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Abstract

Building footprints (BFP) provide useful visual context

for users of digital maps when navigating in space. This

paper proposes a method for extracting and symbolizing

building footprints from satellite imagery using a convolu-

tional neural network (CNN). The CNN architecture out-

puts rotated rectangles, providing a symbolized approxi-

mation that works well for small buildings. Experiments

are conducted on the four cities in the DeepGlobe Chal-

lenge dataset (Las Vegas, Paris, Shanghai, Khartoum). Our

method performs best on suburbs consisting of individual

houses. These experiments show that either large buildings

or buildings without clear delineation produce weaker re-

sults in terms of precision and recall.

1. Introduction

Visual context helps users of digital maps to perform bet-

ter at navigational tasks [13]. Building footprints (BFP)

are an especially valuable source of contextual informa-

tion, helping users to orient themselves in space [9]. In

the case of ride-sharing applications, such context is help-

ful for drivers and riders to coordinate pick-up and drop-off

locations in addition to navigation. However, the volume of

buildings in even modestly-sized cities quickly grows in-

tractable for manual map-making processes. Leveraging

the long-tail distribution of popular locations by focusing

on central business districts is not a viable solution, either:

according to publicly released data from one popular ride-

sharing platform, 40 percent of trips in Paris started in one

suburban zone and ended in another [15]. Consequently, an

automated method of mapping building footprints is valu-

able for ride-sharing applications. In this paper we de-

scribe an application of deep neural networks to the prob-

lem of detecting and symbolizing building footprints. The

method described here allows for estimating rotated rectan-

gles and merging them to create more complex polygons.

This model is both more flexible than popular grid-aligned

approaches [12] [11] and less computationally expensive

than pixel-wise segmentation models [5] [2]. Section 2

Figure 1. Left. A training building polygon overlaid on satel-

lite imagery. Middle. The best fitting rotated rectangle. Right.

Parametrization of the best fitting rectangle with 5 degrees of free-

dom.

discusses the current state-of-the-art for automated build-

ing footprint modeling. Section 3 then describes the archi-

tecture of our convolutional neural network (CNN) model

for predicting rotated rectangles in more detail. Section 4

presents our experimental results. Section 5 concludes the

paper by discussing potential extensions of this work.

2. Related Work

Automated mapping of urban settings has been an impor-

tant area of computer vision research for over two decades

[4] [8] [7]. The present work builds on three related areas of

research: pixel-wise semantic segmentation; object detec-

tion using grid-aligned bounding boxes; and text detection

with arbitrary orientations. One recent development that has

improved segmentation-based approaches is to classify pix-

els according to their distance from object boundaries (in-

stead of predicting a segmentation mask), which helps to

preserve boundary information [16] [5] [2]. Another ap-

proach is to predict bounding boxes of objects of interest.

[12] uses manually chosen priors for bounding boxes so that

the neural network itself only has to predict offsets (instead

of coordinates). Building on [10], [11] relies on machine-

learned anchor boxes and predicts both bounding boxes and

object classifications. However, cities do not exhibit a per-

fectly grid-aligned pattern in their buildings, which is a

major drawback of this approach for BFP extraction. Re-

search on text detection in natural scenes helps to address

this shortcoming, since text often appears at arbitrary orien-

tations and sizes. [17] extend skew correction approaches to

detect the orientation angle of text. Rather than treating ori-

entation information as one step in a multi-stage pipeline,
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[18] introduce a network that predicts the text geometry di-

rectly (either as a rotated rectangle or arbitrary quadrangle).

By combining key features of these approaches—boundary-

preserving distance transformations, learned attention, and

rotated rectangle prediction from convolutional features—

we propose that higher-quality BFP results can be automat-

ically extracted from satellite imagery. The next section de-

scribes this approach in greater detail.

3. Proposed CNN Architecture

3.1. Rotated Rectangles

Building footprints are typically represented by poly-

gons, where the number of points vary from 3 to a dozen in

most cases. Given a polygon satisfying these assumptions,

we simplify it to the best fitting rotated rectangle using the

minimum-area encasing rectangle algorithm [3]. The algo-

rithm proposes a discrete number of orientation; at each ori-

entation, the bounding box rectangle of the original polygon

is computed, and its area is recorded. Finally the rectangle

achieving the smallest area is selected as the best fitting ro-

tated rectangle. Such a simplification is illustrated in Fig. 1.

Each best-fitting rotated rectangle is described by 5 pa-

rameters: its center x, y, its width and height h,w and its an-

gle with respect to a horizontal line α. As in region proposal

networks and bounding box regression models, these pa-

rameters are further transformed with respect to some axis

aligned grid cell characterized by a center xg, yg and dimen-

sions hg, wg . The angle exists in the range [−π/2, π/2],
and it presents a discontinuity at the interval boundaries.

This makes any regression against it harder to represent.

Thus, we project the angle on the unit circle by using its

two-dimensional cosine and sine representation. The best

fitting rotated rectangle is then represented by the following

6 parameters given some grid g:

x̂ = x− xg ; ŷ = y − yg, (1)

ĥ = log h/hg ; ŵ = logw/wg, (2)

α̂c = cos 2α ; α̂s = sin 2α. (3)

One of the final network layers is responsible for estimating

these 6 parameters per grid cell provided, and a cell-based

confidence metric indicates the presence of a building.

3.2. Grid Selection

In the context of object detection, recent region proposal

based architectures [10], [11] grid the input raster image,

and let each grid cell propose a candidate. Each grid cell

thus becomes responsible for predicting the presence of an

object, and the parameters of that object. In the context of

building footprint extraction, we design the grid such that

at most one building can be predicted by a cell. The grid

is characterized as follows. For a VHR satellite image of

resolution .5m and a minimal building size of 5 × 5 m2, a

cell shall be smaller than the minimum building size. Given

typical convolutional neural network architectures, the grid

dimension shall be proportional to the input dimension size

by a factor that is a power of two. Given typical image input

dimension of 512×512 at a resolution of .5m and a network

that downscales these dimensions by a factor of 23 = 8 to

a grid of dimension of 64 × 64, the resulting grid cell size

covers 4× 4 m2.1

3.3. Non-Maximal Suppression

As in most region proposal networks, a non-maximal

suppression stage is required to remove the overlapping pre-

dicted rotated rectangle. The usual algorithm relying on

quick computation of union and intersection areas needs

special attention as rotated rectangles require more com-

putation. We use an R-Tree spatial index [6] in order to

avoid trivial computations when two polygons do not inter-

sect. Given a rotated rectangle ri = (xi, yi, wi, hi, αi), it is

first represented by a generic polygon made of four points.

These points allow easy access to the axis-aligned bound-

ing box (li, bi, ri, ti) representing its left, bottom, right and

top coordinates. Each polygon is associated to a score si
produced by the network. The algorithm keeps the highest

scored polygons, while removing high overlaps. Thanks to

the R-Tree spatial index, each rotated rectangle is compared

to a small subset of other polygons which potentially inter-

sect it, greatly reducing the computational complexity.

3.4. Overall Architecture

Any fully convolutional neural network stack can be se-

lected as precursor to the the overall model. In this paper,

we select the first three blocks (six layers) from VGG-16

[14], which lead to a downscaling by 8 of the input im-

age dimensions corresponding to the selected grid dimen-

sions. Then that layer is fed in to two convolutional layers:

one layer predicting the presence of a building in a cell, the

second layer predicting the rotated rectangle parameters if

present. The purpose of the second layer is that its gradi-

ents are only propagated on the cells which contain a build-

ing footprint (from the training data). We make use of mean

squared loss to optimize both layers, with a balancing trade-

off that we set manually. The architecture is depicted in Fig.

2. During inference, the first layer allows us to identify the

cells containing building footprints. Then, at the locations

where objects are present the rotated rectangles are decoded

from the estimated parameters provided by the second layer.

1The challenge data was presented at 650× 650 resolution. We trans-

formed the imagery to 512 × 512 for training and inference, and then

re-projected the results into the original resolution for evaluation.
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Figure 2. The overall CNN architecture proposed. The image is

first passed through a standard CNN network, before being split

into an object presence indicator and an object parameter estima-

tor.

Table 1. Precision and Recall computed for an IOU above %50

on the training set for the four AOIs pertaining to the DeepGlobe

challenge. F1 score is derived from precision and recall measure-

ments as well.
@IOU 0.5 Precision Recall F1

Las Vegas 0.753 0.593 0.664

Paris 0.333 0.258 0.291

Khartoum 0.243 0.161 0.194

Shanghai 0.125 0.082 0.099

Total 0.364 0.273 0.312

4. Experiments and Results

4.1. DeepGlobe Challenge

We employed our approach in an experiment on the

DeepGlobe building detection challenge [1], encompassing

four AOIs covering the cities of Las Vegas in the U.S., Paris

in France, Khartoum in Sudan and Shanghai in China. The

training dataset, being organized by AOI, allows us to train

city-specific weights by fine-tuning from a model trained

on five U.S. cities. Given that the resulting footprints are

associated with a confidence score, we determined a best

threshold for each AOI to achieve maximum F1 score on

a held-out dataset. The results obtained by the proposed

approach are summarized in Tables 1 and 2, where Recall

and Precision are computed for an Intersection Over Union

(IOU) threshold of 50%. Clearly the F1 scores vary greatly

across AOI, achieving the best performance in Las Vegas,

and the worst performance in Shanghai. Illustrations of ex-

tracted and symbolized BFPs are provided in Fig.3, allow-

ing us to discuss the performance metrics qualitatively. The

proposed approach provides good approximations of small

and well-separated buildings which are dominant in U.S.

cities. However, when buildings are close to each other, of

larger size or when they have non-rectangular shapes the

proposed approach does not allow to capture them with a

reasonable IOU, explaining lower F1 scores in Khartoum

and Shanghai.

Table 2. Precision, Recall, and F1 score for each AOI in the vali-

dation set.
@IOU 0.5 Precision Recall F1

Las Vegas 0.760 0.601 0.671

Paris 0.323 0.257 0.286

Khartoum 0.253 0.167 0.201

Shanghai 0.132 0.084 0.103

Total 0.364 0.273 0.312

Figure 3. The rotated rectangles as BFP approximatiosn are illus-

trated on four tiles from the test dataset provided for the four aois

respectively. Top row: Las Vegas and Paris. Bottom row: Shang-

hai and Khartoum.

4.2. Extracting Suburban Buildings At Scale

We also conducted an analysis of the building size dis-

tribution over 10 major cities in the U.S., and observe that

90% of them have an area smaller than 200 m2. Buildings

of these sizes are typically private homes built in subur-

ban areas. Thus, being able to automatically extract and

symbolize suburban houses to the detriment of larger build-

ings is a worthwhile trade-off in North America. We used

this approach to automatically extract 10 million building

footprints from VHR satellite images acquired at 50 and

60 cm resolution covering 40 major cities in the U.S and

Canada. Examples of this process are given in Fig.4. Given

these automatically extracted BFPs, photo interpreters re-

view them and 40% of them get modified or deleted to

achieve higher accuracy or to avoid unwanted overlaps.

These results match the 75% precision obtained in Las Ve-

gas on the DeepGlobe challenge.
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Figure 4. Visual illustration of the proposed automatic BFP extrac-

tion and symbolization, in a suburban area of Reno, NV, U.S.A.

5. Conclusion

A CNN architecture to extract and symbolize building

footprints from satellite imagery has been proposed. The

CNN architecture outputs rotated rectangles providing a

symbolized approximation for small buildings. Experi-

ments are conducted on four AOIs, showing best results

on suburbs consisting of individual houses. These experi-

ments show that either large buildings or buildings without

clear delineation produce weaker results in terms of pre-

cision and recall. In future work, this approach could be

combined with segmentation-based architectures known to

achieve better F1, in order to symbolize larger buildings.
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[13] M. Rohs, J. Schöning, M. Raubal, G. Essl, and A. Krüger.
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