably better albeit somewhat

slower. Note also that the version with Haralick features are

less prone to overfitting, while, as expected, simply adding

an extra dense layer does not do much at all.

Overall, our results in these experiments show that tech-

niques from classical computer vision can still help even

modern deep learning models.

3.3. Postprocessing

After the classifier has been trained, we apply postpro-

cessing to optimize the results for Jaccard index loss rather

than cross-entropy (or accuracy). Suppose that we have cal-

ibrated the network well and have obtained estimated of

class probabilities px(c) for every superpixel x in an image.

This means that we can estimate the expected number of

true positives TP(c), false positives FP(c), and false neg-

atives FN(c) for every class by adding the corresponding

probabilities, and this yields the expected Jaccard index J

for the current result.

Then we perform the following procedure: for every su-

perpixel, check whether we can increase the expected Jac-

card index by flipping the value of this superpixel. This

greedy optimization procedure significantly improved the

Jaccard index on local validation and on the validation set.

Note that another important feature of our approach is that

since we are computing probabilities over superpixels rather

than individual pixels the postprocessing becomes much

faster: there are only ≈ 500 superpixels for an image of

size 2048 × 2048 pixels; doing this greedy postprocessing

pixel-wise would be infeasible.
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Figure 1. Network architectures used in our solution.
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Figure 2. Performance results for the three networks

Our postprocessing procedure requires a well-calibrated

neural network. We have compared calibration with iso-

tonic regression and temperature-based calibration [7]; in

our experiments, isotonic regression significantly deterio-

rated discrimination and led to worse overall results, while

temperature-based calibration did help, so we went with this

approach.

3.4. Results

The results of our experiments are summarized in Ta-

ble 2. The columns show precision, recall, and F1 score

of the classifiers (for superpixels) separated into six classes

(except “Unknown”), and then show the average Jaccard in-

dex for the same classifier (for individual pixels, not super-

pixels) without postprocessing and with postprocessing. We

show results on the local validation set, so effects of post-

processing are relatively small; they are much more pro-

nounced for highly imbalanced classes such as the ones in

the leaderboard validation set.

To compute evaluation metrics that would be more in-

dicative of the results on a validation set, we first estimated

the relative support of classes on the validation set (with

a separate network trained on the cross-entropy loss) and

then reweighted the local validation set so that the support

of each class is proportional to the leaderboard validation

set; these are the results reported in Table 2.

This modification also helped us perform one additional

fine-tuning: we tuned weights of the samples in each class
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(a) (b) (c)
Figure 3. Sample segmentation results. Left to right: (a) ground truth mask; (b) model result before postprocessing, average Jaccard index

0.317, accuracy 0.572; (c) model result after postprocessing, average Jaccard index 0.393, accuracy 0.584.

Table 2. A summary of experimental results.
Classifier FT Precision Recall F1 score Avg Jaccard index

0 1 2 3 4 5 avg 0 1 2 3 4 5 avg 0 1 2 3 4 5 avg w/o post with post

Pure Haralick 0.53 0.52 0.72 0.93 0.51 0.27 0.54 0.81 0.67 0.86 0.64 0.37 0.06 0.64 0.64 0.59 0.79 0.76 0.43 0.09 0.58

VGG No 0.59 0.95 0.86 0.90 0.42 0.40 0.83 0.87 0.78 0.91 0.85 0.63 0.57 0.79 0.70 0.86 0.88 0.87 0.51 0.47 0.80 0.643 0.646

Incept. v3 No 0.65 0.96 0.87 0.78 0.32 0.46 0.84 0.86 0.77 0.90 0.87 0.76 0.64 0.79 0.74 0.85 0.88 0.82 0.45 0.54 0.80 0.646 0.659

Incept. v3 Yes 0.78 0.90 0.89 0.86 0.54 0.54 0.84 0.82 0.91 0.87 0.85 0.52 0.55 0.84 0.80 0.91 0.88 0.86 0.53 0.54 0.84 0.661 0.604

during training so that the F1 score computed above im-

proves as much as possible. In Table 2 we see that this

modification (denoted “Fine-tuning”) indeed improves lo-

cal validation results significantly. Note, however, that even

after tuning results on the validation leaderboard were much

lower than on local validation, 0.4764 vs. 0.66, despite the

fact that for tuning we used relative support of the classes

estimated on the validation set. We suspect that this effect

is due to the properties of the dataset: it appears that the

training and validation sets were sampled from different re-

gions with different appearances. In particular, we have no-

ticed that forests inside each dataset are similar to each other

but the training set has almost exclusively coniferous forests

while the validation set has almost exclusively greenwood.

Interestingly, pure Haralick features augmented with the

mean color of a superpixel, with no deep neural networks at

all, perform not all that much worse than more complicated

model (first row of Table 2). As for the results with deep

neural networks as classifiers, we see that Inception v3 sig-

nificantly outperforms VGG, and fine-tuning with weighted

input samples also helps improve the results. Note, how-

ever, that for the Inception v3 classifier with fine-tuning

postprocessing actually makes the result worse; this is due

to the fact that fine-tuning imposes completely different cal-

ibration to different classes, and temperature-based calibra-

tion does not help anymore.

3.5. Sample results

Figure 3 shows sample segmentation results of our

model. It shows the image itself, the ground truth segmen-

tation mask, results of the classification model, and results

after postprocessing. We see how postprocessing signifi-

cantly improves the quality in this example.

This example also shows an important feature of our so-

lution: it is able to make use of the “Unknown” class (shown

in black); black pixels contribute only to the false negatives

and do not yield false positives as an incorrectly predicted

class would, so they also contribute to the increase in the

average Jaccard index.

4. Conclusion

In this work, we have proposed an approach to land cover

classification based on relatively simple standard deep neu-

ral networks used as classifiers for superpixels. We have

introduced several ideas, both from classical computer vi-

sion and recent ideas regarding Jaccard index optimization,

that have let us obtain very good results in this challenge.

As for further work, in this solution we have concen-

trated on extra features and postprocessing, and the deep

learning part is standard and even a bit outdated. It is very

promising that we were still able to obtain good practical

results, and it would be very interesting to think of a way

to combine the ideas of this approach with “standard” mod-

ern segmentation techniques such as U-Net and similar ar-

chitectures. We believe that a combination of our ideas

shown in this work with better basic deep learning models

for image segmentation and classification can further im-

prove state of the art in segmentation for satellite imagery.
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