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Abstract

This paper summarizes our approach to the Deep Globe

Road Extraction challenge 2018. In this challenge we are

tasked to find road networks from satellite images. First,

we explain our U-Net type baseline model for the chal-

lenge. Second, we explain a new architecture that takes in

the lessons from some of the popular approaches that we

call Residual Inception Skip Net. Finally, we outline our

cyclic learning rate based ensembling approach which im-

proved the overall single model performance and the final

solution for submission. Our final model increases the IoU

by 3 points over the baseline.

1. Introduction

The recent increase in availability of satellite imagery

has opened new areas of geospatial infrastructure analytics.

Road extraction via satellite imagery has the potential to

map previously un-mapped areas at scale, rapidly modify

maps during times of disaster to help coordinate relief, and

track global urban development in more detail. Figures 1-

3 below show a sample satellite image, its corresponding

ground truth mask, and a dense prediction which can be

extracted into a geo-referenced road network.

2. Challenge

This challenges [4] required extracting of road networks

from satellite imagery. The provided training dataset con-

sists of 6226 RGB images of size 1024× 1024 pixels. The

imagery is collected via DigitalGlobe satellites and has 0.5
meter pixel resolution. Thus, each image covers 0.26km2

and the entire dataset represents 1,632.1km2. To put this

in perspective, London is about 1,600km2. This challenge

is a binary segmentation task in which the input is an RGB

image and the output is a binary prediction mask classifying

each pixel in the input image.

Road extraction via satellite imagery poses unique chal-

lenges. These challenges include, but are not limited to:

1. Varying off-nadir angles: Off-nadir angle is the de-

gree to which a point is not directly beneath a satel-

lites sensors. High off-nadir angles increase the rate at

which roads are occluded by buildings.

2. Ambiguous ’Road’ definition: What constitutes a

road is unclear from the vantage point of a satellite.

There are many road-like features such as trails, paths,

farm roads, country roads, dried waterways, and others

that can be confused for roads.

3. Road occlusion due to trees: Models must learn to

interpolate roads beneath trees when the road itself is

not visible.

2.1. Metric

Intersection over Union (IoU ) is one of the standard

measure performance measure for segmentation. Given a

set of images, the IoU measure the similarity between the

prediction and the ground-truth per pixel.

IoU =
TP

TP + FN + FP
(1)

where TP , FP , FN denote the true positive, false pos-

itive and false negative numbers. This score is always be-

tween 0 and 1. We call the average scores across the set of

images as mean IoU score (mIoU ). All the results in this

paper are mIoU scores. For a more detailed explanation

and justification of the metric please refer [4]

3. Models

Empirically, for the task of binary segmentation, it has

been shown that using a simple encoder decoder type archi-

tecture with skip connection performs quite well [1]. We ex-

plore the idea of making modern classification architectures

work well for binary segmentation tasks. We use ResNet [5]

and Inception style [16, 17] encoder architectures and pro-

pose a hybrid architecture called Residual Inception Skip

Net. This method improves the baseline models by 3 per-

centage points and outperforms other models.

1216



Figure 1: Satellite Image Figure 2: Ground Truth Figure 3: Predicted Mask

3.1. U­Net

Our first model was inspired by the family of U-Net

architectures [12], where low-level feature maps are com-

bined with higher-level ones, which enables precise local-

ization. This type of network architecture was designed to

effectively solve image segmentation problems, particularly

in the medical imaging field. U-Net is generally a default

choice for segmentation challenges in Kaggle.

The encoder of the model consists of a VGG network

[14] with the addition of batch norm [17] and a total of 5

downsampling layers. The choice of the depth of the net-

work was informed by careful analysis of the dataset, task

and the receptive field [10]. We decided to keep a constant

number of 128 feature maps throughout the network. This

was based on the key observation that we can afford the

network to lose some representational power in the encoder

half as the model has access to low-level features in the de-

coder half via the skip connection.

The decoder is similar to the encoder where instead of

max-pooling we use deconvolution layers to upsample with

a skip connection from the encoder, combining deep repre-

sentations of the prior decoder layer with more precise spa-

tial representations from the corresponding encoder layer.

The final head consists of a sigmoid activation function.

3.2. DeepLab

Our encoder consists of a ResNet block with 55 convo-

lutional layers with 3 × 3 kernels. We use a convolutional

layer with stride 2 after 6 residual blocks forming 13 con-

volutional layers. This divides the whole encoding network

in 4 parts. We use 16, 32, 64 and 128 kernels in each of

these parts respectively. This gives us a feature map of 128

dimensions with 1/8 of the original resolution. The decoder

consists of 3 fully convolutional layers with number of ker-

nels 64, 32 and 16 respectively. Each of these layers upsam-

ples its input to be double its resolution. The last convolu-

tional layer converts the feature map into scores followed

by a sigmoid activation function. Thus the whole network

consists of 55 convolutional layers for the encoder, 3 fully

convolutional layers for the decoder, followed by a convo-

lutional layer to output the class labels.[3, 2, 18]

3.3. Residual Inception Skip Net

This model is a convolutional encoder-decoder architec-

ture with the inception modules instead of standard convo-

lution blocks. The inception models are the originally pro-

posed in [8] but with asymmetric convolutions. For exam-

ple, a 3×3 convolution is replaced with a 3×1 convolution,

then batch norm followed by 1 × 3 convolution. This is

better since it reduces the number of parameters and gives

similar performance. All weights are initialized with the He

norm [6] and all convs are followed by batch norm and then

activation. We used a leaky RELU with a slope of −0.1x as

our activation function.

Downsampling is performed using a strided convolution

followed by batch norm and leaky RELU. Upsampling is

done using 2 × 2 upsampling convolutions. Both upsam-

pling and downsampling layers are followed by a dropout of

0.9. Just like U-Net, we also add a skip connection linking

identically sized layers between encoder and the decoder.

The connections outputted the sum of the input and a resid-

ual block where a 1 × 1 convolution is followed by batch

norm. We experimented with trying to scale down the en-

coder layer but that resulted in slightly worse performance.

The final head consists of a 1 × 1 convolution followed

by a hard sigmoid activation function. We use this activation

function instead of a standard sigmoid because of our choice

of a sensitive dice loss function. In the case of soft sigmoid

function, the model activation only tends to 0 or 1 values

which leaves a lot of small residual error that adds up and

diffuses the model’s ability to focus on harder error signals.
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4. Training Setup

4.1. Data

We normalize all the data in training by subtracting the

mean and scaling by the standard deviation.

We apply a host of data augmentations to the training

data before feeding them into the model. We augment the

images fed into all the models by randomly scaling between

1/1.1 and 1, jittering the color space, zooming between

1/1.1 and 1.1, shearing between −5 and 5 degrees. Each

image had a 10% chance of having the above augmentations

applied. Not surprisingly, adding various data augmentation

improved the model performance. However, stronger data

augmentation reduced model generalization. We think this

might be due to the over-perturbation of training distribu-

tion into modes absent in the validation/test distribution.

All the models’ input dimension is 256 × 256. We split

each of the 1024 × 1024 images in the training set into 16

training patches, adding black-fill as necessary. For internal

training, we split the dataset into 85 − 15 for training and

validation set.

4.2. Loss Function

The dice similarity coefficient (DSC) measures the

amount of agreement between the model prediction and the

ground truth. It is a widely used metric in high class imbal-

ance segmentation tasks [11, 13]

The dice similarity coefficient is defined below

DSC =
2|P ∩Q|

|P |+ |Q|
(2)

where P is the model’s segmentation output and Q is the

human-annotated ground truth. This function is however

not differentiable and therefore cannot be used directly as a

loss function for our neural networks.

We use a continuous version of the Dice score that al-

lows differentiation and can be used as a loss function in

optimization of our network using stochastic gradient based

methods.

LDSC = −
2
∑N

i
siri

∑N

i
si +

∑N

i
ri + ǫ

(3)

where si represents a continuous value from the model

for each pixel which is typically an output from a sigmoid
or softmax activation function. ri represents the ground

truth annotation for each pixel. ǫ is a smoothing factor typ-

ically set to 1.0

We experimented with a baseline binary cross-entropy

loss and found it to be consistently worse than dice loss

across all the configurations.

4.3. Optimization

We trained all the models with ADAM [9] using β1 as

0.9 and β2 as 0.999 without any weight decay. Unless stated

otherwise, we started the training with a learning rate of

2e−4. We reduce the learning rate by a factor of 2 after ob-

serving no improvement in the validation loss for 10 epochs.

All the models were trained for 150 epochs.

We fine tuned the model after 100 epochs using the

cyclic learning rate (CLR) technique proposed by [7, 15].

Intuitively, the idea is to encourage the model to reach dif-

ferent local minima and then ensemble those checkpoints.

The way we achieve this is by cycling the learning rate be-

tween a reasonable range of values. When we reach a high

learning rate, we hope that the model jumps out of the cur-

rent local minimum and drifts towards a different and often

equivalent local minimum. Subsequently, as the learning

rate lowers, we hope the model spirals down a new local

minimum. This ensembling technique boosts performance

for all models.

5. Ensembling and Prediction

We explored several different ensembling techniques as

is common in these types of competitions.

1. Model prediction averaging: We average all the

model’s predictions

2. Exponential Average of weights: For each model we

use an exponential moving average of the parameters

from last few steps to evaluate the model [8].

3. Cyclic Snapshot Averaging: We use the above men-

tioned cyclic learning rate approach to average param-

eters from all the checkpoints with the lowest learning

rate, that is, from the presumed different local mini-

mum.

During the prediction time, for each of the 1024 × 1024

images, we predict size 256 × 256 patches at a time with a

stride of 64. We normalize the images the same way we nor-

malize the training data. We saw no improvements in model

performance when we predicted with data augmentations.

6. Results

In Table1 we share results based on the random 85% and

15% split of the development (training) set. Since the scor-

ing on the test set had limited number of tries we can only

share the final submission number, which is also the best

model in the development set. Our final score on the hidden

test set was 0.61 which was obtained by ensembling of the

top 61 best performing model on the development set.

According to Table1 we see a consistent improvement in

the performance when using an exponential moving average
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Models Single Model Exp Avg CLR

U-Net 58.1 59.0 59.2
DeepLab 58.3 59.3 59.4

ResInceptionSkip 60.1 61.2 61.3

Table 1: Results are in mIoU units. Single model repre-

sents no ensembling. Exp Avg represents exponential mov-

ing average of parameters over last few steps. CLR repre-

sents cyclic learning rate as explained in 5

of checkpoints from several steps as explained in Section

5. When we use cyclic learning rate in conjunction with

exponential moving average, we see a consistent boost in

performance. Also, we observe that using our proposed hy-

brid model consistently outperforms the other two baseline

models.

7. Future Work

Due to time constrain we were unable to experiment with

various post-processing strategies like CRF. These should

almost certainly improve the model performance. In addi-

tion, it would be interesting to try using a road network spe-

cific objective function that would try to optimize directly

for connectivity and in turn be more robust around occlu-

sion.
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