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Abstract

We present a semantic segmentation algorithm for RGB

remote sensing images. Our method is based on the Dilated

Stacked U-Nets architecture. This state-of-the-art method

has been shown to have good performance in other appli-

cations. We perform additional post-processing by blend-

ing image tiles and degridding the result. Our method gives

competitive results on the DeepGlobe dataset.

1. Introduction

The goal of the DeepGlobe challenge [8] is to produce

a per-pixel map of the ground material given an RGB input

captured from a satellite sensor. This is particularly chal-

lenging even in the context of remote sensing since most

satellite datasets contain more than these three canonical

spectral bands. Restricting the input data in this way re-

quires an architecture that can handle large intra-class vari-

ation even with less information.

We address the problem of ground material classifica-

tion using a semantic segmentation algorithm. Seman-

tic segmentation has a rich history in computer vision

[12, 19, 22, 18, 27] with most recent techniques focusing on

the use of convolutional neural networks [15]. We choose

state of the art Dilated Stacked U-Net [24], due to its good

performance on other datasets [7, 9] with relatively fewer

parameters and therefore easy trainability.

We propose to combine the Dilated Stacked U-Net archi-

tecture with a set of post-processing techniques designed to

overcome the traditional difficulty of working with remote

sensing imagery. Our algorithm combines the blending de-

scribed in [1] with a novel frequency-domain method for

removing grid artifacts that often plague the outputs of di-

lated network architectures.

2. Related Work

The U-net architecture was originally proposed to per-

form segmentation on bio-medical images [23]. U-nets

capture context information at multiple scales via contract-

ing (encoder) and expansive (decoder) paths and can be

trained with relatively smaller amounts of data. Other

Figure 1: UNet module with outer residual connection

recent encoder-decoder structure-based deep architectures

proposed for segmentation include [17, 2]. Chen et al. and

Lin et al. [6, 18] engage image pyramid pooling to capture

information at multiple scales whereas Zhao et al. [29] and

Chen et al. [5] use spatial pyramid pooling and atrous con-

volutions to this end. Several other approaches achieve con-

text aggregation via Conditional Random Fields (CRFs) on

deep features [16, 3, 4]. Yu et al. [28] utilize dilated con-

volutions for context aggregration. Stacked deconvolution

layers are used in [22, 10, 13] whereas Ghiasi et al. [11] use

Laplacian pyramids to selectively refine the low resolution

maps. Other architectures for segmentation that were built

atop VGG [25] include [19, 30, 23, 28]. Other fully con-

volutional architectures that have been applied to semantic

labeling of remote sensing data include [20, 14, 21, 26]

3. Method

The land cover classification task on satellite imagery is

an instance of the semantic scene segmentation problem.

We train a deep architecture composed of stacked U-Nets

to perform this task. The network is trained end-to-end.

3.1. U­Net Module

Each U-Net module consists of 10 convolutional blocks,

each preceded by ReLU and batch normalization. Lower

and higher resolution feature maps are generated using

strided convolution and deconvolution respectively. The

resolution of feature maps at the input and output of each

1257



Figure 2: Dilated Stacked U-Nets architecture for semantic scene segmentation

U-Net module is same. The convolutions use 3x3 kernels.

Bottleneck layers with 1x1 convolution kernels are added

at the input and output of each U-Net module. Skip con-

nections within the module help avoid vanishing gradients.

Figure 1 illustrates the structure.

3.2. Dilated Stacked U­Nets

Figure 2 outlines the architecture used to perform scene

segmentation on the Deepglobe data. It consists of 4 blocks

of stacked U-Nets containing 2,7,7 and 1 module(s) respec-

tively. Every module is preceded and succeeded by 1x1

convolutions for feature transformation. Input images pass

through 7x7 convolution filters (stride=2) and a residual

block. Subsequently, information passes through 4 blocks

of stacked U-Net modules which combine details captured

at high-resolution with long distance context information

captured at low-resolution to generate segmentation maps

for the scene. For an input size of 512x512, the output map

size is 32x32, This is owing to 2 strided convolutions and 2

average pooling operations, which increase the field of view

and help capture long-distance information. Average pool-

ing is applied on outputs of first and second stacked U-Net

blocks. In the third and fourth blocks, U-Net modules per-

form dilated convolutions to keep feature map resolution

constant. The last U-Net module in block 4 is a trimmed

version of standard U-Nets, with only encoder E1 and de-

coder D1 which are illustrated in Figure 1. In the first U-

Nets of each block, the skip connection is implemented us-

ing a a 1×1 convolution. The residual connection in all but

the first U-Net in each block is implemented as an identity

mapping. The number of output feature maps from each

blocks is roughly the same as the total number of feature

maps generated by all the preceding U-Net modules, which

allows the architecture the flexibility to retain all of them.

The output is re-scaled to the original size using bilinear in-

terpolation. The total number of parameters learned is 37.7

million. Multi-class cross entropy loss function is used to

train the network along with weights in proportion to the

rarity of class samples in the training set.

4. Experiments

Here we briefly describe our experimental setup. We in-

clude the specifics of our data augmentation and training

scheme as well as our post-processing scheme.

4.1. Data Augmentation

The training set of Deepglobe contains 803 images. We

set aside 50 from these for validation. We will regard these

two sets as ’Train’ and ’Train-Val’. Besides this, there is

a validation set of 171 images (Val) on which we report

mean-IoU score. Each image is of size 2448x2448. From

these images we crop tiles of size 512x512 (from all over

the image) as inputs to the network. Experiments with

smaller tiles (256x256) lead to reduced performance due to

lesser long distance information whereas larger input tiles

(1024x1024) constrain batch size (due to limitation of GPU

memory) and interfere with learning of batch-normalization

parameters. For training, we augment inputs by randomly

flipping, scaling, jittering and rotating the tiles.

4.2. Training

We use the Adam optimizer with a starting learning rate

of 2.0e−4. Weight decay and momentum values are set at

1.5e
−4 and 0.95 respectively. We get rid of the pooling

steps at the end of third and fourth blocks to operate at an

output stride of 16. Output stride is the ratio of input to

output resolution. The training and testing pipelines are im-

plemented using the PyTorch framework and the model was

trained on P6000 GPUs with a batch size of 20.

4.3. Post­processing

Remote sensing data generally consists of large images

containing many small structures. The Stacked U-Net ar-
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(a) U-Net Output (b) After deblocking (c) After deblocking and degridding

Figure 3: Post-Processing Result

chitecture we used requires a significant amount of GPU

memory. During training, we break the images into smaller

tiles. When the original image is reconstructed, this results

in blocking artifacts at the borders of the tiles because of

the lack of shared context. Additionally, the Stacked U-

Net itself is prone to gridding artifacts. Both these types

of artifacts can be seen in Figure 3a. We propose a two

stage post-processing algorithm to deblock and degrid the

network’s output. This results in an additional 3% improve-

ment in mean IOU score vs using the network output di-

rectly on the DeepGlobe validation data. The first stage of

our method is intended to smoothly combine adjacent tiles

to avoid hard boundary lines, it is based on the method in

[1]. For each tile, we take four 90-degree rotations and their

reflections for a total of eight duplicate tiles per single test

tile. The raw predictions on these eight tiles are averaged

to produce a single prediction tile. The tiles themselves are

sampled with 50% overlap and then merged using a cen-

tered 2D Gaussian window. The result of this algorithm is

shown in Figure 3b where block artifacts are effectively re-

moved. Though the result of stage one is much cleaner than

the raw network output, it is still subject to grid artifacts.

The next stage of our post-processing algorithm addresses

these. We observe that the grid artifacts are often small,

high-frequency noise. To remove them, we take the discrete

cosine transform of 8 × 8 blocks of the output of stage 1.

We then remove all but the DC coefficient of the transform

and project the result back into the spatial domain. This

effectively replaces each pixel in the 8 × 8 blocks with the

average label of the block. Then, to remove lower frequency

artifacts, we use a voting scheme. For each block, the label

of the block is replaced by the majority label of its eight

neighbors. This gives the final result in 3c which is free

from most artifacts.

5. Results

Model No-PP DB DB+DG

SUNET-7128-723 0.48446 0.50702 0.50703

Table 1: Mean IoU scores of our model on the validation set.

No-PP = no post processing. DB = deblocking. DB+DG =

deblocking followed by degridding

Table 1 presents the mean IoU scores obtained on the

validation set for the proposed Stacked U-Net model with

4 blocks of depth 2,7,7 and 1 respectively. The input im-

age was padded and tiled to perform inference. Additional

deblocking and degridding steps (discussed in Section 4.3

yielded enhanced performance by removing the gridding ef-

fect.

Automatic land cover classification is still an exploratory

problem as the ground truth has missing annotations. Some

of the small details that were captured by our model are

presented in Figure 4. Other cases where the model was fre-

quently confused are shadows in forest area, that appeared

darker and smoother which were classified as water. In

some cases, ripples on large flat water bodies, that appear

dark green, created some texture and were predicted as for-

est area by the model. These are specific cases which can

be handled better with more training examples from such

images.

6. Conclusion

We apply Dilated Stacked U-Nets to produce state-of-

the-art results in semantic segmentation on Deepglobe data.

Our method is combined with an effective post-processing

algorithm designed to address both the specific challenges

of remote sensing data and the U-Net output. Our method

scores competitively on the DeepGlobe data.
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(a) Input 1 (b) Input 2 (c) Input 3

(d) Ground Truth (e) Our result (f) Ground Truth (g) Our result (h) Ground Truth (i) Our result

(j) Input 4 (k) Input 5 (l) Input 6

(m) Ground Truth (n) Our result (o) Ground Truth (p) Our result (q) Ground Truth (r) Our result

Figure 4: Some missing detail in the ground truth was captured by Stacked U-Nets model
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