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Abstract

This paper summarizes our approach to the Deep Globe
Road Extraction challenge 2018. In this challenge we are
tasked to find road networks from satellite images. First,
we explain our U-Net type baseline model for the chal-
lenge. Second, we explain a new architecture that takes in
the lessons from some of the popular approaches that we
call Residual Inception Skip Net. Finally, we outline our
cyclic learning rate based ensembling approach which im-
proved the overall single model performance and the final
solution for submission. Our final model increases the loU
by 3 points over the baseline.

1. Introduction

The recent increase in availability of satellite imagery
has opened new areas of geospatial infrastructure analytics.
Road extraction via satellite imagery has the potential to
map previously un-mapped areas at scale, rapidly modify
maps during times of disaster to help coordinate relief, and
track global urban development in more detail. Figures 1-
3 below show a sample satellite image, its corresponding
ground truth mask, and a dense prediction which can be
extracted into a geo-referenced road network.

2. Challenge

This challenges [4] required extracting of road networks
from satellite imagery. The provided training dataset con-
sists of 6226 RGB images of size 1024 x 1024 pixels. The
imagery is collected via DigitalGlobe satellites and has 0.5
meter pixel resolution. Thus, each image covers 0.26km?
and the entire dataset represents 1,632.1km?. To put this
in perspective, London is about 1,600km?. This challenge
is a binary segmentation task in which the input is an RGB
image and the output is a binary prediction mask classifying
each pixel in the input image.

Road extraction via satellite imagery poses unique chal-
lenges. These challenges include, but are not limited to:

1. Varying off-nadir angles: Off-nadir angle is the de-
gree to which a point is not directly beneath a satel-
lites sensors. High off-nadir angles increase the rate at
which roads are occluded by buildings.

2. Ambiguous ’Road’ definition: What constitutes a
road is unclear from the vantage point of a satellite.
There are many road-like features such as trails, paths,
farm roads, country roads, dried waterways, and others
that can be confused for roads.

3. Road occlusion due to trees: Models must learn to
interpolate roads beneath trees when the road itself is
not visible.

2.1. Metric

Intersection over Union ([oU) is one of the standard
measure performance measure for segmentation. Given a
set of images, the IoU measure the similarity between the
prediction and the ground-truth per pixel.
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where T'P, F'P, F'N denote the true positive, false pos-
itive and false negative numbers. This score is always be-
tween 0 and 1. We call the average scores across the set of
images as mean IoU score (mlIoU). All the results in this
paper are mlIoU scores. For a more detailed explanation
and justification of the metric please refer [4]
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3. Models

Empirically, for the task of binary segmentation, it has
been shown that using a simple encoder decoder type archi-
tecture with skip connection performs quite well [1]. We ex-
plore the idea of making modern classification architectures
work well for binary segmentation tasks. We use ResNet [5]
and Inception style [16, 17] encoder architectures and pro-
pose a hybrid architecture called Residual Inception Skip
Net. This method improves the baseline models by 3 per-
centage points and outperforms other models.
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Figure 1: Satellite Image

3.1. U-Net

Our first model was inspired by the family of U-Net
architectures [12], where low-level feature maps are com-
bined with higher-level ones, which enables precise local-
ization. This type of network architecture was designed to
effectively solve image segmentation problems, particularly
in the medical imaging field. U-Net is generally a default
choice for segmentation challenges in Kaggle.

The encoder of the model consists of a VGG network
[14] with the addition of batch norm [17] and a total of 5
downsampling layers. The choice of the depth of the net-
work was informed by careful analysis of the dataset, task
and the receptive field [10]. We decided to keep a constant
number of 128 feature maps throughout the network. This
was based on the key observation that we can afford the
network to lose some representational power in the encoder
half as the model has access to low-level features in the de-
coder half via the skip connection.

The decoder is similar to the encoder where instead of
max-pooling we use deconvolution layers to upsample with
a skip connection from the encoder, combining deep repre-
sentations of the prior decoder layer with more precise spa-
tial representations from the corresponding encoder layer.
The final head consists of a sigmoid activation function.

3.2. DeepLab

Our encoder consists of a ResNet block with 55 convo-
lutional layers with 3 x 3 kernels. We use a convolutional
layer with stride 2 after 6 residual blocks forming 13 con-
volutional layers. This divides the whole encoding network
in 4 parts. We use 16, 32, 64 and 128 kernels in each of
these parts respectively. This gives us a feature map of 128
dimensions with 1/8 of the original resolution. The decoder
consists of 3 fully convolutional layers with number of ker-
nels 64, 32 and 16 respectively. Each of these layers upsam-
ples its input to be double its resolution. The last convolu-

Figure 2: Ground Truth

Figure 3: Predicted Mask

tional layer converts the feature map into scores followed
by a sigmoid activation function. Thus the whole network
consists of 55 convolutional layers for the encoder, 3 fully
convolutional layers for the decoder, followed by a convo-
lutional layer to output the class labels.[3, 2, 18]

3.3. Residual Inception Skip Net

This model is a convolutional encoder-decoder architec-
ture with the inception modules instead of standard convo-
lution blocks. The inception models are the originally pro-
posed in [8] but with asymmetric convolutions. For exam-
ple, a 3 x 3 convolution is replaced with a 3x 1 convolution,
then batch norm followed by 1 x 3 convolution. This is
better since it reduces the number of parameters and gives
similar performance. All weights are initialized with the He
norm [6] and all convs are followed by batch norm and then
activation. We used a leaky RELU with a slope of —0.1x as
our activation function.

Downsampling is performed using a strided convolution
followed by batch norm and leaky RELU. Upsampling is
done using 2 x 2 upsampling convolutions. Both upsam-
pling and downsampling layers are followed by a dropout of
0.9. Just like U-Net, we also add a skip connection linking
identically sized layers between encoder and the decoder.
The connections outputted the sum of the input and a resid-
ual block where a 1 x 1 convolution is followed by batch
norm. We experimented with trying to scale down the en-
coder layer but that resulted in slightly worse performance.

The final head consists of a 1 x 1 convolution followed
by a hard sigmoid activation function. We use this activation
function instead of a standard sigmoid because of our choice
of a sensitive dice loss function. In the case of soft sigmoid
function, the model activation only tends to 0 or 1 values
which leaves a lot of small residual error that adds up and
diffuses the model’s ability to focus on harder error signals.
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4. Training Setup
4.1. Data

We normalize all the data in training by subtracting the
mean and scaling by the standard deviation.

We apply a host of data augmentations to the training
data before feeding them into the model. We augment the
images fed into all the models by randomly scaling between
1/1.1 and 1, jittering the color space, zooming between
1/1.1 and 1.1, shearing between —5 and 5 degrees. Each
image had a 10% chance of having the above augmentations
applied. Not surprisingly, adding various data augmentation
improved the model performance. However, stronger data
augmentation reduced model generalization. We think this
might be due to the over-perturbation of training distribu-
tion into modes absent in the validation/test distribution.

All the models’ input dimension is 256 x 256. We split
each of the 1024 x 1024 images in the training set into 16
training patches, adding black-fill as necessary. For internal
training, we split the dataset into 85 — 15 for training and
validation set.

4.2. Loss Function

The dice similarity coefficient (DSC) measures the
amount of agreement between the model prediction and the
ground truth. It is a widely used metric in high class imbal-
ance segmentation tasks [1 1, 13]

The dice similarity coefficient is defined below
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where P is the model’s segmentation output and Q is the
human-annotated ground truth. This function is however
not differentiable and therefore cannot be used directly as a
loss function for our neural networks.

We use a continuous version of the Dice score that al-
lows differentiation and can be used as a loss function in
optimization of our network using stochastic gradient based
methods.

DSC — —
SV si+ it

where s; represents a continuous value from the model
for each pixel which is typically an output from a sigmoid
or softmax activation function. r; represents the ground
truth annotation for each pixel. € is a smoothing factor typ-
ically set to 1.0

We experimented with a baseline binary cross-entropy
loss and found it to be consistently worse than dice loss
across all the configurations.

3)

4.3. Optimization

We trained all the models with ADAM [9] using 81 as
0.9 and 82 as 0.999 without any weight decay. Unless stated
otherwise, we started the training with a learning rate of
2e~%. We reduce the learning rate by a factor of 2 after ob-
serving no improvement in the validation loss for 10 epochs.
All the models were trained for 150 epochs.

We fine tuned the model after 100 epochs using the
cyclic learning rate (CLR) technique proposed by [7, 15].
Intuitively, the idea is to encourage the model to reach dif-
ferent local minima and then ensemble those checkpoints.
The way we achieve this is by cycling the learning rate be-
tween a reasonable range of values. When we reach a high
learning rate, we hope that the model jumps out of the cur-
rent local minimum and drifts towards a different and often
equivalent local minimum. Subsequently, as the learning
rate lowers, we hope the model spirals down a new local
minimum. This ensembling technique boosts performance
for all models.

5. Ensembling and Prediction

We explored several different ensembling techniques as
is common in these types of competitions.

1. Model prediction averaging: We average all the
model’s predictions

2. Exponential Average of weights: For each model we
use an exponential moving average of the parameters
from last few steps to evaluate the model [&].

3. Cyclic Snapshot Averaging: We use the above men-
tioned cyclic learning rate approach to average param-
eters from all the checkpoints with the lowest learning
rate, that is, from the presumed different local mini-
mum.

During the prediction time, for each of the 1024 x 1024
images, we predict size 256 x 256 patches at a time with a
stride of 64. We normalize the images the same way we nor-
malize the training data. We saw no improvements in model
performance when we predicted with data augmentations.

6. Results

In Tablel we share results based on the random 85% and
15% split of the development (training) set. Since the scor-
ing on the test set had limited number of tries we can only
share the final submission number, which is also the best
model in the development set. Our final score on the hidden
test set was 0.61 which was obtained by ensembling of the
top 61 best performing model on the development set.

According to Tablel we see a consistent improvement in
the performance when using an exponential moving average
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Models H Single Model Exp Avg CLR
U-Net 58.1 59.0 59.2
DeepLab 58.3 59.3 59.4
ResInceptionSkip 60.1 61.2 61.3

Table 1: Results are in mIoU units. Single model repre-
sents no ensembling. Exp Avg represents exponential mov-
ing average of parameters over last few steps. CLR repre-
sents cyclic learning rate as explained in 5

of checkpoints from several steps as explained in Section
5. When we use cyclic learning rate in conjunction with
exponential moving average, we see a consistent boost in
performance. Also, we observe that using our proposed hy-
brid model consistently outperforms the other two baseline
models.

7. Future Work

Due to time constrain we were unable to experiment with
various post-processing strategies like CRF. These should
almost certainly improve the model performance. In addi-
tion, it would be interesting to try using a road network spe-
cific objective function that would try to optimize directly
for connectivity and in turn be more robust around occlu-
sion.
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