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Figure 1: DeepGlobe Challenges: Example road extraction, building detection, and land cover classification training images

superimposed on corresponding satellite images.

Abstract

We present the DeepGlobe 2018 Satellite Image Under-

standing Challenge, which includes three public competi-

tions for segmentation, detection, and classification tasks

on satellite images (Figure 1). Similar to other chal-

lenges in computer vision domain such as DAVIS[21] and

COCO[33], DeepGlobe proposes three datasets and corre-

sponding evaluation methodologies, coherently bundled in

three competitions with a dedicated workshop co-located

with CVPR 2018.

We observed that satellite imagery is a rich and struc-

tured source of information, yet it is less investigated than

everyday images by computer vision researchers. However,

bridging modern computer vision with remote sensing data

analysis could have critical impact to the way we under-

stand our environment and lead to major breakthroughs in

global urban planning or climate change research. Keep-

ing such bridging objective in mind, DeepGlobe aims to

bring together researchers from different domains to raise

awareness of remote sensing in the computer vision com-

munity and vice-versa. We aim to improve and evaluate

state-of-the-art satellite image understanding approaches,

which can hopefully serve as reference benchmarks for fu-

ture research in the same topic. In this paper, we analyze

characteristics of each dataset, define the evaluation crite-

ria of the competitions, and provide baselines for each task.

1. Introduction

As machine learning methods dominate the computer vi-

sion field, public datasets and benchmarks have started to

play an important role for relative scalability and reliabil-

ity of different approaches. Driven by community efforts

such as ImageNet [45] for object detection, COCO [33] for

image captioning, and DAVIS [21] for object segmentation,

computer vision research had been able to push the limits of

what we can achieve, by using the same annotated datasets

and common training/validation conventions. Such datasets

and corresponding challenges increase the visibility, avail-

ability, and feasibility of machine learning models, which

brought up even more scalable, diverse, and accurate algo-

rithms to be evaluated on public benchmarks.
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We observe that satellite imagery is a powerful source of

information as it contains more structured and uniform data

compared to traditional images. Although computer vision

community has been accomplishing hard tasks on everyday

image datasets using deep learning and in contrast to pub-

lic datasets released for everyday media, satellite images are

only recently gaining attention from the community for map

composition, population analysis, effective precision agri-

culture, and autonomous driving tasks.

To direct more attention to such approaches, we present

DeepGlobe 2018, a Satellite Image Understanding Chal-

lenge, which (i) contains three datasets structured to solve

three different satellite image understanding tasks, (ii) orga-

nizes three public challenges to propose solutions to these

tasks, and (iii) gathers researchers from diverse fields to

unite all expertises to solve similar tasks in a collaborative

workshop. The datasets created and released for this com-

petition may serve as (iv) fair and durable reference bench-

marks for future research in satellite image analysis. Fur-

thermore, since the challenge tasks involve “in the wild”

forms of classic computer vision problems (e.g., image

classification, detection, and semantic segmentation), these

datasets have the potential to become valuable testbeds for

the design of robust vision algorithms, beyond the area of

remote sensing.

The three tracks for DeepGlobe are defined as follows:

• Road Extraction Challenge: In disaster zones, espe-

cially in developing countries, maps and accessibility

information are crucial for crisis response. We pose the

challenge of automatically extracting roads and street

networks remotely from satellite images as a first step

for automated crisis response and increased map cov-

erage for connectivity.

• Building Detection Challenge: As evidenced by re-

cent catastrophic natural events, modeling population

dynamics is of great importance for disaster response

and recovery. Thus, modeling urban demographics is

a vital task and detection of buildings and urban areas

are key to achieve it. We pose the challenge of au-

tomatically detecting buildings from satellite images

for gathering aggregate urban information remotely as

well as for gathering detailed information about spatial

distribution of urban settlements.

• Land Cover Classification Challenge: Automatic

categorization and segmentation of land cover is es-

sential for sustainable development, agriculture [11],

forestry [17, 16] and urban planning [20]. Therefore,

we pose the challenge of classifying land types from

satellite images for economic and agricultural automa-

tion solutions, among the three topics of DeepGlobe,

probably as the most studied one in the intersection of

remote sensing and image processing.

We currently host three public competitions based on the

tasks of extracting roads, detecting buildings, and classify-

ing land cover types in the satellite images. The combined

datasets include over 10K satellite images. Section 2 ex-

plains the characteristics of images, details the annotation

process, and introduces the division of training, validation,

and test sets. Section 3 describes the tasks in detail and pro-

poses the evaluation metric used for each task. Section 4

provides an overview of the current approaches and gives

our preliminary baselines for the competitions.

The results of the competitions will be presented in the

DeepGlobe 2018 Workshop during the 2018 International

Conference on Computer Vision and Pattern Recognition

(CVPR) in Salt Lake City, Utah on June 18th, 2018. As of

May 15st, 2018, more than 950 participants have registered

in DeepGlobe competitions and there are more than 90 valid

submissions in the leaderboard over the three tracks.

2. Datasets

In this Section, we will discuss the dataset and imagery

characteristics for each DeepGlobe track, followed by an

explanation of the methodology for the annotation process

to obtain the training labels.

2.1. Road Extraction

There have been several datasets proposed in the liter-

ature for benchmarking algorithms for semantic segmenta-

tion of overhead imagery. Some of these can be enumer-

ated as the TorontoCity[54] dataset, the ISPRS 2D semantic

labeling dataset [3], the Mnih dataset [39], the SpaceNet

dataset [2] and the ISPRS Benchmark for Multi-Platform

Photogrammetry [4].

The satellite imagery used in DeepGlobe for the road ex-

traction challenge is sampled from the DigitalGlobe +Vivid

Images dataset [1]. It covers images captured over Thai-

land, Indonesia, and India. The ground resolution of the im-

age pixels is 50 cm/pixel. The images consist of 3 channels

(Red, Green and Blue). Each of the original geotiff images

are 19′584 × 19′584 pixels. The annotation process starts

by tiling and loading these images in QGIS[7]. Based on

this tiling, we determine useful areas to sample from those

countries. For designating useful areas, we sample data uni-

formly between rural and urban areas. After sampling we

select the corresponding DigitalGlobe tiff images belong-

ing to those areas. These images are then cropped to extract

useful subregions and relevant subregions are sampled by

GIS experts. (A useful subregion denotes a part of the im-

age where we have a good relative ratio between positive

and negative examples.) Also, while selecting these sub-

regions, we try to sample interesting areas uniformly, e.g.,

those with different types of road surfaces (unpaved, paved,

dirt roads), rural and urban areas, etc. An example of one

image crop is illustrated in the left panel of Figure 1. It is
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Figure 2: Road labels are annotated on top of the satellite

image patches, all taken from DeepGlobe Road Extraction

Challenge dataset.

important to note that the labels generated are pixel-based,

where all pixels belonging to the road are labeled, instead

of labeling only the centerline.

The final road dataset consists of a total of 8′570 im-

ages and spans a total land area of 2′220km2. Of those,

6′226 images (72.7% of the dataset), spanning a total of

1′632km2, were split as the training dataset. 1′243 images,

spanning 362km2, were chosen as the validation dataset

and 1′101 images were chosen for testing which cover a

total land area of 288km2. The split of the dataset to

training/validation/testing subsets is conducted by random-

izing among tiles to aim for an approximate distribution of

70%/15%/15%. The training dataset consists of 4.5% pos-

itive and 95.5% negative pixels, the validation dataset con-

sists of 3% positive and 97% negative pixels and the test

dataset consists of 4.1% positive and 95.9% negative pix-

els. We selected a diverse set of patches to demonstrate

road labels annotated on the original satellite images in Fig-

ure 2. As shown, the urban morphology, the illumination

conditions, the road density, and the structure of the street

networks are significantly diverse among the samples.

2.2. Building Detection

DeepGlobe Building Detection Challenge uses the

SpaceNet Building Detection Dataset. Previous compe-

titions on building extraction using satellite data, PRRS

2008 [10] and ISPRS [3, 5], were based on small areas (a

few km2) and in some cases used a combination of opti-

cal data and LiDAR data. The Inria Aerial Image Labeling

covered 810km2 area with 30cm resolution in various Eu-

ropean and American cities [35]. It addressed model porta-

bility between areas as some cities were included only in

training data and some only in testing data. SpaceNet was

the first challenge that involved large areas including cities

in Asia and Africa.

The dataset includes four areas: Las Vegas, Paris, Shang-

hai, and Khartoum. The labeled dataset consists of 24′586
200m × 200m (corresponding to 650 × 650 pixels) non-

overlapping scenes containing a total of 302′701 building

footprints across all areas. The areas are of urban and sub-

urban nature. The source imagery is from the WorldView-3

sensor, which has both a 31cm single-band panchromatic

and a 1.24m multi-spectral sensor providing 8-band multi-

spectral imagery with 11-bit radiometric resolution. A GIS

team at DigitalGlobe (now Radiant Solutions) fully anno-

tated each scene, identifying and providing a polygon foot-

print for each building to the published specification, which

were extracted to best represent the building footprint (see

the central panel of Figure 1 for an example). Any par-

tially visible rooftops were approximated to represent the

shape of the building. Adjoining buildings were marked

as a single building. The dataset was split 60%/20%/20%

for train/validation/test. As per the nature of human-based

building annotation, some small errors are inevitable espe-

cially for rural areas. We leave the analysis of annotater

disagreement for future work.

Each area is covered by a single satellite image, which

constitutes an easier problem to solve compared to data

where different parts are covered by images having different

sun and satellite angles, and different atmospheric condi-

tions. Atmospheric compensation process can process im-

ages to create data that reflects surface reflectance there-

fore reducing effects of atmosphere, but different shadow

lengths and different satellite orientation can possibly cre-

ate problems for detection algorithms if models are used

to classify images acquired at different time with different

sun/satellite angles.

The SpaceNet data[9] is distributed under a Creative

Commons Attribution-ShareAlike 4.0 International License

and is hosted as a public dataset on Amazon Web Services

and can be downloaded for free.

2.3. Land Cover Classification

Semantic segmentation started to attract more research

activities as a challenging task. The ISPRS Vaihingen and

Potsdam [3] and the Zeebruges data [22] are popular public

datasets for this task. The ISPRS Vaihingen dataset con-

tains 33 images of different size (on average 2′000× 2′000
pixels), with 16 fully annotated images. ISPRS Potsdam

contains 38 images of size 6′000 × 6′000 pixels, with 24

annotated images. Annotations for both datasets have 6
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classes. Vaihingen and Potsdam are both focused in urban

city area, with classes limited to urban targets such as build-

ings, trees, cars. Zeebruges is a 7-tiles dataset (each one

of size 10′000 × 10′000) with 8 classes (both land cover

and objects), acquired both by RGB images at 5cm resolu-

tion and a LiDAR point cloud). Dstl Kaggle dataset [47]

covered 1km2 of urban area with RGB and 16-band (in-

cluding SWIR) WorldView-3 images. Besides urban areas,

another important application of land cover classification is

humanitarian studies focusing more on rural areas at mid-

resolution (∼ 30m/pixel). For similar problems Landsat

data is (i.e., crop type classification[31]). Still, the low res-

olution of Landsat data limits the information it can provide.

The DeepGlobe Land Cover Classification Challenge is

the first public dataset offering high-resolution sub-meter

satellite imagery focusing on rural areas. Due to the variety

of land cover types and to the density of annotations, this

dataset is more challenging than existing counterparts de-

scribed above. DeepGlobe Land Cover Classification Chal-

lenge dataset contains 1′146 satellite images of size 2′448×
2′448 pixels in total, split into training/validation/test sets,

each with 803/171/172 images (corresponding to a split of

70%/15%/15%). All images contain RGB data, with a pixel

resolution of 50 cm, collected from the DigitalGlobe Vivid+

dataset as described in Section 2.1. The total area size of the

dataset is equivalent to 1′716.9km2.

Each satellite image is paired with a mask image for land

cover annotation. The mask is an RGB image with 7 classes

following the Anderson Classification [14]. The class dis-

tributions are available in Table 1.

• Urban land: Man-made, built up areas with human ar-

tifacts.

• Agriculture land: Farms, any planned (i.e. regular)

plantation, cropland, orchards, vineyards, nurseries,

and ornamental horticultural areas; confined feeding

operations.

Figure 3: Some example land cover class label (right) and

corresponding original image (left) pairs from interesting

areas. Label colors are given in Table 1.

• Rangeland: Any non-forest, non-farm, green land,

grass.

• Forest land: Any land with at least 20% tree crown

density plus clear cuts.

• Water: Rivers, oceans, lakes, wetland, ponds.

• Barren land: Mountain, rock, dessert, beach, land with

no vegetation.

• Unknown: Clouds and others.

class pixel count proportion

Urban 642.4M 9.35%

Agriculture 3898.0M 56.76%

Rangeland 701.1M 10.21%

Forest 944.4M 13.75%

Water 256.9M 3.74%

BarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarrenBarren 421.8M 6.14%

Unknown 3.0M 0.04%

Table 1: Class distributions in the DeepGlobe land cover

classification dataset.

The annotations are pixel-wise segmentation masks cre-

ated by professional annotators (see the right hand panel

in Figure 1). The images in the dataset were sampled

from full-size tiles to assure that all land cover classes have

enough representation. In our specifications, we indicated

that any instance of a class larger than a roughly 20m×20m
would be annotated. However, land cover pixel-wise clas-

sification from high-resolution satellite imagery is still an

exploratory task, and some small human error is inevitable.

In addition, we intentionally did not annotate roads and

bridges because it is already covered in the road extraction

challenge. Some example labeled areas are demonstrated in

Figure 3 as examples of farm, forest, and urban dominant

tiles, and a mixed tile.

3. Tasks and Evaluations

In this section, we formally define the expected task in

each challenge and explain the evaluation metrics used in

terms of their computation and implementation.

3.1. Road Extraction

We formulate the task of road extraction from satellite

images as a binary classification problem. Each input is a

satellite image. The solution is expected to predict a mask

for the input (i.e., a binary image of the same height and

width as the input with road and non-road pixel labels).

There have been previous challenges on road mask ex-

traction, e.g., the SpaceNet [2]. Their metric was based on
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the Averaged Path Length Similarity (APLS) metric [51]

that measures distance between ground truth road network

represented in vector form with a solution graph also in vec-

tor form. Any proposed road graph G with missing edges

(e.g., if an overhanging tree is inferred to sever a road) is

penalized by the APLS metric, so ensuring that roads are

properly connected is crucial for a high score.

In our case, we use the pixel-wise Intersection over

Union (IoU ) score as our evaluation metric for each image,

defined as Eqn. (1).

IoUi =
TPi

TPi + FPi + FNi

, (1)

where TPi is the number of pixels that are correctly pre-

dicted as road pixel, FPi is the number of pixels that are

wrongly predicted as road pixel, and FNi is the number

of pixels that are wrongly predicted as non-road pixel for

image i. Assuming there are n images, the final score is

defined as the average IoU among all images (Eqn. (2)).

mIoU =
1

n

n∑

i=1

IoUi (2)

3.2. Building Detection

In DeepGlobe, building detection is based on a binary

segmentation task, where the input is a satellite image and

the output is a list of building polygons. Multiple perfor-

mance measures can be applied to score participants. PRRS

2008 [10] challenge used 8 different performance measures.

Our evaluation metric for this competition is an F1 score

with the matching algorithm inspired by Algorithm 2 in the

ILSVRC paper applied to the detection of building foot-

prints [45]. This metric was decided to emphasize the im-

portance of both accurate detection of buildings and the im-

portance of complete identification of building outlines in

an area. Buildings with a pixel area of 20 pixels or less

were discarded, as these small buildings are artifacts of the

image tiling process when a tile boundary cuts a building

into multiple parts.

A detected building is scored as a true positive if the IoU
(Eqn.3) between the ground truth (GT) building area A and

the detected building area B is larger than 0.5. If a proposed

building intersects with multiple GT buildings, then the GT

building with the largest IoU value will be selected.

IoU =
Area (A ∩B)

Area (A ∪B)
(3)

The solution score is defined by F1 measure (Eqn. 4),

where TP is number of true positives, M is the number

of ground truth buildings and N is the number of detected

buildings.

F1 = 2 ∗
precision ∗ recall

precision + recall
=

2 ∗ TP

M +N
(4)

The implementation and detailed description of scoring

can be found in the SpaceNet Utilities GitHub repo [9]. We

score each area separately and the final score is the average

of scores for each area as in Eqn. 5.

F1 =
F1AOI1 + F1AOI2 + F1AOI3 + F1AOI4

4
(5)

3.3. Land Cover Classification

The land cover classification problem is defined as a

multi-class segmentation task to detect areas of classes

mentioned in Section 2.3. The evaluation is computed based

on the accuracy of the class labels and averages over classes

are considered. The class ‘unknown’ is removed from the

evaluation, as it does not correspond to a land cover class,

but rather to the presence of clouds.

Each input is a satellite image. The solution is expected

to predict an RGB mask for the input, i.e., a colored image

of the same height and width as the input image. The ex-

pected result is a land cover map of same size in pixels as

the input image, where the color of each pixel indicates its

class label.

There have been previous challenges on road mask ex-

traction (e.g., the TiSeLaC [8]), which emphasized the us-

age of temporal information of the dataset. Our challenge,

on the other hand, uses images captured at one timestamp

as the input, thus more flexible in real applications. Other

previous land cover / land use semantic segmentation chal-

lenges as the ISPRS [3] or the IEEE GRSS data fusion

contests [22, 57] also used single shot ground truths and

reported overall and average accuracy scores as evaluation

metrics.

Similar to the road extraction challenge, we use the

pixel-wise Intersection over Union (IoU ) score as our eval-

uation metric. It was defined slightly differently for each

class, as there are multiple categories (Eqn. 6). Assuming

there are n images, the formulation is defined as,

IoUj =

∑n

i=1
TPij∑n

i=1
TPij +

∑n

i=1
FPij +

∑n

i=1
FNij

, (6)

where TPij is the number of pixels in image i that are cor-

rectly predicted as class j, FPij is the number of pixels in

image i that are wrongly predicted as class j, and FNij is

the number of pixels in image i that are wrongly predicted

as any class other than class j. Note that we have an un-

known class that is not active in our evaluation (i.e., the

predictions on such pixels will not be added to the calcula-

tion and thus do not affect the final score). Assuming there

are k land cover classes, the final score is defined as the

average IoU among all classes as in Eqn. (7).

mIoU =
1

k

k∑

j=1

IoUj (7)
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4. State-of-the-art and Baselines

The tasks defined in the previous section have been ex-

plored in different datasets with different methods, some of

which are also shared publicly. In this section we will intro-

duce the state of the art approaches for each task compar-

ing their dataset to DeepGlobe. As a baseline, we will also

share our preliminary results based on current approaches

on each dataset, which sets the expected success figures for

the challenge participants as well as guide them to develop

novel approaches.

4.1. Road Extraction

Automating the generation of road networks is exten-

sively studied in the computer vision and computer graph-

ics world. The procedural generation of streets [13, 23]

creates detailed and structurally realistic models, however

written grammars are not based on the real world. On

the other hand, some inverse procedural modeling (IPM)

approaches [12] process real-world data (images, LiDAR,

etc.) to extract realistic representations. Following the

example-based generation idea, another approach is to use

already existing data resources, such as aerial images [37,

38], or geostationary satellite images [26, 58]. Similar

approaches extract road networks using neural networks

for dynamic environments [53] from LiDAR data [59],

using line integrals [32] and using image processing ap-

proaches [43, 55].

Similar to the experiments of [26] and [37], we explored

our baseline approach to follow some state-of-the-art deep

learning models [19, 24, 28, 44]. In contrast to those ap-

proaches, our dataset is more diverse, spanning three coun-

tries with significant changes in topology and climate; and

significantly larger in area and size. The best results were

obtained by training a modified version of DeepLab [24] ar-

chitecture with ResNet18 backbone and Focal Loss [49]. In

order to provide a baseline to evaluate the network, we only

added simple rotation as data augmentation, and we did not

apply any post-processing to the results, only binarizing all

results at a fixed threshold of 128. With this setup, we ob-

tained an IoU score of 0.545 after training 100 epochs. Two

example results are given in Figure 4, showing the satellite

image, extracted road mask, and ground truth road mask

from left to right. The vanishing roads suggest that post-

processing techniques other than simple thresholding would

yield more connected roads.

4.2. Building Detection

Building detection and building footprint segmentation

has been subject of research for long time. Early work

was based on pan-sharpened images and was using land

cover classification to find vegetation, shadows, water and

man-made areas followed by segmentation and classifica-

Figure 4: Example results of our road extraction method

with an IoU score of 0.545, with satellite image (left), ex-

tracted road mask (middle), and the ground truth (right).

tion of segments into building/non-building areas [10]. Re-

searchers sometimes transformed pixels into HSV color

space, which alleviates effects of different illumination on

pitched roofs. In [41] the author used shadow information

and vegetation/shadow/man-made classification combined

with graph approach to detect buildings.

Mnih [40] used two locally connected NN layers fol-

lowed by a fully connected layer. He also took into account

omission noise (some objects are not marked in the ground

truth data) by modifying loss function and mis-registration

noise (such noise exists if the ground truth is not based on

image, but on some other data, such as OSM [6] or survey

data) by allowing for translational noise. Vakalopoulou et

al. [50] used convolutional layers of AlexNet to extract fea-

tures that were used as input to SVM classifier which was

classifying pixels into building/non-building classes. Saito

and Aoki [46] used CNN based approaches for building and

road extraction. Liu et al. [34] used FCN-8 segmentation

network analyzing IR, R and G data with 5 convolutional

layers and augmentation with a model based on nDSM (nor-

malized Digital Surface Model) and NDVI. Inria competi-

tion solutions described in [29] used U-Net or SegNet ap-

proaches to segmentation.

The current approach to building detection on our dataset

uses the top scoring solutions from the SpaceNet Building

Detection Round 2 result. The final results from the 2017

competition are shown in Table 2. It is important to note that

top algorithms performed best in Las Vegas and worst in

Khartoum, the visible structural organization and illumina-

tion variance in different urban morphologies are probable

causes for this performance loss in the Khartoum data. The

winning algorithm by competitor XD XD used an ensemble

of 3 U-Net models [44] to segment an 8-band multi-spectral

image with additional use of OpenStreetMap [6] data and

then to extract building footprints from the segmentation
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Total Individual City Scores

Rank Competitor Score Las Vegas Paris Shanghai Khartoum

1 XD XD 0.693 0.885 0.745 0.597 0.544

2 wleite 0.643 0.829 0.679 0.581 0.483

3 nofto 0.579 0.787 0.584 0.520 0.424

Table 2: Final results from SpaceNet Building Detection Challenge Round2 (2017), as a baseline for building detection.

output. An ensemble classifier was trained on each of the 4

AOIs individually . This segmentation approach produced

high scores for IoU with an average larger than 0.8, while

the IoU threshold for the competition is 0.5. The algorithm

struggles with small objects and in locations where build-

ings are very close to each other. The detailed descriptions

of the algorithms can be found in [25, 42]. Figure 5 shows

the high performance of the algorithm in Las Vegas and in

the bottom left you can see the algorithm has problems ex-

tracting close buildings in Paris.

Building detection can be followed by building footprint

extraction, which can be used with DSM information to cre-

ate 3D models of buildings [5, 15, 27]. 3D models can

be combined with material classification and images taken

from oblique angles to create accurate and realistic models

for large scenes [30].

4.3. Land Cover Classification

Land Cover Classification from satellite imagery is a

very active research problem in remote sensing. Earlier

work mostly focus on image classification, where each im-

age is only classified to one label. Yang and Newsam[56]

used Bag-of-Visual-Words and SVM to classify a dataset of

2′100 images containing 21 classes each with 100 images

of size 256 × 256 pixels. The best accuracy reported[56]

was 81.19%, and the data was released as UC Merced

dataset[56], which later became a popular dataset for land

cover image classification. Scott et al.[48] applied DCNN-

based approach on the UCM dataset and obtained a best

accuracy of 98.5% with ResNet-50.

Compared to image-level classification problem, pixel-

wise classification, or semantic segmentation, started to

attract more research activities as a challenging task, for

which deep learning pipelines are becoming the state of

the art [60]. Volpi and Tuia [52] proposed to use an

downsample-upsample CNN-based architecture and ob-

tained an F1 score of 83.58% on Vaihingen and 87.97%

on Potsdam. Audebert et al. [18] trained a variant of the

SegNet architecture with multi-kernel convolutional layer,

and achieved 89.8% on Vaihingen. Marmanis and col-

leagues [36] achieved similar performances using an en-

semble of CNNs models trained to recognized classes and

using edges information between classes. Authors in [22]

performed a comparison of several state of art algorithms on

Figure 5: Results from SpaceNet baseline. From top left,

clockwise: Vegas, Vegas, Khartoum, Paris. In all panels, the

blue outline represents the ground truth, the green outlines

are true positives, the red are false positives.

the Zeebruges dataset, including kernel-based, fine-tuned

VGG models and CNN trained from scratch.

We also performed pixel-wise classification on our

DeepGlobe land cover data, by designing a CNN architec-

ture based on DeepLab [24] using ResNet18 backbone with

atrous spatial pyramid pooling (ASPP) block and batch nor-

malization. We used data augmentation by integrating ro-

tations and also weighted classes based on class distribu-

tions (see Table 1). This approach achieved an IoU score

of 0.433 at epoch 30 with a 512×512 patch size.

Example results are demonstrated in Figure 6, our result

on the left, satellite image in the middle, and ground truth on

the right. Note that the results and the IoU scores reported

are the direct segmentation results from our model without

post-processing. Harder distinctions like farms, rangelands,

and forests are well-conceived by our model (third and last

rows). Small structures not annotated in the ground truth,

such as little ponds (top-left), and narrow beaches (second
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Figure 6: Some result patches (left) produced by our land

cover classification baseline approach, paired with the cor-

responding satellite image (middle) and the ground truth

(right).

row left and fourth row right) are also correctly classified by

our model. Such cases, however, decreases the IoU score.

Although the granularity of the segmentation looks superior

to the ground truth (left of first two rows), applying a CRF

or a clustering approach would improve the IoU scores.

5. Conclusions

We introduced the DeepGlobe Satellite Image Under-

standing Challenge. DeepGlobe 2018 provides datasets,

challenges, and a CVPR 2018 workshop structured around

the three tasks of understanding roads, buildings, and land

cover types from satellite images. In this paper, we analyzed

the datasets and explained the evaluation metrics for the

public challenges. We also provided some baselines com-

pared to the state-of-the-art approaches. Based on the cur-

rent feedback, we believe that the DeepGlobe datasets will

become valuable benchmarks in satellite image understand-

ing, enabling more collaborative interdisciplinary research

in the area, that can be fairly compared and contrasted us-

ing our benchmark, leading to new exciting developments

at the intersection of computer vision, machine learning, re-

mote sensing, and geosciences.
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